
An Evaluation of Interactive Test-Driven Labs with
WebIDE in CS0

David S. Janzen, John Clements, Michael Hilton
California Polytechnic State University

San Luis Obispo, California 93407
{djanzen,clements,hilton}@calpoly.edu

Abstract—WebIDE is a framework that enables instructors to

develop and deliver online lab content with interactive feedback.

The ability to create lock-step labs enables the instructor to guide

students through learning experiences, demonstrating mastery

as they proceed. Feedback is provided through automated eval-

uators that vary from simple regular expression evaluation to

syntactic parsers to applications that compile and run programs

and unit tests. This paper describes WebIDE and its use in a CS0

course that taught introductory Java and Android programming

using a test-driven learning approach. We report results from

a controlled experiment that compared the use of dynamic

WebIDE labs with more traditional static programming labs.

Despite weaker performance on pre-study assessments, students

who used WebIDE performed two to twelve percent better on

all assessments than the students who used traditional labs. In

addition, WebIDE students were consistently more positive about

their experience in CS0.

I. INTRODUCTION

WebIDE is a framework for creating a variety of labs that
provide rich, rapid feedback to students as they learn new
concepts and gain or practice new skills. WebIDE provides a
scalable, open, and distributed infrastructure for lab authors
to create, host, and render labs, using their own or provided
automated evaluators. Figures 1 and 2 give examples of steps
in existing WebIDE labs. Lab authors can establish depen-
dencies between steps, requiring that students successfully
complete a step before proceeding in the lab. Alternatively,
we have set up WebIDE labs as a programming playground
with a single step containing editor windows for writing
code and corresponding unit tests, enabling a student to write
simple programs completely in the web, even with compiled
languages like C or Java.

At least twenty-four labs along with at least fourteen auto-
mated evaluators have already been created for introductory
programming students learning C, Java, Android, Python, and
Ruby. Instructors can write their own labs (or modify existing
labs) using the WebIDE XML specification, then host the labs
on their own web sites, pointing WebIDE to the lab files
in order to parse, render, and run their own labs. Similarly,
instructors can use provided automated evaluators to process
student submissions and provide meaningful feedback in their
labs, or they can write their own automated evaluators and
host them on any internet-connected server. A video demo
of WebIDE is available at http://www.web-ide.org/demo, and
links to WebIDE labs organized into courses are available at
http://web-ide.org.

WebIDE was developed and evaluated through an NSF
CCLI Type 1 award with additional support from Google and
Amazon. This paper will highlight key aspects of WebIDE
including its support for Test-Driven Learning, along with
its unique architecture for incorporating automated evaluators.
Evaluation results from a semi-controlled experiment will be
reported.

II. TEST-DRIVEN LEARNING

A key component of WebIDE’s architecture is Test-Driven
Learning (TDL) [24]. Closely related to Test-Driven Devel-
opment [6] (TDD), TDL uses the construction of test cases
to drive the learning process. In particular, TDL observes that
students who write small test cases before the corresponding
implementation tend to understand their goal before getting
tangled up in code. TDL-based WebIDE labs require the stu-
dents to write examples and/or test cases, and check these test
cases against instructor code, before students tackle the more
bulky task of writing the code itself. Figure 2 demonstrates an
example of this approach.

Currently, TDD is becoming a widespread software engi-
neering best practice. Previous studies indicate benefits from
applying TDD, but note challenges of actually getting fledgling
programmers to write code in a test-first manner[25]. Prior
studies have shown that TDL can be applied in entry level
classes without removing current course material, and that
students who try TDL, tend to like TDL[24]. However, prior
to WebIDE, finding ways to enforce a test-driven approach
with beginning programmers has proven to be elusive [9].

The inspiration for WebIDE was the desire to require
students to demonstrate understanding of a problem by writing
examples and tests, prior to solving a problem. The goal
was to instill software engineering best practices from the
beginning of learning to program. Several secondary benefits
were quickly discovered with WebIDE. In particular, WebIDE
provided the opportunity to point students to a super-simple,
web-only programming environment on day one. Students
are able to delay the learning curve associated with editors,
compilers, and integrated development environments, and con-
centrate on programming and problem solving from the very
beginning.

