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Focusing of light by a curved surface is described using the vector Kirchhoff diffraction theory. The electro-
magnetic fields of a light beam incident as a plane wave on a curved surface separating two transparent media
having different refractive indices are expressed as dimensionless double integrals. The integrals are evalu-
ated for a few specific cases, and the three-dimensional distribution of irradiance near the focus is determined.
The role of aberration in limiting the maximum achievable irradiance is studied. The distribution of the lon-
gitudinal components of the electric field in the focal region is also studied, and the region where the longitu-
dinal fields maximize is determined. © 2006 Optical Society of America
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1. INTRODUCTION

Rayleigh—Sommerfeld and scalar Kirchhoff beam propa-
gation formalisms are convenient ways to describe the
propagation of light from a plane surface (where the light
fields are known) to a point of interest beyond that sur-
face. These methods can easily be adapted to include
curved optical elements placed along the axis of propaga-
tion if the optical elements are thin and paraxial condi-
tions apply.1 However, these beam propagation models
cannot be used for high-numerical aperture lenses or
curved mirrors that are commercially available and used
in a wide variety of optical applications. Additionally, the
scalar nature of these beam propagation models do not ac-
count for the interdependence of the different components
of the electromagnetic fields. To accurately model the
propagation of light where the usual thin lens and
paraxial approximations do not apply, one needs a more
rigorous approach that incorporates the full-vector nature
of electromagnetic radiation.

Vector components of the electromagnetic fields of light
in the focal region had been determined previously by Ri-
chards and Wolf? for the case of an aplanatic, i.e.,
aberration-free, converging beam. Visser and Wiersma®
and Hsu and Barakat* have considered the case of aber-
rated incident phase fronts but not the case of refraction
between two media. We use here the vector diffraction
theory of Stratton and Chu,?® which applies the vector
analog of Green’s theorem to determine the electromag-
netic fields at a point inside a closed volume given the
fields on the curved surface.

The case of a linearly polarized plane wave of light
traveling in one transparent medium and incident on a
spherical surface separating the medium from a second
one having a different refractive index is considered here.
The values of the fields incident on the surface are known
after a plane at which the incident wave has zero phase is
defined. For highly curved surfaces, the angular depen-
dence of the Fresnel transmission coefficients must be
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taken into consideration as the angle of incidence along
the surface can also become large. With the Fresnel trans-
mission factors and angular-dependent refraction effects,
the values of the fields just inside the second medium are
determined, and the vector diffraction integrals are then
used to find the values of the fields at any point in the sec-
ond medium in terms of integrals involving the values of
the fields at the surface. The onset of spherical aberration
is investigated along with the effects of spherical aberra-
tion on the maximum obtainable intensity. There are four
main differences of this work from previous treatments of
vector diffraction theory for focused light: (1) the theory
and results are expressed in dimensionless units so as to
be applicable to a wide range of laser and optical param-
eters, (2) the paraxial-type approximations used in Eq.
(15) of Hsu and Barakat* are not invoked, (3) detailed dis-
tributions of the longitudinal field components are deter-
mined for both the aberrated and the unaberrated cases,
and (4) the relative contributions of the three different
terms of the Stratton—Chu diffraction integral are inves-
tigated. Although the case considered here is that of a
spherical surface and a plane incident wave, extension to
cases of other curvatures and to incident beams having
different spatial distribution, such as one with a Gauss-
ian amplitude profile, would be straightforward.

