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Abstract Let Pd
n be the space of real algebraic polynomials of d variables and degree

at most n, K ⊂ R
d a compact set, ||p||K := supx∈K |p(x)| the usual supremum norm

on K . Let ϕK (x) := inf{α > 0 : x/α ∈ K } denote the Minkowski functional of K .
In this note we shall prove that if K is a star-like domain with Lipα boundary, that
is ϕK (x) satisfies the Lipα condition, 0 < α ≤ 1 then the following Bernstein type
inequality holds: for any p ∈ Pd

n , ‖p‖K = 1 and x ∈ IntK

|∇ p|(x) ≤ cn

(1 − ϕK (x))
1
α
− 1

2

,

where |∇ p| stands for the Euclidean length of the gradient of p. Furthermore, if
1 < α ≤ 2 and K is a Cα star like-domain, that is ∇ϕK (x) has the Lip(α − 1)
property, then the same inequality holds for the tangential derivatives of p. These new
Bernstein type inequalities are applied for the study of cardinality of norming sets, or
admissible meshes. The sequence of discrete sets Y = {Yn ⊂ K , n ∈ N} is called
an optimal admissible mesh in K if there exist constants c1, c2 depending only on K
such that
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||p||K ≤ c1||p||Yn , p ∈ Pd
n , n ∈ N,

and card(Yn) ≤ c2nd , n ∈ N. It was proved earlier that optimal admissible meshes

exist in C2 star-like domains. In this paper it will be shown that C2− 2
d smoothness

also suffices for their existence.

Keywords Multivariate polynomials · Bernstein type inequalities · Norming sets ·
Optimal meshes · Star-like sets

Mathematics Subject Classification (2000) 41A17

1 Introduction

Consider the space Pd
n of real algebraic polynomials of d variables and degree at most

n. Let K ⊂ R
d , d ≥ 2, be any compact set and ‖p‖K := supx∈K |p(x)| the usual

supremum norm on K . Denote by Du p the directional derivative of p in the direction
u ∈ Sd−1 := {x ∈ R

d : |x| = 1}, and |∇ p| := maxu∈Sd−1 |Du p| the Euclidean length
of its gradient. The classical Bernstein problem consists in estimating |∇ p|(x) for a
given p ∈ Pd

n , ‖p‖K = 1 and x ∈ IntK . Typically, this estimate is given in terms of
the degree n of the polynomials and the distance of point x ∈ IntK to the boundary
∂K of the compact K . This problem goes back to Bernstein [3] who showed that when
d = 1 and K = [a, b] we have the sharp estimate

|p′(x)| ≤ n√
(x − a)(b − x)

‖p‖[a,b], x ∈ (a, b). (1)

Let

ϕK (x) := inf{α > 0 : x/α ∈ K } (2)

denote the usual Minkowski functional of K . In case when K ⊂ R
d is a 0-symmetric

convex body Sarantopoulos [13] established a complete analogue of (1)

|Du p|(x) ≤ nϕK (u)
√
1 − ϕK (x)2

‖p‖K , x ∈ IntK , u ∈ Sd−1. (3)

The above inequality was also independently verified by Baran [2]. Thus for Bernstein
type inequalities on 0-symmetric convex bodies

√
1 − ϕK (x)2 ∼ √

1 − ϕK (x) is the
propermeasure of distance from the given point to the boundary of the set. The problem
of finding the correct measure of distance for Bernstein type inequalities on general
compact sets in R

d was studied by Baran [1] and Totik [14] using potential theoretic
methods. In [1,14] this distance is given in terms of the so called equilibrium measure
of the set, however this equilibrium measure can be rarely found explicitly.

In this note we shall provide an explicit asymptotically sharp measure of distance
in Bernstein type inequalities for star-like domains. This will be accomplished for
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both general and tangential Bernstein type inequalities. We shall also apply these new
inequalities in order to generalize some estimates for cardinality of the norming sets.

