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Focusing of light by a curved surface is described using the vector Kirchhoff diffraction theory. The electro­
magnetic fields of a light beam incident as a plane wave on a curved surface separating two transparent media 
having different refractive indices are expressed as dimensionless double integrals. The integrals are evalu­
ated for a few specific cases, and the three-dimensional distribution of irradiance near the focus is determined. 
The role of aberration in limiting the maximum achievable irradiance is studied. The distribution of the lon­
gitudinal components of the electric field in the focal region is also studied, and the region where the longitu­
dinal fields maximize is determined. © 2006 Optical Society of America 
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. INTRODUCTION 
ayleigh–Sommerfeld and scalar Kirchhoff beam propa­
ation formalisms are convenient ways to describe the
ropagation of light from a plane surface (where the light
elds are known) to a point of interest beyond that sur­
ace. These methods can easily be adapted to include
urved optical elements placed along the axis of propaga­
ion if the optical elements are thin and paraxial condi­
ions apply.1 However, these beam propagation models
annot be used for high-numerical aperture lenses or
urved mirrors that are commercially available and used
n a wide variety of optical applications. Additionally, the
calar nature of these beam propagation models do not ac­
ount for the interdependence of the different components
f the electromagnetic fields. To accurately model the
ropagation of light where the usual thin lens and
araxial approximations do not apply, one needs a more
igorous approach that incorporates the full-vector nature
f electromagnetic radiation. 

Vector components of the electromagnetic fields of light
n the focal region had been determined previously by Ri­
hards and Wolf 2 for the case of an aplanatic, i.e.,
berration-free, converging beam. Visser and Wiersma3

nd Hsu and Barakat4 have considered the case of aber­
ated incident phase fronts but not the case of refraction
etween two media. We use here the vector diffraction
heory of Stratton and Chu,5,6 which applies the vector
nalog of Green’s theorem to determine the electromag­
etic fields at a point inside a closed volume given the
elds on the curved surface. 
The case of a linearly polarized plane wave of light

raveling in one transparent medium and incident on a
pherical surface separating the medium from a second
ne having a different refractive index is considered here.
he values of the fields incident on the surface are known
fter a plane at which the incident wave has zero phase is
efined. For highly curved surfaces, the angular depen­
ence of the Fresnel transmission coefficients must be
0740-3224/06/010001-8/$15.00 © 2
taken into consideration as the angle of incidence along
he surface can also become large. With the Fresnel trans­
ission factors and angular-dependent refraction effects,

he values of the fields just inside the second medium are
determined, and the vector diffraction integrals are then
used to find the values of the fields at any point in the sec­
nd medium in terms of integrals involving the values of
he fields at the surface. The onset of spherical aberration
s investigated along with the effects of spherical aberra­
ion on the maximum obtainable intensity. There are four
ain differences of this work from previous treatments of

ector diffraction theory for focused light: (1) the theory
nd results are expressed in dimensionless units so as to
e applicable to a wide range of laser and optical param­
ters, (2) the paraxial-type approximations used in Eq.
15) of Hsu and Barakat4 are not invoked, (3) detailed dis­
ributions of the longitudinal field components are deter­
ined for both the aberrated and the unaberrated cases,

nd (4) the relative contributions of the three different
erms of the Stratton–Chu diffraction integral are inves­
igated. Although the case considered here is that of a
pherical surface and a plane incident wave, extension to
ases of other curvatures and to incident beams having
ifferent spatial distribution, such as one with a Gauss­
an amplitude profile, would be straightforward. 

. VECTOR DIFFRACTION THEORY AT A 
PHERICAL SURFACE 
uppose n1 and n2 denote the refractive indices of the two
edia and � denotes the (vacuum) wavelength of a plane
ave of light traveling in the first medium and incident
pon a convex spherical surface having a radius of curva­
ure of R1, as shown in Fig. 1. We designate the polariza­
ion direction of the wave to be the x direction and the di­
ection of propagation to be the z direction of a
ectangular Cartesian coordinate system. For conve­
ience, the spherical coordinates are also used here, with
006 Optical Society of America 
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ig. 1. (Color online) Illustration of the spherical boundary be­
ween media 1 and 2; the radius of curvature, R1; the maximum
ngle of the surface, �m; the polar angles to the surface source
oint, �� and ��; and the unit vectors r̂, �̂ and �̂ . 