WebIDE is not restricted to TDL, or even to computer pro-
gramming for that matter. WebIDE provides an infrastructure
designed so that anyone can create new or modify existing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. WebIDE lab with sample error feedback

Fig. 2. Students create JUnit tests in WebIDE to demonstrate problem understanding

labs and evaluators—written in any language and providing
customized error messages—that help teach a wide range of
concepts, languages, or software engineering techniques.

III. WEBIDE ARCHITECTURE

WebIDE uses Google Web Toolkit (GWT) and is currently
deployed on Amazon’s EC2 cloud platform, although it has
also been hosted on Google’s App Engine in the past. The
labs and automated evaluators can be located on any web-
accessible host.

Figure 3 illustrates the general architecture of the system.
The solid lines represent HTTP connections. The dashed line
indicates an implicit dependency; specifically, the lab supplied
by the Lab Source embeds within it URLs that allow WebIDE
to locate the evaluators.

The WebIDE architecture is focused on extensibility. Lab
specifications are written in a well-defined XML language, so
that labs may be edited and contributed by third parties. Ad-
ditionally, the presentation of the lab is completely decoupled
from the evaluator using a service-oriented architecture (SOA)
where URLs identify evaluators.

To be more concrete, suppose an instructor wants to create
a lab on FORTRAN/77. The instructor first formulates the text
of the lab, using an XHTML subset. Then, (unless there’s an

Fig. 3. WebIDE Architecture

existing FORTRAN/77 evaluator floating around), the instruc-
tor writes a script that couples a FORTRAN evaluator with the
given submission and reports the result. Finally, the instructor
embeds the URL of the evaluator within the lab itself. Later
FORTRAN labs can re-use the instructor’s existing evaluator.

In order to enforce structure and prevent ad-hoc extension,
labs are written using a XML language defined using the Relax
NG specification language. So, for instance, the lab is specified
to contain a name, an optional description, and zero or more

steps:

start = element lab {

attribute name { text },

element description { text }?,

step

*

}

Jing [28] is used to validate a lab’s XML. The parsing phase
then maps that XML to a GWT page containing user entry
fields.

The evaluator associated with a given lab step is responsible
for determining the correctness of student entries. Since the
evaluators can be hosted on any server by any author, an in-
terface is supplied for communication between the engine and
the evaluator using HTTP and encoding the request/response
in JSON. Therefore, any language that can receive an HTTP
request and send an HTTP response can be used to implement
an evaluator. In fact, external evaluators are currently written
in Java, PHP, and Racket.

The success of a tutor such as WebIDE depends crucially on
the ability to deliver helpful error messages, and not a simple
“success” or “failure.” Accordingly, the JSON format for the
evaluator’s response includes a message. In future versions
of the protocol, we anticipate including source highlighting
information along with the message.

WebIDE supports both external and internal evaluators.
External evaluators are invoked via JSON requests between
machines. Internal evaluators are hosted within the WebIDE
engine, and may therefore be faster and more reliable.

IV. WEBIDE LABS

Figure 4 displays an example of a step in a lab that contains
both JUnit tests and Java source code. In this example, the
student forgot a set of parenthesis in the fToC method (should
return (f - 32) * 5 / 9;). The two segments are highlighted in
red because the tests are failing against the code. In this case,
the student sees both the tests and the code. The lab author
could hide the tests and ask the student to write the code, or
hide the code and ask the students to write the tests. The lab
author could even have a mix of student and instructor written
hidden tests.

In this step, the lab author has elected to use the clas-
sUnitTest Java Evaluator. This is an external evaluator that
runs a set of JUnit tests against code, returning “success” if
the tests pass, and “failure” with the test results if they failed.
The relevent portion of the corresponding XML lab file is
shown in the class.xml listing.

Notice in Figure 4 that the last portion
of the URL contains the URL of the XML
file (http://www.csc.calpoly.edu/⇠djanzen/ cours-
es/123F11/labs/class.xml). This open design allows any
lab author to host their own labs, yet have them rendered
by WebIDE. Furthermore, as the XML listing shows in the
evaluator tag, lab authors can use provided evaluators that are
hosted on WebIDE servers, or they can point to any evaluator
available on the web.