It should be noted that the star like property of the domains is used in this note
for the sake of convenience, the methods applied can be extended to more general
domains. A detailed examination of the proofs of the Bernstein type inequalities given
by Theorems 1 and 2 reveals that they are based on embedding certain l p balls into
the domain, and technically this can be accomplished easier for a star-like domain. In
particular, all results of the paper also hold for finite unions of star-like domains.

2 New results

Let K ⊂ R
d be a compact star-like set with respect to the origin, that is 0 ∈ IntK

and for every x ∈ K we have that [0, x) ⊂ IntK . Note that the study of Bernstein
type inequalities is shift independent hence assuming that the center of the star is in
the origin does not restrict the generality of our considerations. Then the Minkowski
functional ϕK (x) of K given by (2) is a homogeneous functional satisfying the prop-
erties ϕK (x) < 1, x ∈ IntK , ϕK (x) = 1, x ∈ ∂K and ϕK (x) > 1 when x is not in
K . Thus the quantity 1−ϕK (x) measures the distance from the point to the boundary
of the domain. Our goal is to show that in Bernstein type inequalities on star-like
domains the proper measure of distance to the boundary is of the form (1 − ϕK (x))β

with some β > 0 which depends on the geometry of the boundary. In order to identify
this parameter β let us introduce the Lip property of the boundary.

Definition 1 Let us say that the star-like set K ⊂ R
d has Lipα, 0 < α ≤ 1 boundary

if for some M > 0 depending on K we have

|ϕK (x) − ϕK (x + h)| ≤ M |h|α, |h| ≤ 1, x ∈ Sd−1. (4)

With the above definition we have the next

Theorem 1 If K ⊂ R
d is a star-like domain with Lipα, 0 < α ≤ 1 boundary then for

any p ∈ Pd
n , ‖p‖K = 1 and x ∈ IntK

|∇ p|(x) ≤ cK n

(1 − ϕK (x))
1
α
− 1

2

, (5)

where cK > 0 depends only on K .

It is interesting to note in the above estimate that the measure of distance to the

boundary of the set given by the quantity (1−ϕK (x))
1
α
− 1

2 depends on the geometry of
the set. It will be pointed out below that in general this is the sharp quantity measuring
the distance to the boundary of Lipα, 0 < α ≤ 1 domain. In the Lip 1 case this quantity
reduces to

√
1 − ϕK (x) which is essentially what is implied by (3) in case when K is

convex.
Clearly, (5) yields an asymptotically optimal estimate in case when α = 1 (or in

particular K is convex). Nevertheless, a further improvement in the Bernstein inequal-
ity can be achieved when only tangential derivatives of polynomials are considered.
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This approach was investigated in [9] were tangential Markov type inequalities were
studied for smooth star-like domains.

Let us assume that the Minkowski functional is continuously differentiable on
R

d \{0} and denote by ∇ϕK its gradient. For any x ∈ ∂K we have that ∇ϕK (x) gives
the normal direction to the boundary at x ∈ ∂K . In addition, let

TK (x) := {u ∈ Sd−1 : u⊥∇ϕK (x)}

be the set of tangent unit vectors at x ∈ ∂K . When the Minkowski functional is
continuously differentiable on R

d \{0} we shall always assume in addition that the
star-like domain K does not contain critical points on its boundary in the sense that
tangent directions at any x ∈ ∂K are not collinear with x.

Definition 2 Given 1 < α ≤ 2, we say that the star-like domain K ⊂ R
d is Cα if for

some M > 0 depending on K we have

|∇ϕK (x) − ∇ϕK (x + h)| ≤ M |h|α−1, x ∈ Sd−1, |h| ≤ 1. (6)

Theorem 2 Let K ⊂ R
d be a Cα star-like domain with some 1 < α ≤ 2. Then for

any p ∈ Pd
n , ‖p‖K = 1, x ∈ IntK \{0} and u ∈ TK ( x

ϕK (x)
)

|Du p|(x) ≤ cK n

(1 − ϕK (x))
1
α
− 1

2

, (7)

where cK > 0 depends only on K .