he origin of the spherical coordinate system on the z axis,
ocated at the center of the spherical surface separating
he two media, as shown in Fig. 1. The coordinates of the
ource points, i.e., the points on the surface, are denoted
y primed variables, and those of the field points, i.e., the
oints in the second medium, are denoted by unprimed
ariables. The time-independent parts of the electric and
agnetic fields incident upon the surface are given by 

E� �r��� = E0 exp�− ik1z��î, �1� 

H� �r��� = H0 exp�− ik1z��ĵ, �2� 

here H0=n1E0 /Z0, with Z0=��0 /�0, and k1=2�n1 / �. Ex­
ressing the Cartesian unit vectors î , ĵ , k̂ in terms of the

ˆ ˆpherical coordinates r� ,�� , �� and unit vectors r̂ , � ,�
also illustrated in Fig. 1), we can rewrite Eqs. (1) and (2)
s 

E� 
−�r��� = E0 exp�− ik1R1�1 + cos ���� 

��sin �� cos ��r̂ + cos �� cos ���̂ − sin ���̂ �, �3� 

H� 
−�r��� = H0 exp�− ik1R1�1 + cos ���� 

��sin �� sin ��r̂ + cos �� sin ���̂ + cos ���̂ �, �4� 

here the minus subscripts of E� and H� represent the
elds just outside the spherical surface, i.e., in the inci­
ent medium. 
At every source point (say, denoted by R1, ��, and ��),

he spherical surface may be considered locally to be a
lane surface, and the Fresnel transmission factors ob­
ained for a plane wave incident upon a plane surface7

an be applied. Since the propagation direction of the in­
ident plane wave is in the z direction and the normal to
he surface is along the radial �r̂� direction, the plane of
ncidence is defined by the r̂ and k̂ vectors. By definition,
he �̂ vector lies in this plane, and the �̂ vector is perpen­

ˆicular to this plane. Therefore, in Eq. (3), the r̂ and �
omponents are parallel to the plane of incidence (p polar­
zed), and the �̂ component is perpendicular to the plane
f incidence (s polarized). 

Applying the appropriate Fresnel transmission coeffi­
ients from Ref. 7 and using the appropriate refraction ef­
� �

� � � 

ects on the plane wave’s s-polarization and p-polarization
omponents, we can write the transmitted fields as 

E� 
+�r��� = E0 exp�− ik1R1�1 + cos ���� 

��Tp sin ��t cos ��r̂ + Tp cos ��t cos ���̂ 

− Ts sin ���̂ �, �5�

n2E0
 
H� 

+�r��� = exp�− ik1R1�1 + cos ����
 
Z0
 

ˆ��Ts sin ��t sin ��r̂ + Ts cos ��t sin ���

+ Tp cos ���̂ �, �6�

here the plus subscripts denote the fields just inside the
econd medium. The Fresnel transmission coefficients in
qs. (5) and (6) are 

2n1 cos �� 
Tp = , �7�

n1 cos �� + n2 cos �t� 

2n1 cos �� 
Ts = , �8�

n2 cos �� + n1 cos �t� 

or the p polarizations, respectively, and �t� is the local
ngle of refraction into the transmitted medium, given by
nell’s law; i.e., 

�t� = sin−1
n1 

sin �� . �9�
n2 

are needs to be taken in evaluating the inverse sine in
q. (9) to ensure that �t� is obtuse if the incident angle ��

s obtuse. 
According to Huygen’s principle, the fields in a bound,

ource-free region of space can be thought of as arising
rom spherical waves emanated by every point on the sur­
ace bounding that space. A generalization of this prin­

ciple to the vector case is given in Eq. (22) in Stratton.6

or the choice of the time-independent component of the
lectromagnetic fields assumed in the treatment here, the
ector Huygen’s principle formulas in Rothwell and
loud8 are appropriate: 

E� �r�� = −  � da��− i���n̂ � 
S 

�H+�G + �n̂ � � E+� � �� �G + �n̂ � · E+��� �G�, �10�

H� �r�� = −  � da��i���n̂ � 
S 

� � � �G + �n � � �G�,�E+�G + �n̂ � � H+� � � ˆ � · H+��

�11�

here the integrations extend over the surface S enclos­
ng the field point r� and the values of E� 