V. AUTOMATED EVALUATORS

In the WebIDE framework, students provide answers to
questions in web forms. Each answer is then sent to one or
more “evaluators” to provide feedback. Effective and helpful
feedback is the linchpin of a successful WebIDE interaction,
and a variety of evaluators and evaluator families for use
in different situations are already provided. The WebIDE
framework accommodates the use of multiple evaluators for
a single question box. Evaluators can reside on any server,
but the provided evaluators are currently hosted on Amazon
EC2 instances behind a load balancer, providing flexibility
for handling inconsistent demand. We present two general
categories of automated evaluators: syntactic and semantic.

A. Syntactic Evaluators

The “syntactic evaluators” are those that evaluate student
code at a syntactic level, by considering it either as a stream
of characters or as an abstract syntax tree. The simplest
evaluators are those that simply perform textual comparison.
Regular expressions provide a reasonably flexible way of
performing such comparisons, and WebIDE includes a regexp-
based evaluator. To take the simplest possible example, a lab
asking a student to enter a positive integer might deliver the
student’s answer to the regexp evaluator matching the PERL
regexp ˆ\s

*

[1-9]\d

*

\

*

$.
For more complex problems, a typical syntactic evaluator

is one based on a parser for the given language. The WebIDE
team has developed a syntactic evaluator for C that parses
student input and compares the resulting tree to one obtained
by parsing an expected answer. This kind of evaluator has
at least three advantages over one based on simple textual
comparison. First, it has the advantage that it is insensitive to
whitespace, the presence or absence of optional delimiters and
parentheses, etc. Second, it can provide source code positions
and source code highlighting along with its errors. Finally,
it can abstract over certain observational equivalences; for
instance, for terms A and B, the programs A+B and B+A
may be considered equivalent. This assumes the language
in question is purely functional, or is restricted to a purely
functional subset, or that the sub-programs A and B can be
statically analyzed to ensure they do not have side effects.

B. Semantic Evaluators

The “semantic evaluators” are those that consider the eval-
uated meaning of the student code, rather than its syntactic
form. For instance, suppose a student is asked to produce a
function called smaller that accepts two numbers and returns
the smaller of the two. A semantic evaluator would evaluate
the student code and then apply it to one or more test inputs,
verifying that it produces the expected output. The WebIDE
team has produced semantic evaluators for a variety of Java
problems, and general purpose semantic evaluators for C, Java,
Python, and Ruby.

Semantic evaluators have advantages and disadvantages. On
the one hand, they are more robust, in the sense that they
can accept answers that a syntactic evaluator would not. On

Listing 1. class.xml
<s t e p name=” S t a t i c Methods ” buttonName=” Check ”>
<dependency stepName=” C l a s s B a s i c s 2 ” />
. . . o m i t t e d t e x t i n t r o d u c i n g t h e t o p i c . . .

The f i r s t two t e s t s a r e comple t ed f o r you . Your j o b i s t o w r i t e t e s t f T o C 2 and t e s t c T o F 2 .
<segment wid th =” 600 ” i d =” TCTests ” h e i g h t =” 300 ”>
i m p o r t o rg . j u n i t . T e s t ;
i m p o r t j u n i t . f ramework . T e s t C a s e ;
p u b l i c c l a s s Tes tTempConver t e r e x t e n d s T e s t C a s e {

@Test
p u b l i c vo i d t e s t f T o C 1 () {

a s s e r t E q u a l s (1 9 , TempConver ter . fToC (6 7)) ;
}
. . . code o m i t t e d f o r b r e v i t y . . .

}
< / segment>
Now w r i t e t h e code t o make t h e t e s t s above p a s s .
Be s u r e t o d e f i n e e v e r y t h i n g i n c l u d i n g t h e c l a s s wi th bo th methods .
C l i c k t h e b u t t o n a t t h e bot tom t o run your t e s t s above on your code below .
<segment wid th =” 600 ” i d =”TCCode” h e i g h t =” 100 ”>
p u b l i c c l a s s TempConver ter {

p u b l i c s t a t i c l ong fToC (i n t f) {
/ / r e p l a c e t h i s comment wi th t h e body of t h e fToC method

}
/ / r e p l a c e t h i s comment wi th t h e cToF method

}
< / segment>
<e v a l u a t o r name=” S t a t i c E v a l u a t o r ” l a b i d =” Un i t T e s t Lab ”

h r e f =” h t t p : / / e v a l u a t o r s . web�i d e . o r g : 8 0 8 0 / J a v a E v a l u a t o r s / c l a s s U n i t T e s t ”>
<a r g>