Clearly, since 1 < α ≤ 2 in (7) it provides a sharper Bernstein type inequality than
(5), but only for tangential derivatives of the polynomial. It should be also noted that
when α = 2 (7) becomes a uniform Markov type estimate of order n.

Bernstein type inequalities are very useful, they are widely applied in various areas
of analysis. One particular application that we intend to exhibit in this note is the
study of the so called norming sets or optimal meshes, see e.g. [8] and [5], were these
corresponding notions are introduced.

Definition 3 ([5]) A family of sets Y = {Yn ⊂ K , n ∈ N} is called an admissible
mesh in K if there exist constants c1, c2 depending only on K such that

||p||K ≤ c1||p||Yn , p ∈ Pd
n , n ∈ N,

where the cardinality of Yn grows at most polynomially, i.e. card(Yn) ≤ c2nm, n ∈ N,

with some fixed m ∈ N depending only on K .

This definition of admissible meshes is similar to the notion of norming sets [8].
Admissible meshes are applied in various areas, for instance they are used for dis-
crete least squares approximation, extracting discrete extremal sets of Fekete and Leja
type, scattered data interpolation, etc. The study of admissible meshes has received
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lately a considerable attention, see for instance [4,6,12] were various applications and
algorithms for the construction of admissible meshes is discussed.

Since dim Pd
n ∼ nd we clearly must have m ≥ d in the above definition (assuming,

of course that no polynomial vanishes on K ). Naturally, in optimal case we aim for
a mesh with asymptotically minimal number of points in it, that is we would like to
have m = d in Definition 3. This leads to the following

Definition 4 We shall say that an admissible mesh (norming set) Y = {Yn ⊂ K , n ∈
N} in K ⊂ R

d is optimal if card(Yn) ≤ cnd , n ∈ N, with some c > 0 depending
only on K .

The basic question in this respect consists in describing those sets K ⊂ R
d which

possess optimal admissible meshes. Finding exact geometric properties characteriz-
ing sets with optimal admissible meshes appears to be a rather difficult problem. It
was shown recently in [10] that any C2 star-like domain possesses an optimal mesh.
Applying the tangential Bernstein inequality (7) of Theorem 2 we can extend this
result to Cα star-like domains with 2 > α > 2 − 2

d . This is a substantial decrease in
required smoothness of the star-like domain, especially for low dimensions.

Theorem 3 Let 1 ≤ α ≤ 2. Assume that K ⊂ R
d is a star-like domain which is

Cα if 1 < α ≤ 2 and has Lip1 boundary if α = 1. Then K possesses an admissible
mesh Y = {Yn ⊂ K , n ∈ N} with card(Yn) = O(nd) if α > 2 − 2

d ; card(Yn) =
O(nd log n) if α = 2 − 2

d and card(Yn) = O(n
2d−2

α ) if α < 2 − 2
d (n ∈ N).

Hence by the above theorem when α > 2 − 2
d the Cα star-like domains possess

optimal meshes. This extends an earlier result given in [10], where the existence of
optimal meshes was verified for C2 star-like domains. Furthermore, when α = 2− 2

d
the meshes are near optimal with only an extra log factor present. Finally, when

1 ≤ α < 2− 2
d the cardinality O(n

2d−2
α ) of admissible meshes provided by Theorem 3

is essentially better than the bound of order O(n2d/α) which can be deduced by a
routine application of Markov type inequality ‖Dp‖K = O(n2/α), ‖p‖K = 1 (see [5]
for details). In addition, when α = 1 only estimates card(Yn) = O(n2d−2), d > 2
and card(Yn) = O(n2 log n), d = 2 are applicable in the above theorem. In [10] these
estimates for admissible meshes were given for the case of convex bodies in K ⊂ R

d ,
Theorem 3 presents an extension of these bounds to the Lip1 star-like domains.