+ and H� 
+ in the

ntegrands are those evaluated just inside the second me­
ium and given by Eqs. (5) and (6). The Green’s function,
, used in Eqs. (10) and (11), is given by 
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exp�− ik2�� 
G = , �12� 

4�� 

here k2=2�n2 / � and 

�2 = �r��x,y,z� − r���x�,y�,z���2 = �x − x��2 + �y − y��2 + �z − z��2, 

�13� 

ith r�� denoting the position vector of the source point
nd r� denoting the position vector of the field point. The
omponents of r� and r�� can be expressed in terms of the
pherical coordinates as 

x = r sin � cos �, 

y = r sin � sin �, 

z = r cos �, �14� 

x� = R1 sin �� cos ��, 

y� = R1 sin �� sin ��, 

z� = R1 cos ��, �15� 

here r is the distance of the field point from the origin. 

. NORMALIZATION AND SIMPLIFICATION 
imensionless parameters, dimensionless functions, and
ormalized distances are used in this treatment for math­
matical convenience and to allow the treatment to be ap­
licable to a variety of chosen wavelengths and radii of
urvature. The normalized distances are defined as 

x y z 
x1 � , y1 � , z1 � , �16� 

R1 R1 R1 

x� y� z� 
x1� � , y�1 � , z1� � , �17� 

R1 R1 R1 

�1 � . �18� 
R1 

sing a dimensionless parameter and a dimensionless

r�11 � �x1 − x1��î + �y1 − y1��ĵ + �z1 − z�1�k, �21� 

unction 

p2 � 
2�n2R1 

� 
, G1 � 4�R1G = 

exp�− ip2�1� 

�1 

, �19� 

e obtain 

�� �G = 
ip2G2 

4�R1 
2 r�11, �20� 

here 

ˆ 
� �

� 

1 �G1 G1 1 
G2 � − = 1 +  . �22�

ip2�1 ��1 �1 ip2�1 

e also further define 

n2 Ts cos �� + n cos �t� 
n � , t1 � = �23�

n1 Tp cos ��t + n cos �� 

s the normalized refractive index and transmission coef­
cient and 

f2 � exp�− ik1R1�1 + cos ���� = exp�− ip2�1 + cos ���/n� 

�24�

s the phase of the fields just outside the spherical inter­
ace between the media. The fields in Eqs. (5) and (6) may

be rewritten as 

E+�r�� = E0f2Tpe�1�r��, �25�

n2E0 
H+�r�� = f2Tph� 

1�r��, �26�
Z0 

here 

e�1�r��� � err̂ + e��̂ + e��̂ , �27�

h1�r��� � hrr̂ + h��̂ + h��̂ , �28�

ith 

er = sin �t� cos ��, 

e� = cos �t� cos ��, 

e� = −  t1 sin ��, �29�

hr = t1 sin �t� sin ��, 

h� = t1 cos �t� sin ��, 

h� = cos ��. �30�

ubstituting Eqs. (20), (25), and (26) into Eqs. (10) and
11) and using the relationships 

n2E0 ip2G1 
i��G = 2 E0, �31�

Z0 4�R1 

ip2G1 n2E0 
i��GE0 = 2 , �32�

4�R1 Z0 

e obtain 



4 J. Opt. Soc. Am. B/Vol. 24, No. 1/January 2007 

 
e

w

w

w

�  
v
d
t
n

S. Guha and G. D. Gillen 

 

 

 

�  
o  

�

 

 

T  
i

 

 

w
 

c

 

w  
t

ip2E0 
E� �r�� = � da�Tp�G1f2�r̂ 

4�R1
2 

�h� 
1� − G2f2�r̂ � e�1� � r�11 − G2f2�r̂ · e�1�r�11�, �33� 

ip2n2E0 
H� �r�� = � da�Tp ˆ

2 �G1f2�r
4�Z0R1 

�e�1� + G2f2�r̂ � h� 
1� � r�11 + G2f2�r̂ · h� 

1�r�11�. 