<name>c l a s s< / name>
<v a l u e>@TCCode< / v a l u e>

< / a r g>
<a r g>

<name> t e s t C l a s s< / name>
<v a l u e>@TCTests< / v a l u e>

< / a r g>
<a r g>

<name>smessage< / name>
<v a l u e>Good job , $ t e s t T o t a l t e s t (s) p a s s e d !< / v a l u e>

< / a r g>
<a r g>

<name>fmessage< / name>
<v a l u e>I ’m s o r r y , $ f a i l T o t a l t e s t f a i l e d . . . $ f a i l e d T e s t </ va lue>

</ arg>
<s e g i d>

<id>TCCode</ id>
</ s e g i d>
<s e g i d>

<id>TCTests </ id>
</ s e g i d>

</ e v a l u a t o r >
</ s t e p>

Fig. 4. Sample Step with Failing Tests in WebIDE

the other hand, regarded as provers of correctness, they are
unsound; the halting problem demonstrates that no evaluator
can decide for all problems whether an arbitrary program
behaves correctly on all inputs.

An important subcategory of semantic evaluators are those
that examine student-written test cases. In this case, the
student’s test case is run against the lab-writer’s function. Test
cases that do not correctly predict the output of the function
do not succeed. More interestingly, a set of student test cases
can also be evaluated for coverage; do they exercise all of the
instructor’s code?

VI. EVALUATION

Three studies were conducted to evaluate WebIDE at Cal
Poly - San Luis Obispo. In all three studies, two sections of
the same course were taught by the same instructor. Approx-
imately seventy students were divided between two sections.
One section was randomly selected as the control group,
and the other as the experimental group. Both sections were
given weekly labs that contained identical content. The only

difference was that the experimental group completed the labs
in WebIDE, using the lock-step framework and incremental
feedback. The control group used traditional development
environments (e.g. Eclipse, vim/gcc).

The first two studies were pilot studies conducted in Fall
2010 and Spring 2011 while WebIDE was still being devel-
oped and was still a bit unstable. Preliminary results reported
in May 2011 [15] that the WebIDE group showed a significant
improvement in performance when writing a simple Android
application. Additionally, among students with some program-
ming experience, the WebIDE group was more proficient in
writing unit tests.

The most complete evaluation of WebIDE was conducted in
Fall 2011 in an Introduction to Computing (CS0) [20] course
that taught beginning programmers how to build Android
apps. Seventy-two students participated in the study in two
sections of the same course. The course contained nine labs.
The first three labs used visual drag-and-drop programming
environments (Scratch and App Inventor). The fourth, fifth,
sixth, and eighth labs introduced Java programming concepts

(data types, variables, operations, methods, classes, selection,
loops, arrays). The seventh and ninth labs introduced Android.
Table I summarizes the topics covered in the nine labs.
Labs four through nine are highlighted to indicate the use of
WebIDE and focus of this study. A more thorough analysis of
just the arrays lab was presented by Hilton et al [21].

A. Evaluation of Impacts on Student Programming Skills

Students were given a pre-study quiz to assess their pro-
gramming skills. Table II presents the pre-study quiz ques-
tions. The WebIDE section had weaker programming skills
coming into the course (see Java PreQuiz in Figure 5 and
Table III) , and they performed worse on the initial Scratch
and App Inventor labs (prior to WebIDE). Just prior to lab
four, a coin was flipped to determine which section would
be control/experimental, without having analyzed results on
the Java pre-quiz or the first three labs. All students were
given the same lectures by the same instructor. The lec-
tures included instruction and exercises on Java, Android,
and using the Eclipse IDE. Although there may be better
introductory development environments, Eclipse was chosen
because of its strong support for Android development which
all students would need in their team projects. The WebIDE
section students then completed their labs using WebIDE.
The control group completed identical labs using Eclipse. The
control group was provided with shell programs that contained
comments indicating where the students were to enter their
code as instructed in the labs.

Labs four through eight included online quizzes (using
Blackboard http://www.blackboard.com/) at the end of closed
lab sessions. Figure 5 shows the average percentage score
on the assessments. Figure 6 visualizes this same data a
bit differently, showing the percentage differences on these
quiz assessments. Students who used WebIDE scored between
2.51% and 12.19% better on all assessments after WebIDE was
introduced.