2. VECTOR DIFFRACTION THEORY AT A
SPHERICAL SURFACE

Suppose n; and ny denote the refractive indices of the two
media and A denotes the (vacuum) wavelength of a plane
wave of light traveling in the first medium and incident
upon a convex spherical surface having a radius of curva-
ture of Ry, as shown in Fig. 1. We designate the polariza-
tion direction of the wave to be the x direction and the di-
rection of propagation to be the z direction of a
rectangular Cartesian coordinate system. For conve-
nience, the spherical coordinates are also used here, with
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Fig. 1. (Color online) Illustration of the spherical boundary be-
tween media 1 and 2; the radius of curvature, R;; the maximum
angle of the surface, 6,,; the polar angles to the surface source

point, " and ¢’; and the unit vectors 7, 9 and é.

the origin of the spherical coordinate system on the z axis,
located at the center of the spherical surface separating
the two media, as shown in Fig. 1. The coordinates of the
source points, i.e., the points on the surface, are denoted
by primed variables, and those of the field points, i.e., the
points in the second medium, are denoted by unprimed
variables. The time-independent parts of the electric and
magnetic fields incident upon the surface are given by

E(F')=Eqexp(-ikz')i, (1)

H(') = Hy exp(- ikyz')], (2)

where H0=n1E0/Z0, with Z0= \3’/.140/60, and k1 =27m1/)\. Ex-
pressing the Cartesian unit vectors z,7,% in terms of the

spherical coordinates r’,6,¢’ and unit vectors 7, @, &
(also illustrated in Fig. 1), we can rewrite Eqs. (1) and (2)
as

E_(7') = Eg exp[- ik1R (1 + cos 0')]

X (sin ' cos ¢'7 + cos 6’ cos qﬁ’@‘— sin ¢' ), (3)

H_(7") = Hy exp[— ik ,R(1 + cos ¢')]
X (sin @' sin ¢'F + cos @ sin ¢’ O+ cos ¢’ @), (4)

where the minus subscripts of E and H represent the
fields just outside the spherical surface, i.e., in the inci-
dent medium.

At every source point (say, denoted by R, 6, and ¢'),
the spherical surface may be considered locally to be a
plane surface, and the Fresnel transmission factors ob-
tained for a plane wave incident upon a plane surface’
can be applied. Since the propagation direction of the in-
cident plane wave is in the z direction and the normal to
the surface is along the radial (#) direction, the plane of

incidence is defined by the 7 and % vectors. By definition,
the 6 vector lies in this plane, and the ¢ vector is perpen-
dicular to this plane. Therefore, in Eq. (3), the 7 and 0
components are parallel to the plane of incidence (p polar-

ized), and the ¢ component is perpendicular to the plane
of incidence (s polarized).

Applying the appropriate Fresnel transmission coeffi-
cients from Ref. 7 and using the appropriate refraction ef-

S. Guha and G. D. Gillen

fects on the plane wave’s s-polarization and p-polarization
components, we can write the transmitted fields as

E.(7')=Eqexp[-ikiR (1 +cos 0')]
X(T), sin 6, cos ¢'7 + T, cos 6] cos ¢
—T,sin ¢' @), (5)

n2E

k exp[—ik1R1(1 + cos )]
Zy

H,(7) =

X(Tgsin 6, sin ¢'7 + T cos 6, sin ¢'0

+T), cos &' P), (6)

where the plus subscripts denote the fields just inside the
second medium. The Fresnel transmission coefficients in
Eqgs. (5) and (6) are

2nqcos 0’
T,= ol (M
nqcos ' +nycos 6,
2n4 cos ¢’
T,= (8)

s~ )
nycos 0 +nycos 6,

for the p polarizations, respectively, and 6, is the local
angle of refraction into the transmitted medium, given by
Snell’s law; i.e.,

n

6, = sin‘1<— sin 0’). 9)
ng

Care needs to be taken in evaluating the inverse sine in

Eq. (9) to ensure that ¢, is obtuse if the incident angle ¢’

is obtuse.