�34� 

Since the surface element is da�= R2
1 sin ��d��d��, the

xpressions in Eqs. (33) and (34) can be simplified to 

E�r�� �  AU� �r��, �35� 

here 

�−�m2� �U� �r�� = � sin ��d��d���u� 1 + u� 2 + u� 3�, �36� 
0 � 

H�r�� �  
An2 

Z0 

V� �r��, �37� 

here 

V� �r�� = �2� ��−�m 

sin ��d��d���v�1 + v�2 + v�3�, �38� 
0 � 

ith 

ip2 
A = −  E0. �39� 

4� 

m is the half-angle aperture, and the vectors u� 1, u� 2, u� 3,
�1, v�2, and v�3 represent the three vectors of the three in­
ividual terms of E� and H� in Eqs. (10) and (11), respec­
ively. Each of these vectors has the following compo­
ents: 

u1x = Tpf2G1�cos �� cos2 �� + t1 cos �t� sin2 ���, 

u1y = Tpf2G1 sin �� cos ���cos �� − t1 cos �t��, 

u1z = −  Tpf2G1 sin �� cos ��, �40� 

u2x = Tpf2G2��z1 − z�1��1y − �y1 − y�1��1z�, 

u2y = Tpf2G2��x1 − x1���1z − �z1 − z1���1x�, 

u2z = −  Tpf2G2��y1 − y�1��1x + �x1 − x�1��1y�, �41� 

u3x = Tpf2G2 sin �t� cos ���x1 − x1��, 

u3y = Tpf2G2 sin �t� cos ���y1 − y�1�, 

u3z = Tpf2G2 sin �t� cos ���z1 − z1��, �42� 
v1x = Tpf2G1 sin �� cos ���t1 cos �� − cos �t��, 

v1y = Tpf2G1�t1 cos �� sin2 �� + cos �t� cos2 ���, 

v1z = Tpf2G1�t1 sin �� sin ���, �43�

v2x = Tpf2G2��z1 − z�1��1y − �y1 − y�1��1z�, 

v2y = Tpf2G2��x1 − x�1��1z − �z1 − z�1��1x�, 

v2z = Tpf2G2��y1 − y�1��1x − �x1 − x�1��1y�, �44�

v3x = Tpf2G2t1 sin �t� sin ���x1 − x1��, 

v3y = Tpf2G2t1 sin �t� sin ���y1 − y1��, 

v3z = Tpf2G2t1 sin ��t sin ���z1 − z1��. �45�

� 1 and �� 
1, respectively, denote the r̂ � e�1 and r̂ �h� 

1 terms
ccurring in Eqs. (33) and (34). The components of �� 1 and

� 
1 are given by 

�1x = sin �� cos ���t1 cos �� − cos �t��, 

�1y = cos �t� cos2 �� + t1 cos �� sin2 ��, 

�1z = −  t1 sin �� sin ��, �46�

�1x = − cos �� cos2 �� − t1 cos �t� sin2 ��, 

�1y = sin �� cos ���t1 cos �t� − cos ���, 

�1z = sin �� cos ��. �47�

he coordinates x1, y1, z1, x1�, y1�, and z�1 can be expressed
n terms of the spherical coordinates as 

x1 = r1 sin � cos �, 

y1 = r1 sin � sin �, 

z1 = r1 cos �, �48�

x1� = sin �� cos ��, 

y1� = sin �� sin ��, 

z1� = cos ��, �49�

here r1 �r /R1. 
The Poynting vector of the wave in the second medium

an be written as 

S� 
2 = Re�E� � H� *� = 

n2 
�E0�2 Re�U� � V� *�, �50�

Z0 

hile the Poynting vector associated with the plane wave
raveling in the first medium is given by 
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S� 
1 = 

n1 
�E0�2ẑ = S1ẑ . �51� 

Z0 

. CALCULATION OF ELECTROMAGNETIC 
IELDS AND POYNTING VECTORS 

n Figs. 2 and 3, the maximum values of the z component
f S� 

2, normalized to S1, are plotted against the half-
ngular aperture, i.e., �m. The maximization of S2z is done
ith respect to the x1, y1, and z1 coordinates for each
alue of �m. S2z maximizes on axis, i.e., at x1=y1=0, but
ot necessarily at the same values of z1 for different �m.
he dashed curves in Figs. 2 and 3 show the values of the
n-axis maximum irradiance obtained using the paraxial
pproximation, which is given by 

2 2 p2 sin �m 
2 

Ip = , �52� 
1 +  n 2f1 

here 

n 
f1 = , �53� 

n − 1  

nd the on-axis maximum is obtained at z1= f1. Equation
52) can be derived from the treatment in Ref. 1. 