0.00%$

20.00%$

40.00%$

60.00%$

80.00%$

100.00%$

120.00%$

Jav
a$P
reQ

uiz
$

Scr
atc
h$

AI:
Ba
sic
s$

AI:
Int
erm

ed
iat
e$

Jav
a$B
asi
cs$

Jav
a$C
las
ses
$

Jav
a$L
oo
ps
$

Jav
a$A
rra
ys$

An
dro
id$

WebIDE$

Control$

Fig. 5. Student Performance on Programming Assessments

Table III reports additional detail on student performance
in the controlled experiment. In particular, scores are reported
on computer programming assessments, demonstrating the
weaker performance on the two pre-WebIDE assessments,

Fig. 6. Relative Student Performance on Programming Assessments

and consistently better performance after the introduction of
WebIDE. Statistical significance was determined with p < .05
using a one-tailed univariate analysis of covariance test con-
trolling for each student’s score on the Java pre-study quiz.

B. Evaluation of Impacts on Student Opinions

Students were asked their opinions on the course, the labs,
and their perspectives on their chosen computing major in a
post-experiment on-line survey. Table IV reports these results
based on a five point Likert scale with one being “Strongly
Agree” and five being “Strongly Disagree.” Smaller averages
indicate more positive responses. The WebIDE students con-
sistently were more positive about the labs and their major
than the control group. Statistical significance was determined
with p < .05 using a Two sample t-test. A Wilcoxon rank-
sum test was also run on the first eight questions, identifying
statistical significance with rows 2, 3, and 8.

Table V reports student responses to questions specifically
about the IDE that they used in their labs (WebIDE or Eclipse).
The numbers reported reflect the percent of students who
answered 1-Strongly Agree or 2-Agree to the corresponding
questions. Although the Eclipse users liked their IDE a bit
more, the WebIDE users reported much stronger agreement on
the positive affect of the IDE on their learning and its ability to
provide helpful error messages. Based on student comments in
free-response forms, there are still many improvements we can
make to WebIDE labs. In particular, some students indicated
frustration with the lock-step nature of the labs. If they got
stuck, they couldn’t go on until they got help (is this a good
thing?). Other students wished that they could see the entire
contents of their solution at the end of a lab, thus giving
better context. This can be easily incorporated, and is under
the purview of the lab author.

C. Threats to Validity

Like many academic studies, this evaluation is susceptible to
several validity threats such as external factors that may have
influenced students in the two groups (e.g. friendships formed

TABLE I
LAB TOPICS; * INDICATES USED WEBIDE

Lab # Topics

1 Programming with Scratch, a visual programming environment for creating 2D animations,
Control structures, event-driven programming, concurrency, variables.

2 Programming with App Inventor for Android, a visual programming environment for creating Android apps,
Visual screen components (e.g. buttons, labels, images), click listeners, media components (e.g. audio), 2D drawing on a canvas.

3 More App Inventor for Android,
Creating apps with multiple screens, integrating Google Maps, launching activities, creating procedures.

4 * Java ints and operators,
Built-in Java data types, corresponding operators, declaring variables,
Control flow, selection control structures: if-then, if-then-else, switch,
Conditions, comparison and boolean operators,
Methods/functions, parameters, return types,
Testing functions with examples and JUnit.

5 * Java classes,
Static methods, instance methods, constructors,
Testing methods in classes with examples and JUnit.

6 * Java looping control structures,
Testing loops with examples and JUnit,
While loops, for loops, nested loops, loops with nested selection.

7 * Android basics, creating Hello World and Rock-Paper-Scissors game,
Android project structure, manifest file, xml layout files, xml string files,
Android Activity class, application lifecycle, onCreate method, attaching a layout to an Activity,
Launching another Activity using intents, passing parameters to another Activity using Bundle.

8 * Java arrays
Declaring and initializing arrays, referencing array elements, out of bounds exception,
Looping through arrays, passing arrays to methods as parameters,
Arrays of objects, calling methods on objects in an array.

9 * More Android, creating a Tic Tac Toe game,
Designing a user interface, using a GridView layout,
Designing an app with non-UI classes, keeping track of cell state and game state, implementing BaseAdapter.