According to Huygen’s principle, the fields in a bound,
source-free region of space can be thought of as arising
from spherical waves emanated by every point on the sur-
face bounding that space. A generalization of this prin-
ciple to the vector case is given in Eq. (22) in Stratton.®
For the choice of the time-independent component of the
electromagnetic fields assumed in the treatment here, the
vector Huygen’s principle formulas in Rothwell and
Cloud® are appropriate:

E(f)=-f da'[- iR’
S

xH,)G+(#' XE,)XV'G+(®H'-E)V'G], (10)

ﬁ(f):-J da'[iwe(h’
S

XE,)G+h' XH)XV'G+(®H'-H)V'G,
(11

where the integrations extend over the surface S enclos-

ing the field point 7 and the values of E‘+ and IjI+ in the
integrands are those evaluated just inside the second me-
dium and given by Eqgs. (5) and (6). The Green’s function,
G, used in Egs. (10) and (11), is given by
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exp(—ikyp)
G=—"—"—, (12)
4p

where ko=27ny/\ and
P> =1Fe,y,2) - &y 2 P = -2 )+ (y - ') + (2 -2')%,
(13)

with 7' denoting the position vector of the source point
and 7 denoting the position vector of the field point. The
components of 7 and 7’ can be expressed in terms of the
spherical coordinates as

x=rsin fcos ¢,

y =rsin #sin ¢,

z=rcos 0, (14)
x'=Rysin ¢ cos ¢',
y'=R;sin #' sin ¢',

z'=R;cos ¢, (15)

where r is the distance of the field point from the origin.

3. NORMALIZATION AND SIMPLIFICATION

Dimensionless parameters, dimensionless functions, and
normalized distances are used in this treatment for math-
ematical convenience and to allow the treatment to be ap-
plicable to a variety of chosen wavelengths and radii of
curvature. The normalized distances are defined as

X1=—_—, V1= Z1=—, 16
Rl Rl 1
’ x! ’ y/ ’ P
xlE_’ y]_E_v le_v (17)
1 1 1
= (18)
P1—R1-

Using a dimensionless parameter and a dimensionless
function

27Tn2R1 eXp(_ lpZPl)
Dp2= , Gi=47RG=—"7", (19)
A p1
we obtain
e P (20)
= —7r N
47R> M
where

Fllz(xl_xi)z"' @1—yi)j+(21—2i)é, (21)
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Gy=-——=— |1+ —|. (22)
pap1 9p1 P1 1Pap1

We also further define

T, cos6 +ncosé,
T, cos 6, +ncosd

as the normalized refractive index and transmission coef-
ficient and

fo =exp[— ik R(1+ cos 0')] = exp[—ips(1 + cos 0')/n]
(24)
as the phase of the fields just outside the spherical inter-

face between the media. The fields in Egs. (5) and (6) may
be rewritten as

E+(’T) =E0f2Tp51(7), (25)
anO o
H+(F) = _fZTphl(F), (26)
Zy
where
E\F) = e +e b+ e, (27)
Ra(F') = hy# + hob+ hyd, (28)
with

e, =sin 6, cos ¢',

ey=cos 6, cos ¢',

ey,=—1t;sin¢’, (29)
h,=t,sin 6, sin ¢',
hy=t;cos 0, sin ¢',

hy=cos ¢'. (30)

Substituting Egs. (20), (25), and (26) into Egs. (10) and
(11) and using the relationships

noky  ipsGy
 wuG =——E,, 31
lou Z() 47TR% 0 ( )
. ipoG1nsEy
iweGEy= —— ) (32)
47TR1 ZO

we obtain
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E() =

ipoEy , R
ppy da Tp[Glfz(r

Ty

Xhy) = Gofol# X &1) X Fyy = Gof o - €)F11], (33)

N ip2n2E0
r)= 3
4mZ,R?

f da'T,[Gf(?

Xé7) + Gofo(F X ];1) X ;11+G2f2(f‘];1)F11]~
(34)

Since the surface element is da’'=R?sin 6'd#’d¢’, the
expressions in Eqgs. (33) and (34) can be simplified to

E(® =AU, (35)

where

27 =0,
UG = f f sin 0'd0'de’ (i@, + iy +is), (36)
0 T

An2 >
H(r)=——Vi(r), (37)
Zy
where
27 =0,
V() = f f sin 0'd0'de’ (G, + U5 +05),  (38)
0 T

with
Dy

4w

A= E,. (39)