It should be also noted that since the method of proof of Theorem 3 is totally
constructive it automatically provides an algorithm for explicit construction of optimal
meshes in star-like domains.

3 Bernstein type inequalities for star-like domains

In this section we shall verify Theorems 1 and 2 which give Bernstein type bounds for
star-like domains.

Proof of Theorem 1 Let K ⊂ R
d be a star-like domain with Lipα, 0 < α ≤ 1 bound-

ary, and consider any p ∈ Pd
n , ‖p‖K = 1 and x ∈ IntK . Since 0 ∈ IntK a ball centered
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at the origin of some radius c > 0 is contained in K . We may assume without loss of
generality that |x| > c/2 since otherwise the point x is separated away from the bound-
ary and the statement of the theorem easily follows from (3). Consider the univariate
polynomial g(t) := p(tx), t ∈ R. Clearly, tx ∈ K for any −c/|x| ≤ t ≤ 1/ϕK (x).
Thus |g(t)| ≤ 1 whenever −c/|x| ≤ t ≤ 1/ϕK (x). Hence using the univariate Bern-
stein inequality (1) for g ∈ P1

n with a = −c/|x|, b = 1/ϕK (x) easily yields setting
w := x

|x|

|x||Dw p|(x) = |〈x,∇ p(x)〉| = |g′(1)| ≤ n√
(1 + c/|x|)(1/ϕK (x) − 1)

.

Since K contains a ball centered at the origin of radius c > 0 it follows that cϕK (x) ≤
|x| i.e., we obtain from the previous estimate that

|Dw p|(x) ≤ n√
(|x| + c)(1 − ϕK (x))

√
ϕK (x)

|x| ≤ n

c
√

(1 − ϕK (x))
(8)

This provides a bound for the derivative in radial direction which is clearly stronger
than (5).

Now we proceed to the more difficult part of estimating the derivatives in any
direction u ∈ Sd−1 orthogonal to x. Clearly we can restrict our considerations to the
2-dimensional plane containing u and x, so without loss of generality we may assume
that d = 2, u = (1, 0), ϕK (x) = A < 1 and x = (0, A) i.e., (0, 1) = x/ϕK (x) ∈
∂K , A > c/2. Let B > 0 be the largest real number forwhich [x, z] ⊂ K , z := (B, A).
Hence z ∈ ∂K , i.e.,ϕK (z) = 1. Setting nowh := (−B, 0) and using the Lipα property
of K we obtain by (4)

1 − A = |ϕK (x) − ϕK (z)| = |ϕK (z + h) − ϕK (z)| ≤ M Bα.

This last relation immediately implies that

D := {(x, y) ∈ R
2 : 0 ≤ y ≤ 1 − M |x |α} ⊂ K . (9)

Now we shall inscribe into domain D a proper line passing through the point

x = (0, A). Consider the line L := {y = A − M
1
α (1 − A)

α−1
α x}. Since A > c/2 it

follows by a routine calculation that

A − M
1
α (1 − A)

α−1
α x ≤ 1 − Mxα

whenever 0 ≤ x ≤ x1 := c
2 M− 1

α (1 − A)
1−α
α , i.e., the line L passes inside D ⊂ K

for 0 ≤ x ≤ x1. Moreover, it is easy to see that this line intersects the curve y =
1 − M(−x)α at the point x2 := −η(1 − A)

1
α where η > 0 is the unique solution of

the equation

1 = Mηα + M
1
α η.