TABLE II
PRE-STUDY QUIZ QUESTIONS

Question # Question

1 Write a method/function that receives six parameters representing student scores in a course, and returns the student’s weighted
grade as a real number between 0 and 100. Each input is a real number between 0 and 100.
The inputs/parameters are: labs, project1, project2, participation, midterm, final
The weightings are: labs: 25%, project1: 15%, project2: 25%, participation: 10%, midterm: 10%, final: 15%

2 Write a Java class that represents a mobile device. Each device has three attributes: a name, price, and screen width in inches.
Include a constructor that accepts all three attributes. Include a function/method that returns the cost per inch (price/width).

3 Write a JUnit test that constructs one instance of the class defined above, and tests that the cost per inch method works correctly.

within the class), and differences in the meeting times of the
two sections. One particular threat to validity should be noted.
In the final Android Tic Tac Toe lab (Lab 9), a large number of
students in the control group discovered and used the WebIDE
lab when they ran into challenges with completing the lab in
Eclipse. When questioned, all students reported that this was
their first use of WebIDE.

D. Anecdote

In addition to the evaluated courses, WebIDE is currently
being used in an on-line commercial course at Udemy.1
Students from the Fall 2011 CS0 course were invited to enroll
in the Udemy course for free while they were taking a Spring
CS2 course which also used Java. Although the percentage of
female students in the Fall 2011 CS0 course was only 19% (14
out of 72), 64% (9 out of 14) of them signed up for the Udemy
course when it was offered as a free supplement to their CS2
course. This compares to only 38% (22 out of 58) of the male

CS0 students who signed up for the Udemy course. It would
appear that female students are more likely to take advantage
of online resources like WebIDE.

VII. RELATED WORK

A variety of online systems support development and evalu-
ation of programs in a variety of languages [13], [19], [2], [10],
[1], [27], [18], [39], [32], [26]. These systems are intended for
developers, and do not operate as automated tutors.

Separately, automated tutors exist for a variety of academic
fields. Samples include Biology/Genetics [33], Mathemat-
ics [23], and Physics [38]. Many of these tools have been eval-
uated, with promising results. For instance, Warnakulasooriya
et al.[37] reports that their web-based automated Physics tutor
improves student time to completion, reduces the need for
hints, and improves the number of correct answers all by
approximately 15%.

Not surprisingly, computing faculty and researchers have
also built many software tools to support students as they learn

TABLE III
STUDENT PERFORMANCE ON PROGRAMMING ASSESSMENTS

Total WebIDE Control

Assessment Possible Mean Mean Significant?

Java Pre-Study Quiz 25 2.72 3.50 No
Midterm Exam: App Inventor 20 14.56 14.92 No
Lab 4 Quiz: Java Basics, If, Methods 20 17.89 17.14 Yes
Midterm Exam: Java if 15 13.47 13.31 No
Midterm Exam: Java methods 20 17.89 16.50 Yes
Lab 5 Quiz: Java Classes 26 18.43 17.78 No
Lab 6 Quiz: Java Loops 12 8.11 7.29 Yes
Lab 7 Quiz: Android Basics 10 7.89 6.67 Yes
Lab 8 Quiz: Java Arrays 22 13.75 11.44 Yes
Comp. Lab Quiz: Java Arrays/Loops 12 10.17 8.75 Yes
Comp. Lab Quiz: Android 14 6.47 5.08 Yes
Final Exam 210 180.81 173.17 Yes
Final Exam: Java Class 12 11.08 10.08 Yes
Final Exam: JUnit Test 6 4.72 4.50 No
Final Exam: Android XML 8 7.47 7.36 No
Final Exam: Android Activity 12 8.83 7.97 No

TABLE IV
STUDENT OPINIONS

WebIDE Control

Question Mean Mean Significant?

Confident will complete major 1.28 1.61 Yes
Course stimulated interest 1.66 1.92 No
Computing is exciting 1.59 2.00 Yes
I liked this course 1.59 2.03 Yes
I am comfortable with Java 2.38 2.47 No
I am comfortable with Android 3.03 3.25 No
Labs helped learn Java 2.21 2.64 Yes
Labs helped learn Android 2.09 2.72 Yes
Liked Lab 4 2.03 2.31 No
Liked Lab 5 2.34 2.56 No
Liked Lab 6 2.22 2.36 No
Liked Lab 7 2.66 3.44 Yes
Liked Lab 8 2.34 2.81 Yes
Liked Lab 9 1.44 1.72 No