In Fig. 2, the value of p2 chosen is 106 for two choices of
. In Fig. 3 the value of n is chosen to be 1.5 for two
hoices of p2. It is seen that the on-axis irradiance maxi­
izes at a particular value of �m, beyond which the effects

f aberration become pronounced and the irradiance is
imited to a value lower than that at the maximum. Thus,

ig. 2. (Color online) Maximum values of the normalized on-
xis irradiance versus the half-angular aperture, �m, for p2 equal
o 1�106. The upper and lower plots are for n =1.5 and 2, respec­
ively. The dashed curves are calculated using the paraxial ap­
roximation, Eq. (52). 

ig. 3. (Color online) Maximum values of the normalized on-
xis irradiance for n=1.5. The upper plots are for a p2 value of
� 106, and the lower plots are for a p2 value of 5 �105. The
ashed curves are the paraxial values calculated using Eq. (52). 
ig. 4. Calculated on-axis irradiance versus axial position for
a) �m =5° and (b) �m =20°, with p2 value of 1 �106 and n =1.5. 

ig. 5. Maximum calculated value of the modulus square of the
ongitudinal component of the electric field �Ez� as a function of
xial position for (a) �m =5° and (b) �m =20°, with n=1.5 and p2

2106. The value of �Ez�2 /E0 displayed for each axial position is
aximized with respect to x1 and y1. 

hen a spherical surface is used for focusing light, for
iven values of the refractive indices, wavelength of light,

and radius of curvature of the surface, there exists an op­
timum aperture angle at which the highest irradiance can
e obtained by focusing. For p2=106 and n=1.5, the opti­
um value of �m is about 8.6°, which corresponds to an f

umber of about 10. Thus, in this case, the paraxial ap­
roximation is valid only for f numbers equal to 10 or

larger. If the radius of curvature is reduced by a factor of
2, i.e., for p2=5�105 and n=1.5, the optimum value of �m
s about 10°, which corresponds to an f number of about
.6. In Fig. 4, the dependence of the (normalized) on-axis
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rradiance is plotted against the distance from the vertex
or two values of �m. At  �m =5°, the wave focuses at a nor­
alized distance of 3, in accordance with the paraxial re­

ult in Eq. (53) as well as that obtained from the ray 
racing.9 At �m =20°, however, the on-axis irradiance is
ot as sharply focused, and the region of high irradiance
xtends over a larger axial region (z1=2.94 to 3). 

In Fig. 5, the maximum values of the normalized en­
rgy density associated with the longitudinal field compo­
ent Ez are plotted as a function of z1. For each z1 shown

n Fig. 5, the value of �Ez�2 is maximized with respect to x1 

nd y1 variables. For �m =5°, it is found that �Ez�2 maxi­
izes at the axial position of the geometrical focus (i.e., at

1 �3). As the beam comes into focus, the longitudinal
omponent of the Poynting vector increases. The value of
he longitudinal component maximizes slightly off axis
nd is zero for all axial points by symmetry. For �m =20°,
pherical aberration has become significant, and �Ez�2 

aximizes over a much larger axial range, reaching a glo­
al maximum at a closer location of z1 � 2.93. Figure 5
lso shows that, at �m =20°, the normalized value of

Ez�2 /E0
2 reaches a maximum value of �4350, whereas the

ig. 6. Plots of the real (black) and imaginary (gray) parts and
he modulus squared (black) of the x component of the electric
eld versus x1 for �m equal to (a) and (b) 5° and (c) and (d) 20°,
espectively. All plots are for p2=106, n =1.5, and y1=0.  z1 for
ach plot is chosen such that the on-axis value of �Ex�2 is maxi­
um at that z1; i.e., for �m =5°, z1=2.997 and, for �m =20°,  z1 

2.927. 
ig. 7. Plots of the real part (black) and imaginary part (gray)
nd modulus squared (black) of the normalized longitudinal com­
onent, Ez /E0, for (a) and (b) �m =5° and (c) and (d) 20°, respec­
ively. For each plot p2=106, n=1.5, and y1=0. In each graph, z1
s chosen such that �Ez�2 is maximum; i.e., for �m =5°, z1=2.997,
nd, for �m =20°, z1=2.927. 

aximum value of Sz /S1 is about 4�106 for p2=106, n
1.5, and z1=2.927, i.e., the longitudinal irradiance is
bout 0.1% of the transverse irradiance. 