123



Bernstein type inequalities on star-like domains in R
d 355

Hence the line L is contained in the domain D ⊂ K for x ∈ [x2, x1]. Now for the
univariate polynomial q(x) := p(x, A − M

1
α (1 − A)

α−1
α x) we have |q(x)| ≤ 1,

x ∈ [x2, x1]. Hence applying again the univariate Bernstein inequality (1) with a =
x2 = −η(1− A)

1
α , b = x1 = c

2 M− 1
α (1− A)

1−α
α and recalling that A = ϕK (x) yields

|q ′(0)| ≤ n√−x2x1
≤ cK n

(1 − ϕK (x))
1
α
− 1

2

, (10)

where cK is a positive constant depending only on K . Furthermore,

|q ′(0)| = ∂p

∂x
(x) − M

1
α (1 − A)

α−1
α

∂p

∂y
(x), (11)

where by (8)

∣
∣
∣
∣
∂p

∂y
(x)

∣
∣
∣
∣ ≤ n

c
√
1 − ϕK (x)

. (12)

Finally, combining relations (10)–(12) we arrive at

∣
∣
∣
∣
∂p

∂x
(x)

∣
∣
∣
∣ ≤ |q ′(0)| + n

c
√
1 − ϕK (x)

M
1
α (1 − ϕK (x))

α−1
α

≤ cK n

(1 − ϕK (x))
1
α
− 1

2

+ M
1
α n

c(1 − ϕK (x))
1
α
− 1

2

= c∗
K n

(1 − ϕK (x))
1
α
− 1

2

.

This completes the proof of Theorem 1. ��
Remark 1 Bernstein type inequality (5) implies a corresponding uniformMarkov type
estimate for star-like domains with Lipα boundary. Indeed, it is well known that
univariate polynomials of degree at most n bounded by 1 on [−1, 1] are also bounded
by an absolute constant on the larger interval [−1−1/n2, 1+1/n2], this easily follows,
for instance, from the classical Remez inequality. Thus in case when K ⊂ R

d is a
Lipα star-like domain a bound that holds for a p ∈ Pd

n when ϕK (x) ≤ 1 − 1/n2

will also hold with another constant for every x ∈ K . Since (5) implies a bound of

magnitude cn
2
α if we putϕK (x) = 1−1/n2 it follows that ‖Dp‖K = O(n

2
α )whenever

p ∈ Pd
n , ‖p‖K = 1. This Markov type estimate can be found in various papers (see

e.g. [11] for corresponding references). The fact that a Markov type inequality of

order O(n
2
α ) is sharp in general for Lipα domains goes back to an earlier paper by

Goetgheluck [7]. Therefore Bernstein type inequality (5) must be sharp, as well, in the

sense that the quantity (1−ϕK (x))
1
α
− 1

2 in (5) can not be replaced by another function
tending slower to 0 when x approaches the boundary of the domain, since this would
clearly yield a better Markov type inequality.

Proof of Theorem 2 Let K ⊂ R
d be a Cα star-like domain with some 1 < α ≤ 2.

Consider any x ∈ IntK \{0}. Since the star-like domain K does not contain saddle
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points on its boundary, that is x/|x| can not be a tangent direction to the boundary of K
at any x

ϕK (x)
∈ ∂K , a standard compactness argument yields that the angles between x

and the tangents to ∂K at x
ϕK (x)

are uniformly bounded away from zero. Hence without
loss of generality we may assume that for the given x ∈ IntK\{0} any tangent u to ∂K
at x

ϕK (x)
is orthogonal to x (this can be always achieved by a uniformly bounded linear

transformation of the space). In addition, in order to estimate |Du p|(x) it suffices to
work in the 2-dimensional plane containing u and x.

Thus summarizing, we can assume that d = 2, x := (1 − h, 0), h = 1 − ϕK (x),

(1, 0) ∈ ∂K and u = (0, 1) is the tangent to ∂K at (1, 0). Now choose an arbitrary
z = (A, 0) ∈ IntK , 1 > A > 0. Then ϕK (z) = A. Let B > 0 be the largest real for
which with y := (A, B) we have [z, y] ⊂ K . Thus y ∈ ∂K . Furthermore

1 − A = ϕK (y) − ϕK (z) = ∂

∂y
ϕK (A, ξ)B ≤ c1B, ξ ∈ [0, B].