TABLE V
STUDENT OPINIONS OF IDE

WebIDE Control

Question Percent Positive Percent Positive

I liked my IDE 65.7% 69.4%
My IDE helped me learn Java 84.4% 69.5%
My IDE helped me learn Android 68.8% 58.3%
My IDE’s failure messages were helpful 59.4% 44.4%
My IDE’s failure messages were confusing 62.5% 66.7%

to program. Valentine[36] reports that 22% of the CS1/CS2-
related SIGCSE conference papers from 1984 to 2003 included
software tools to aid learning. Some of the more popular
tools include visualizations[22], Karel micro-worlds[8], [7],
automated assessment tools[14], and pedagogical develop-
ment environments such as DrRacket[17], Alice [12], and
Scratch [31].

A few systems closely relate to WebIDE. TuringsCraft [4]
is a commercial web-based system that presents interactive
exercises for Python, C, C++, and Java. Truong et al.[35]
created ELP [34] which provides fill-in-the-blank style exer-
cises. Unlike WebIDE, TuringsCraft and ELP do not apply
a TDL approach, and the exercises cannot be contributed

or extended by individual faculty. A system by Azalov [5]
allows instructors to parameterize code in order to generate
programs chosen from similar families, but does not focus
on evaluation or scripting of the tutor. CodeAcademy[11]
provides interactive lessons for Javascript, and Microsoft’s
Pex4Fun[29] integrates “coding duels” for C#, Visual Basic,
and F#.

Aleven et al.’s work with CTAT [3] highlights the common
struggle with reducing the effort to author labs for intelligent
tutoring systems. Parlante’s CodingBat [30] adopts a test-based
approach, although students do not write tests and the system
is limited to a set of small, focused exercises. Edwards’ Web-
CAT[16] web-based automated grading tool assumes student

creation of automated (presumably test-driven) unit tests, but
it provides no support for interactive labs.

VIII. FUTURE WORK

We are continuing to improve and use WebIDE. Current
efforts are underway to improve the WebIDE user interface and
to add some gamification aspects. The user base for WebIDE
is expanding, and we look forward to seeing community
contributions of labs and automated evaluators.

IX. CONCLUSIONS

WebIDE is unique in its combination of features: a TDL
approach, completely web-based delivery, and intrinsic sup-
port for community-contributed content. WebIDE enables lab
authors to create their own labs or use existing labs, and to give
specific student feedback on individual exercises. WebIDE is
flexible, scalable, and robust.

Classroom experiments indicate that students learn early
programming concepts better with WebIDE than using tradi-
tional static labs with traditional IDE’s. Furthermore, students
report more positive experiences in learning to program with
WebIDE over more traditional development environments.

ACKNOWLEDGMENTS

The authors are grateful to Aaron Keen and Gene Fisher
for their comments on an earlier version of this paper, and to
Olga Dekhtyar for her assistance with the statistical analysis.

This material is based upon work supported by the National
Science Foundation under Grant No. 0942488. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

We are also grateful to Amazon Web Services and Google
for web services and lab development support.

REFERENCES

[1] Go playground. http://golang.org/.
[2] Jsbin. http://jsbin.com/.
[3] V. Aleven, B. M. Mclaren, J. Sewall, and K. R. Koedinger. The cognitive

tutor authoring tools (CTAT): Preliminary evaluation of efficiency gains.
In Proceedings ITS 2006, pages 61–70. Springer-Verlag, 2006.

[4] D. Arnow and G. Weiss. Turingscraft. http://www.turingscraft.com/.
[5] P. Azalov. A web-based environment for introductory programming

courses. J. Comput. Small Coll., 22(4):260–267, 2007.
[6] K. Beck. Test Driven Development: By Example. Addison Wesley,

November 2002.
[7] B. W. Becker. Teaching CS1 with karel the robot in Java. In SIGCSE

’01: Proceedings of the thirty-second SIGCSE technical symposium on
Computer Science Education, pages 50–54, New York, NY, USA, 2001.
ACM.

[8] J. Bergin, J. Roberts, R. Pattis, and M. Stehlik. Karel++: A Gentle
Introduction to the Art of Object-Oriented Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[9] J. Clements and D. Janzen. Overcoming obstacles to test-driven learning
on day one. In ICSTW ’10: Proceedings of the 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops,
pages 448–453, Washington, DC, USA, 2010. IEEE Computer Society.