The radial extents of the transverse and the longitudi­
nal fields (and irradiances) are shown in Figs. 6 and 7.
These figures show that both �Ex�2 and �Ez�2 are mostly
onfined to within x1 �10−4, although �Ex�2 maximizes on
xis, whereas �Ez�2 is zero for on-axis points and has its
aximum value on the x axis, i.e., x1 �5 �10−5 and y1
0.  
To determine the relative contributions of the three

erms in the integrands of Eqs. (36) and (38), which cor­
espond to the three terms in the integrands of Eqs. (10)
nd (11), we show in Tables 1–4 the squares of the abso­
ute values of all the Cartesian components of u1, u2, u3,
nd v1, v2, v3 maximized with respect to x1, y1, and z1, for
2=106, n=1.5, and �m =5° and 20°. From the tables we
nd that the dominant contributions to the fields near the
ocus come from the field components parallel to the inci­

dent polarization directions (i.e., Ex and Hy). However, the
omponents perpendicular to the incident fields (i.e., Ey,
z, Hx, and Hz) also achieve nonnegligible values in the

egion near the focus. We also find that, for E and H ,
x y
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oth of the first two terms (i.e., u1 and u2, v1 and v2) are
mportant, whereas the contribution of the third term is
mall. However, for the longitudinal components, the
hird terms (u3 and v3) contribute dominantly. 

The values of the modulus squares of the individual
omponents of the terms given in Tables 1 and 2 are much
ifferent from the values of the modulus square of the
elds in Figs. 2–7 because the individual components in­
erfere constructively or destructively. Tables 1 and 2 also
llustrate the increases of each of the components of the
hree vector terms for E� and H� for larger collection
ngles. For the electric field, the increase of the x compo­
ent is disproportionately larger for the third integral
erm, whereas the increase in the y component is dispro­
ortionately larger for the first and third integral terms.
or the magnetic field, the increase of the y component is
isproportionately larger for the third integrand term,
nd the increase in the x component is disproportionately
arger for the first and third integrand terms. The in­
rease in the longitudinal component of both the electric 
nd the magnetic fields is fairly even from all three inte­
ral terms. Thus, the effects of the increasing spherical

Table 1. Global Maxima of the x, y, and  z 
Components of the Three Vector Terms of the 
Calculated Electric Fields for p2=106, n=1.5, 

and �m =5° and 20°a 

Global Maximum Global Maximum 
omponent �m =5°  �m =20° Ratio 

�u1x�2 1.14� 105 3.76�105 3.31�100 

�u2x�2 3.24� 105 1.09�106 3.37�100 

�u3x�2 7.19� 10−2 2.62�102 3.64�103 

�u1y�2 4.01� 10−3 1.71�101 4.27�103 

�u2y�2 5.89� 102 4.12�103 7.00�100 

�u3y�2 1.41� 10−2 6.19�101 4.38�103 

�u1z�2 1.12� 102 1.70�104 1.51�102 

�u2z�2 4.40� 101 6.99�103 1.59�102 

�u3z�2 1.76� 102 2.69�104 1.53�102 

aRatio denotes the ratio of the global maximum of that component for � =20° to
he global maximum value for �m =5°.  