Here and in what follows we denote by c j positive constants depending only on K .
Since u = (0, 1) is the tangent to ∂K at (1, 0) we also have that ∂

∂y ϕK (1, 0) = 0. This
and the previous relation together with the Lip(α−1) property of∇ϕK [ see (6)] yield

1 − A = ∂

∂y
ϕK (A, ξ)B − ∂

∂y
ϕK (1, 0)B ≤ c2B(1 − A + ξ)α−1 ≤ c3Bα.

This means that

D := {(x, y) ∈ R
2 : 0 ≤ x ≤ 1 − c3|y|α} ⊂ K . (13)

We shall choose a proper C > 1 such that

Q := {(x, y) ∈ R
2 : 0 ≤ x ≤ 1 − h − Cy2} ⊂ D ⊂ K . (14)

In view of (13) this will be accomplished provided that c3|y|α − Cy2 ≤ h whenever
|y| ≤ ( 1−h

C )1/2 < 1. Clearly, if α = 2 we simply can set C = c3. So consider the case
when 1 < α < 2. A routine calculation shows that

max
y∈[0,1](yα − Cy2) = βC

α
α−2

with some 0 < β < 1 depending only on α. Hence we can set

C := c
2
α

3

(
h

β

) α−2
α = c4h

α−2
α (15)

and with this choice of C inclusions (14) will hold.
Consider now the univariate trigonometric polynomial of degree ≤ n defined by

t (φ) := p

(
1 − h

2
(1 + cosφ),

1

2

√
1 − h

C
sin φ

)

,
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where p ∈ P2
n , ‖p‖K = 1. Setting x = 1−h

2 (1 + cosφ), y = 1
2

√
1−h

C sin φ it follows
that

1 − h − Cy2 − x = 1 − h − 1 − h

4
sin2 φ − 1 − h

2
(1 + cosφ)

= 1 − h

4
(1 + cos2 φ − 2 cosφ) ≥ 0, φ ∈ [−π, π ].

Thus in view of inclusions (14) and ‖p‖K = 1 we obtain that |t (φ)| ≤ 1 φ ∈ [−π, π ].
Hence using the Bernstein inequality for trigonometric polynomials of degree ≤ n

we arrive at

n ≥ |t ′(0)| = 1

2

√
1 − h

C

∣
∣
∣
∣
∂p

∂y
(1 − h, 0)

∣
∣
∣
∣ ,

i.e., also using (15)

∣
∣
∣
∣
∂p

∂y
(x)

∣
∣
∣
∣ ≤ c5nh

α−2
2α√

1 − h
.

Recall that K contains a ball centered at the origin and radius c, thus the statement of
the theorem holds trivially if |x| < c/2 i.e., 1 − h < c/2. On the other hand when
1 − h ≥ c/2 we obtain from the last estimate that

∣
∣
∣
∣
∂p

∂y
(x)

∣
∣
∣
∣ ≤ c6n

h
1
α
− 1

2

.

Since h = 1 − ϕK (x) this completes the proof of the theorem. ��
Remark 2 Again similar to the Remark 1 given after the proof of Theorem 1 the
Bernstein type inequality of Theorem 2 yields a uniform Markov type upper bound
for tangential derivatives of polynomials on Cα star-like domains when 1 < α ≤ 2.
Namely it implies that for p ∈ Pd

n , ‖p‖K = 1

|Du p(x)| = O(n
2
α ), u ∈ TK (x),

uniformly for x ∈ ∂K . Since the above tangential Markov type inequality is known
to be sharp, in general (see [9] for details), it follows that the tangential Bernstein
type inequality given by Theorem 2 also provides the sharp measure of distance to the
boundary of the domain.