[10] I. Cloud9 IDE. Cloud9. http://www.cloud9ide.com/.
[11] CodeAcademy. Codeacademy. http://www.codeacademy.com/.
[12] S. Cooper, W. Dann, and R. Pausch. Teaching objects-first in introduc-

tory computer science. In Proceedings of the 34th SIGCSE technical
symposium on Computer science education, SIGCSE ’03, pages 191–
195, New York, NY, USA, 2003. ACM.

[13] R. Data. W3 schools. http://www.w3schools.com/js/.
[14] C. Douce, D. Livingstone, and J. Orwell. Automatic test-based assess-

ment of programming: A review. J. Educ. Resour. Comput., 5(3):4,
2005.

[15] T. Dvornik, D. S. Janzen, J. Clements, and O. Dekhtyar. Supporting
introductory test-driven labs with WebIDE. In CSEE&T, pages 51–60,
2011.

[16] S. H. Edwards. Improving student performance by evaluating how well
students test their own programs. J. Educ. Resour. Comput., 3(3):1,
2003.

[17] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. Drscheme: A programming environment
for Scheme. Journal of Functional Programming, 12(2):159–182, 2002.

[18] D.-E. K. Gilad Khen and A. Weiss. Coderun. http://www.coderun.com/.
[19] Google. Google API playground. http://interactivesampler.appspot.com/.
[20] M. Haungs, C. Clark, J. Clements, and D. Janzen. Improving first-

year success and retention through interest-based CS0 courses. In
Proceedings of the 43rd ACM technical symposium on Computer Science
Education, SIGCSE ’12, pages 589–594, New York, NY, USA, 2012.
ACM.

[21] M. Hilton and D. S. Janzen. On teaching arrays with test-driven learning
in WebIDE. In Proceedings of the 17th Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE’12, 2012.

[22] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A meta-study of
algorithm visualization effectiveness. Journal of Visual Languages &
Computing, 13(3):259 – 290, 2002.

[23] W. P. Institute and C. M. University. Assistments. http://www.
assistments.org/.

[24] D. Janzen and H. Saiedian. Test-driven learning: intrinsic integration of
testing into the CS/SE curriculum. In Proceedings of the 37th SIGCSE
technical symposium on Computer science education, page 258. ACM,
2006.

[25] D. Janzen and H. Saiedian. Test-driven learning in early programming
courses. In Proceedings of the 38th SIGCSE technical symposium on
Computer science education, volume 40, pages 532–536. ACM, 2008.

[26] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and K. Palacz. Lively wiki
a development environment for creating and sharing active web content.
In WikiSym ’09: Proceedings of the 5th International Symposium on
Wikis and Open Collaboration, pages 1–10, New York, NY, USA, 2009.
ACM.

[27] S. R. Labs. ideone. http://ideone.com/.
[28] T. O. S. S. C. Ltd. Jing. http://www.thaiopensource.com/relaxng/jing.

html.
[29] Microsoft Research. Pex4fun. http://pex4fun.com/.
[30] N. Parlante. Codingbat. http://codingbat.net.
[31] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai. Scratch: programming for all. Commun. ACM, 52:60–67,
Nov. 2009.

[32] ShiftEdit. Shiftedit. http://shiftedit.net/.
[33] The Concord Consortium. Biologica. http://biologica.concord.org/.
[34] N. Truong, P. Bancroft, and P. Roe. Elp. http://www.elp.fit.qut.edu.au/.
[35] N. Truong, P. Bancroft, and P. Roe. Learning to program through the

web. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE conference
on Innovation and technology in computer science education, pages 9–
13, New York, NY, USA, 2005. ACM.

[36] D. W. Valentine. CS educational research: a meta-analysis of SIGCSE
technical symposium proceedings. SIGCSE Bull., 36(1):255–259, 2004.

[37] R. Warnakulasooriya, D. Palazzo, and D. E. Pritchard. Evidence
of problem-solving transfer in web-based socratic tutor. In Physics
Education Research Conference 2005, volume 818 of PER Conference,
pages 41–44, Salt Lake City, Utah, August 10-11 2005.

[38] R. Warnakulasooriya and D. E. Pritchard. Mastering physics. http:
//www.masteringphysics.com/.

[39] D. Yoo, B. Hickey, E. Schanzer, and S. Krishnamurthi. WeScheme.
http://www.wescheme.org/.