Table 2. Global Maxima of the x, y, and  z 
Components of the Three Vector Terms of the 
Calculated Magnetic Fields for p2=106, n =1.5, 

and �m =5° and 20°a 

Global Maximum Global Maximum 
omponent �m =5°  �m =20° Ratio 

�v1x�2 4.57� 10−2 1.95�102 4.27�103 

�v2x�2 9.36� 103 5.59�104 5.97�100 

�v3x�2 1.41� 10−2 6.19�101 4.38�103 

�v1y�2 5.73� 105 2.22�106 3.88�100 

�v2y�2 3.23� 105 1.31�106 4.05�100 

�v3y�2 7.19� 10−2 2.62�102 3.64�103 

�v1z�2 5.69� 102 8.50�104 1.49�102 

�v2z�2 2.21� 101 3.55�103 1.61�102 

�v3z�2 1.76� 102 2.68�104 1.53�102 

aRatio denotes the ratio of the global maximum of that component for � =20° to
he global maximum value for � =5°.  
m 
Table 3. Normalized Locations „x1 ,y1 ,z1… of the 
Global Maxima of the Three Vector Terms of the 

Calculated Electric Fields for p2=106, n =1.5, 
and �m =5° and 20° 

Global Maximum Global Maximum 
Location Location 
�x1 ,y1 , z1� �x1 ,y1 ,z1� 

Component �m =5°  �m =20° 

�u1x�2 (0,0,2.997) (0,0,2.9717) 
�u2x�2 (0,0,2.997) (0,0,2.9717) 
�u3x�2 (0,0,2.997) (0,0,2.9272) 

�u1y�2 �8.8�10−5 ,8.6� 10−5 , 
2.997� 

�1.9�10−5 ,1.9�10−5 , 
2.9273� 

�u2y�2 �9.6�10−5 ,9.5� 10−5 , 
2.997� 

�1.9�10−5 ,1.9�10−5 , 
2.9274� 

�u3y�2 �8.7�10−5 ,8.8� 10−5 , 
2.997� 

�1.9�10−5 ,1.9�10−5 , 
2.9273� 

�u1z�2 �7.9�10−5 ,0 ,2.997� �1.62�10−5 ,0 ,2.9273� 
�u2z�2 �7.9�10−5 ,0 ,2.997� �1.62�10−5 ,0 ,2.9272� 
�u3z�2 �7.9�10−5 ,0 ,2.997� �1.61�10−5 ,0 ,2.9272� 

Table 4. Normalized Locations „x1 ,y1 ,z1… of the 
Global Maxima of the Three Vector Terms of the 

Calculated Magnetic Fields for p2=106, n=1.5, 
and �m =5° and 20° 

Global Maximum Global Maximum 
Location Location 
�x ,y ,z� �x ,y , z� 

Component �m =5°  �m =20° 

�v1x�2 �8.8�10−5 ,8.8� 10−5 , 
2.997� 

�1.9�10−5 ,1.9�10−5 , 
2.9272� 

�v2x�2 �9.6�10−5 ,9.6� 10−5 , 
2.997� 

�1.9�10−5 ,1.9�10−5 , 
2.9272� 

�v3x�2 �8.7�10−5 ,8.8� 10−5 , 
2.997� 

�1.9�10−5 ,1.9�10−5 , 
2.9272� 

�v1y�2 (0,0,2.997) (0,0,2.9272) 
�v2y�2 (0,0,2.997) (0,0,2.9272) 
�v3y�2 (0,0,2.997) (0,0,2.9272) 
�v1z�2 �0,8.0�10−5 ,2.997� �0 ,1.62� 10−5 ,2.9275� 
�v2z�2 �0,7.5�10−5 ,2.997� �0 ,1.52� 10−5 ,2.9275� 
�v3z�2 �0,8.0�10−5 ,2.997� �0 ,1.62� 10−5 ,2.9275� 

berration on the beam distributions in the focal region
annot be attributed to a single term in Eq. (10) or (11)
ut rather manifest themselves from all three terms. 

Tables 3 and 4 illustrate the locations of the global
axima of the Cartesian components of all three of the in­

egral terms for E� and H� given in Tables 1 and 2. 

. CONCLUSIONS 
e have derived and evaluated the integrals describing

he electromagnetic fields when a plane wave of light is
refracted by a spherical surface. The integrals are ex­

ressed in terms of dimensionless variables and dimen­
sionless physical parameters, so that the results are ap­
plicable over a wide range of wavelengths. The result
allows us to calculate the maximum values of irradiances
achievable in the presence of spherical aberrations and
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lso show the distribution and the relative contributions
f the longitudinal component of the fields. 
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