Proof of Theorem 3 First let us point out how the Bernstein type inequalities of
Theorems 1 and 2 will be used in the proof. Given two points x, y ∈ Kρ :=
{z ∈ K : ϕK (z) = ρ}, 0 < ρ < 1 and any p ∈ Pd

n , ‖p‖K = 1 we shall
need a proper estimate for |p(x) − p(y)| in terms of |x − y|. Clearly we can pass
to the 2-dimensional plane containing the origin and x, y, i.e., we may assume
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d = 2 and consider the polar coordinate representation for Kρ given by the polar
curves Kρ = (r(t) cos t, r(t) sin t), t ∈ [0, 2π ] where the radial functions r(t)
depend on ρ and are Lip1 (α = 1) or Cα(1 < α ≤ 2), respectively. Then setting
Q(t) := p(r(t) cos t, r(t) sin t) easily yields that with some positive constant cK

depending only on K

|p(x) − p(y)| = |Q(t1) − Q(t2)| =
∣
∣
∣
∣
∣
∣

t2∫

t1

Q′(t) dt

∣
∣
∣
∣
∣
∣
≤ cK |x − y|DT p

where DT p denotes the largest magnitude of tangential derivative (when 1 < α ≤ 2)
or the largest gradient (when α = 1) of p on the level curve Kρ , respectively. But in
both of these cases Theorems 1 and 2 give an upper bound of magnitude n

(1−ρ)
1
α − 1

2

for these derivatives. Hence we obtain from the above estimate that

|p(x) − p(y)| ≤ cK
n|x − y|

(1 − ρ)
1
α
− 1

2

, x, y ∈ Kρ. (16)

As before, let c be the radius of the ball centered at the origin which is contained in
K . Set a = c5/2/50 and choose an integer q such that 1 − c/2 ≤ a2q2 ≤ 1 − c/4
(such an integer obviously exists). Set m := qn and

ρ j := 1 − a2 j2

n2 ; K j := Kρ j = {x ∈ R
d : ϕK (x) = ρ j },

1 ≤ j ≤ m = qn, n ∈ N. (17)

We may assume without loss of generality that K is also contained in the unit ball
centered at the origin, i.e.,

cϕK (x) ≤ |x| ≤ ϕK (x), x ∈ R
d .

Consider first x ∈ K such that ρ1 ≥ ϕK (x) ≥ ρm = 1−a2q2 that is ρ j+1 ≤ ϕK (x) ≤
ρ j for some 1 ≤ j ≤ m −1. Set t := ϕK (x)

ρ j+1
, y := x/t. Then y ∈ K j+1, x = ty, t ≥ 1.

Hence using that c/2 ≥ ρm = 1 − a2q2 ≥ c/4 we have

|x − y| = (t − 1)|y| ≤ t − 1 ≤ ρ j − ρ j+1

ρ j+1
≤ 12a2 j

cn2 ;
∣
∣
∣
∣

x
ϕK (x)

− x

∣
∣
∣
∣ = |x|(1 − ρ j )

ϕK (x)
≥ c(1 − ρ j ).

By these estimates we have for any p ∈ Pd
n , ‖p‖K = 1 using the univariate Bernstein

inequality (1) for p(rx), 0 ≤ r ≤ 1//ϕK (x)

|p(x) − p(y)| ≤ n|x − y|√|y||x/ϕK (x) − x| ≤ 12a2 j

c2n
√

(1 − ρ j )ρ j+1
≤ 24a

c5/2
≤ 1

2
. (18)
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If ρ1 ≤ ϕK (x) we can use the univariate Markov inequality

‖q ′‖[a,b] ≤ 2n2

b − a
‖q‖[a,b], q ∈ P1

n

yielding for p(rx), 0 ≤ r ≤ 1//ϕK (x) with some y = tx ∈ K1

|p(x) − p(y)| ≤ 2n2 ϕK (x)

|x| |x − y| ≤ 2n2

c

a2

ρ1n2 ≤ 1

2
,

which is the same as (18).
Thus for every x ∈ K such that 1 − a2q2 ≤ ϕK (x) there exists some y ∈ K j ,

1 ≤ j ≤ n for which (18) holds.
Let us denote again by c j positive constants depending only on K .