6,, is the half-angle aperture, and the vectors uy, u,, us,
U1, Us, and U5 represent the three vectors of the three in-

dividual terms of E and H in Eqgs. (10) and (11), respec-
tively. Each of these vectors has the following compo-
nents:

Uy, = TpfsGy(cos ¢’ cos? ¢’ + 1 cos 6] sin® ¢'),
uyy, = TpfsGy sin ¢’ cos ¢'(cos ' — ¢4 cos 6;),
uy, == T,fsGysin 6 cos @', (40)
Ugx = pf2G2[(21 - 2/1)&1y - 1=yl
Ugy = prGZ[(xl - xi)%z -(z1 —Zi)alx],
Uy, == TpfoGol(y1 —ypag + (g - xi)%y], (41)
us, = T,f2Gg sin 6] cos ¢’ (x1 —x7),
ugy, =T,f5Gy sin 6; cos &' (y1—1),

us, = TpfoGy sin 6] cos ¢'(z1 - 21), (42)

S. Guha and G. D. Gillen
U1, =T,f2G1sin ¢ cos ¢’ (¢ cos 6’ — cos §)),

vy = T,foG1(t; cos 0' sin? ¢' + cos 6] cos? ¢'),
vy, = TpfoG1(t; sin ' sin ¢'), (43)
Vor = TpfaGol (21 = 21) B1y — (1 —y1) B,
Ugy = pf2G2[(x1 - xi)ﬁlz -(z; —Zi)ﬂlx],
vy, = TpfoGol (y1 = y1) Brx — (61 = x1) B1y]s (44)
U3, = T,f2Goty sin 6] sin ¢’ (x1 - x7),
vy =T,f2Goty sin 6] sin @' (y1 —y1),
3, = TpfsGoty sin 0, sin ¢'(z1 — z7). (45)
a; and ,él, respectively, denote the 7#Xxé; and 7 X Hl terms

occurring in Egs. (33) and (34). The components of a; and
B1 are given by

ay, =sin ¢’ cos ¢'(¢1 cos 0’ — cos 6;),
ay, =cos 6, cos® ¢’ +1; cos ' sin® @',
ap,=—1t1sin 0’ sin ¢’ (46)
B1x=—cos @' cos? ¢’ -t cos 0, sin? ¢/,
By =sin ¢’ cos ¢'(¢; cos 6; —cos ¢'),

B1,=sin ' cos ¢'. (47)

The coordinates x1, y1, 21, X1, ¥1, and z; can be expressed
in terms of the spherical coordinates as

X1 =rysin #cos ¢,
y1=r;sin fsin ¢,
z1=rycos 6, (48)
x1=sin ¢’ cos ¢',
y1=sin 0’ sin ¢',

zj=cos @', (49)

where r;=r/R;.
The Poynting vector of the wave in the second medium
can be written as

- - > ny - >
S, =Re(E ><H)=Z—|E0|2Re(U>< Vv, (50)
0

while the Poynting vector associated with the plane wave
traveling in the first medium is given by
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-

ny
=Z_‘E0|22=S12A'. (51)
0

4. CALCULATION OF ELECTROMAGNETIC
FIELDS AND POYNTING VECTORS

In Figs. 2 and 3, the maximum values of the z component

of §2, normalized to S;, are plotted against the half-
angular aperture, i.e., 6,,. The maximization of Sy, is done
with respect to the x;, y;, and z; coordinates for each
value of 6,,. S;, maximizes on axis, i.e., at x1=y;=0, but
not necessarily at the same values of z; for different 6,,.
The dashed curves in Figs. 2 and 3 show the values of the
on-axis maximum irradiance obtained using the paraxial
approximation, which is given by

2 \2/pysin 6,,\?2
h=\1rm of, )’ (62)

fi= (53)

where

and the on-axis maximum is obtained at z;=f;. Equation
(52) can be derived from the treatment in Ref. 1.

In Fig. 2, the value of p, chosen is 108 for two choices of
n. In Fig. 3 the value of n is chosen to be 1.5 for two
choices of py. It is seen that the on-axis irradiance maxi-
mizes at a particular value of 6,,, beyond which the effects
of aberration become pronounced and the irradiance is
limited to a value lower than that at the maximum. Thus,

_I||||]|||||||||||||||||||||||||

0 5 10 15 20 25 30

0

Fig. 2. (Color online) Maximum values of the normalized on-
axis irradiance versus the half-angular aperture, 6,,, for p, equal
to 1 10%. The upper and lower plots are for n=1.5 and 2, respec-
tively. The dashed curves are calculated using the paraxial ap-
proximation, Eq. (52).

p,=1x 10

p,=5x10°
e s ST
o 5 10 15 20 25 30

0., (deg.)

Fig. 3. (Color online) Maximum values of the normalized on-
axis irradiance for n=1.5. The upper plots are for a p, value of
1x10° and the lower plots are for a p, value of 5x10°. The
dashed curves are the paraxial values calculated using Eq. (52).
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Fig. 4. Calculated on-axis irradiance versus axial position for
(a) 6,,=5° and (b) 6,,=20°, with p, value of 1X 108 and n=1.5.
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Fig. 5. Maximum calculated value of the modulus square of the
longitudinal component of the electric field (E,) as a function of
axial position for (a) 6,,=5° and (b) 6,,=20°, with n=1.5 and p,
=108, The value of |E,|?/EZ displayed for each axial position is
maximized with respect to x; and y;.

when a spherical surface is used for focusing light, for
given values of the refractive indices, wavelength of light,
and radius of curvature of the surface, there exists an op-
timum aperture angle at which the highest irradiance can
be obtained by focusing. For p,=10° and n=1.5, the opti-
mum value of 6,, is about 8.6°, which corresponds to an f
number of about 10. Thus, in this case, the paraxial ap-
proximation is valid only for f numbers equal to 10 or
larger. If the radius of curvature is reduced by a factor of
2, i.e., for po=5x10® and n=1.5, the optimum value of 6,
is about 10°, which corresponds to an f number of about
8.6. In Fig. 4, the dependence of the (normalized) on-axis



6 J. Opt. Soc. Am. B/Vol. 24, No. 1/January 2007

irradiance is plotted against the distance from the vertex
for two values of 6,,. At 6,,=5°, the wave focuses at a nor-
malized distance of 3, in accordance with the paraxial re-
sult in Eq. (53) as well as that obtained from the ray
tracing.9 At 6,,=20°, however, the on-axis irradiance is
not as sharply focused, and the region of high irradiance
extends over a larger axial region (z;=2.94 to 3).

In Fig. 5, the maximum values of the normalized en-
ergy density associated with the longitudinal field compo-
nent E, are plotted as a function of z;. For each z; shown
in Fig. 5, the value of |E,|? is maximized with respect to x;
and y; variables. For 6,,=5°, it is found that |E,|?> maxi-
mizes at the axial position of the geometrical focus (i.e., at
z1~3). As the beam comes into focus, the longitudinal
component of the Poynting vector increases. The value of
the longitudinal component maximizes slightly off axis
and is zero for all axial points by symmetry. For 6,,=20°,
spherical aberration has become significant, and |E,|?
maximizes over a much larger axial range, reaching a glo-
bal maximum at a closer location of z;=2.93. Figure 5
also shows that, at 6,=20°, the normalized value of
|E,|?/E? reaches a maximum value of ~4350, whereas the

1500 —\ (c) Oy, = 20°
o 1000 —real
w — imag.
~. 500
w0 ANNAAS
500 -}

0 1 2 383 4 5
X1( x10'4)