In what follows for the sets A, B in Rd we shall denote by

d(A, B) := sup
x∈A

inf
y∈B

| x − y |

the density of the set B in the set A. Evidently, given h > 0 we can choose a discrete
set � ⊂ Sd−1 so that d(�, Sd−1) ≤ h and card� ≤ c(d)h1−d with some constant
c(d) depending only on d. Also note that since the boundary of K is Lip1 for any
x, y ∈ ∂K with | x

|x| − y
|y | |≤ h we have |x − y| ≤ c2h.

Based on these remarks and utilizing the constant cK from (16) we can set

h j := 1

4cK n

(
a2 j2

n2

) 1
α
− 1

2

, 1 ≤ j ≤ m (19)

and choose N j ≤ c1h1−d
j points {yi, j ∈ K j , 1 ≤ i ≤ N j } := Yn, j on K j so that

d(K j , Yn, j ) ≤ h j , 1 ≤ j ≤ m. (20)

Set K ∗ := {x ∈ R
d : ϕK (x) ≤ 1 − a2q2}. Since for x ∈ K ∗ we have that

|x| ≤ ϕK (x) ≤ 1 − a2q2 ≤ c/2

it follows that K ∗ is contained in the ball of radius c/2 centered at the origin. Recalling
that ball of radius c centered at the origin is contained in K we obtain using (3) for
this ball

|p(x) − p(y)| ≤ 2n

c
|x − y|, x, y ∈ K ∗. (21)

Furthermore, we can choose a discrete set Y ∗
n ⊂ K ∗ with card(Y ∗

n ) ≤ c2nd so that

d(K ∗, Y ∗
n ) ≤ c

4n
. (22)
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Set now Yn := ∪1≤ j≤mYn, j ∪ Y ∗
n . Using (19) the cardinality of this set can be

estimated as follows

cardYn ≤ c5

⎛

⎝nd + n
2(d−1)

α

m∑

j=1

j (d−1)(1−2/α)

⎞

⎠.

If α > 2 − 2
d the the sum above is of magnitude nd− 2(d−1)

α yielding that card(Yn) =
O(nd).Whenα = 2− 2

d the above sum is ofmagnitude log n andweobtain card(Yn) =
O(nd log n). Finally, if α < 2 − 2

d the sum is convergent and d <
2(d−1)

α
so we end

up with card(Yn) = O(n
2(d−1)

α ). Thus the cardinality of Yn is of magnitude stated in
Theorem 3.

It remains now to show thatYn is an admissiblemesh. Choose any p ∈ Pd
n , ‖p‖K =

1 and x ∈ K , p(x) = 1. Assume first that x ∈ K ∗. Then by (22) we can find
y ∈ Y ∗

n ⊂ K ∗, | x − y |≤ c
4n . Thus using (21) we obtain

1 − p(y) = p(x) − p(y) ≤ 2n

c
|x − y| ≤ 1

2
,

i.e., ||p||Yn ≥ 1/2 in this case.
Now let ϕK (x) ≥ 1 − a2q2. Then as it was shown above there exists some y ∈

K j , 1 ≤ j ≤ n for which (18) holds.Moreover, since p(x) = 1we have |p(y)| ≥ 1/2.
Furthermore, by (19) and (20) we can find yi, j ∈ Yn, j ⊂ K j such that

|y − yi, j | ≤ h j = 1

4cK n

(
a2 j2

n2

) 1
α
− 1

2

.

Thus using again (16) with ρ = ρ j defined by (17) we obtain

|p(y) − p(yi, j )| ≤ cK |y − yi, j | n
(

a2 j2

n2

) 1
α
− 1

2

≤ 1

4
.

Since |p(y)| ≥ 1/2 the last estimate implies that |p(yi, j )| ≥ 1/4 which means that
||p||Yn ≥ 1/4 in this case, as well.

The proof of Theorem 3 is completed. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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