Fig. 6. Plots of the real (black) and imaginary (gray) parts and
the modulus squared (black) of the x component of the electric
field versus x; for 6,, equal to (a) and (b) 5° and (c) and (d) 20°,
respectively. All plots are for p,=10%, n=1.5, and y,=0. z; for
each plot is chosen such that the on-axis value of |E,|? is maxi-
mum at that z;; i.e., for 6,,=5° z,;=2.997 and, for 6,,=20°, z;
=2.927.
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Fig. 7. Plots of the real part (black) and imaginary part (gray)
and modulus squared (black) of the normalized longitudinal com-
ponent, E,/E,, for (a) and (b) 6,,=5° and (c) and (d) 20°, respec-
tively. For each plot py=10°%, n=1.5, and y,;=0. In each graph, z;
is chosen such that |E,|? is maximum; i.e., for 6,,=5°, 2;,=2.997,
and, for 6,,=20°, z,=2.927.

maximum value of S,/S; is about 4 X108 for p,=10%, n
=1.5, and 2z;=2.927, i.e., the longitudinal irradiance is
about 0.1% of the transverse irradiance.

The radial extents of the transverse and the longitudi-
nal fields (and irradiances) are shown in Figs. 6 and 7.
These figures show that both |E,|> and |E,|? are mostly
confined to within x;~107%, although |E,|> maximizes on
axis, whereas |E,|? is zero for on-axis points and has its
maximum value on the x axis, i.e., x;=5X107% and ¥,
=0.

To determine the relative contributions of the three
terms in the integrands of Eqgs. (36) and (38), which cor-
respond to the three terms in the integrands of Eqgs. (10)
and (11), we show in Tables 1-4 the squares of the abso-
lute values of all the Cartesian components of u, uy, us,
and vy, v, v3 maximized with respect to xy, y1, and z4, for
p2=108, n=1.5, and 6,,=5° and 20°. From the tables we
find that the dominant contributions to the fields near the
focus come from the field components parallel to the inci-
dent polarization directions (i.e., E, and H,). However, the
components perpendicular to the incident fields (i.e., E,,
E,, H,, and H,) also achieve nonnegligible values in the
region near the focus. We also find that, for E, and H,,
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both of the first two terms (i.e., u; and u,, v; and vy) are
important, whereas the contribution of the third term is
small. However, for the longitudinal components, the
third terms (z3 and v3) contribute dominantly.

The values of the modulus squares of the individual
components of the terms given in Tables 1 and 2 are much
different from the values of the modulus square of the
fields in Figs. 2-7 because the individual components in-
terfere constructively or destructively. Tables 1 and 2 also
illustrate the increases of each of the components of the

three vector terms for E and H for larger collection
angles. For the electric field, the increase of the x compo-
nent is disproportionately larger for the third integral
term, whereas the increase in the y component is dispro-
portionately larger for the first and third integral terms.
For the magnetic field, the increase of the y component is
disproportionately larger for the third integrand term,
and the increase in the x component is disproportionately
larger for the first and third integrand terms. The in-
crease in the longitudinal component of both the electric
and the magnetic fields is fairly even from all three inte-
gral terms. Thus, the effects of the increasing spherical

Table 1. Global Maxima of the x, y, and z
Components of the Three Vector Terms of the
Calculated Electric Fields for p,=10%, n=1.5,
and 6,,=5° and 20°¢
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Table 3. Normalized Locations (x{,y1,2;) of the
Global Maxima of the Three Vector Terms of the
Calculated Electric Fields for p,=10%, n=1.5,
and 6,,=5° and 20°

Global Maximum

Global Maximum

Location Location
(x1,¥1,21) (x1,¥1,21)
Component 0,,=5° 0,,=20°
|t1.? (0,0,2.997) (0,0,2.9717)
[ (0,0,2.997) (0,0,2.9717)
|us,f? (0,0,2.997) (0,0,2.9272)
9 (8.8x107%,8.6x107?, (1.9%107%,1.9x107°,
1,1 2.997) 2.9273)
g P (9.6x1075,9.5x1073, (1.9%1075,1.9% 1073,
B 2.997) 2.9274)
g2 (8.7x1075,8.8x107%, (1.9%x107%,1.9x107®,
& 2.997) 2.9273)
11,2 (7.9%1075,0,2.997) (1.62%x107%,0,2.9273)
|19, |2 (7.9x1075,0,2.997) (1.62%x107°,0,2.9272)
|, |? (7.9%1075,0,2.997) (1.61x107%,0,2.9272)

Table 4. Normalized Locations (x{,y;,2;) of the
Global Maxima of the Three Vector Terms of the
Calculated Magnetic Fields for p,=10°%, n=1.5,
and 6,,=5° and 20°

Global Maximum

Global Maximum

Location Location
Global Maximum Global Maximum (x,y,2) (x,y,2)
Component 0,,=5° 0,,=20° Ratio Component 0,,=5° 0,,=20°
Jee1? 1.14x10° 3.76 X 10° 3.31x10° ) (8.8x107%,8.8X107%,  (1.9X107%,1.9%X 1075,
s ? 3.24%10° 1.09 X 106 3.37%x 100 |14 2.997) 2.9272)
|5, 7.19% 1072 2.62 %102 3.64x103 o0, (9.6xX107°,9.6x107°, (1.9%107°,1.9x107°,
s, 2 4.01x107 L71x 10! 4.27%10° V2 2.997) 2.9272)
|ty 2 5.89 X 102 4.12x103 7.00 X 10° g, 2 (8.7x107,8.8%x107°,  (1.9x107°,1.9X107°,
Jueg,|? 1.41x 1072 6.19x 10! 4.38x10° * 2.997) 2.9272)
PE 1.12x 102 1.70 x 10 1.51% 102 [v1y[? (0,0,2.997) (0,0,2.9272)
Jez, |2 4.40x 10! 6.99x 103 1.59 X 102 ooy |? (0,0,2.997) (0,0,2.9272)
ez, )2 1.76 X 102 2.69 % 10* 1.53 x 102 Ivsylz (0,0,2-9597) (0,0,2-927%
0x107%,2. 1.62x107%,2.92
“Ratio dennFes the ratio of the global maximum of that component for #=20° to :Z;jz Eg:gg X 18—5:2‘232 Eg : 1.22 X 18—5:2.22Zg;
the global maximum value for 6,,=5°. |U31|2 (0,8.0% 10_5’2.997) (0,1.62x 10°3,2.9275)

Table 2. Global Maxima of the x, y, and z
Components of the Three Vector Terms of the
Calculated Magnetic Fields for p,=10°%, n=1.5,

and 6,,=5° and 20°“

Global Maximum  Global Maximum

Component 0,,=5° 0,,=20° Ratio
[v1.? 4.57x1072 1.95% 102 4.27x103
[vs:[? 9.36x 10 5.59 X 10* 5.97 X 10°
[vs.]? 1.41x10°2 6.19% 101 4.38% 103
[v1,[? 5.73% 105 2.22 X108 3.88 X 10°
[vgy[? 3.23 X 10° 1.31x10° 4.05%10°
[v3,? 7.19%X 1072 2.62 %102 3.64x103
e 5.69 % 102 8.50% 104 1.49% 102
[vs|? 2.21% 101 3.55 % 103 1.61x 102
|vs|? 1.76 X 10 2.68x10* 1.53 % 102

aberration on the beam distributions in the focal region
cannot be attributed to a single term in Eq. (10) or (11)
but rather manifest themselves from all three terms.
Tables 3 and 4 illustrate the locations of the global
maxima of the Cartesian components of all three of the in-

tegral terms for E and H given in Tables 1 and 2.

5. CONCLUSIONS

“Ratio denotes the ratio of the global maximum of that component for §=20° to
the global maximum value for 6,,=5°.

We have derived and evaluated the integrals describing
the electromagnetic fields when a plane wave of light is
refracted by a spherical surface. The integrals are ex-
pressed in terms of dimensionless variables and dimen-
sionless physical parameters, so that the results are ap-
plicable over a wide range of wavelengths. The result
allows us to calculate the maximum values of irradiances
achievable in the presence of spherical aberrations and
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also show the distribution and the relative contributions
of the longitudinal component of the fields.
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e-mail at shekhar.guha@wpafb.af.mil.
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