
 

 

   
 

 
 

  
 

 
 

  
 

  

 
    

 
   

 

  
 

   
  

 
  

   
 

    
 

  
   

 

  
 
 
 

  

 

  
  

 

   
 

  
 

 
  

   
 

 
 
 

  
  

  
  

  
 

  

  
 

  
 

 
 

 
   

 
 

 
  

  

  
  

 
 

  
 

  

     
                 
                 

 

      
    

               
 

Architectural Optimization of Decomposition 

Algorithms for Wireless Communication Systems
 

Ali Irturk†, Bridget Benson†, Nikolay Laptev‡, Ryan Kastner† 

Abstract— Matrix decomposition is required in various 
algorithms used in wireless communication applications. FPGAs 
strike a balance between ASICs and DSPs, as they have the 
programmability of software with performance capacity 
approaching that of a custom hardware implementation. 
However, FPGA architectures require designers to make a 
countless number of system, architectural and logic design 
decisions. By performing design space exploration, a designer can 
find the optimal device for a specific application, however very 
few tools exist which can accomplish this task. This paper 
presents automatic generation and optimization of decomposition 
methods using a core generator tool, GUSTO, that we developed 
to enable easy design space exploration with different 
parameterization options such as resource allocation, bit widths 
of the data, number of functional units and organization of 
controllers and interconnects. We present a detailed study of area 
and throughput tradeoffs of matrix decomposition architectures 
using different parameterizations. 

I. INTRODUCTION 

Matrix decompositions are essential computations for 
simplifying and reducing the computational complexity of 
various algorithms used in wireless communication. For 
example, decomposition methods are used for simplifying 
matrix inversion which are used in MIMO-OFDM systems’ 
minimum mean square error algorithms for pre-coding in 
spatial multiplexing [1], equalization algorithms to remove the 
effect of the channel on the signal [2] and detection-estimation 
algorithms in space-time coding [3]. 

The choice of computational platform plays a significant 
role in the overall design and implementation of wireless 
communication systems. A designer should determine an 
appropriate platform between a wide range of hardware: 
Application Specific Integrated Circuits (ASICs) and software: 
Digital Signal Processors (DSPs). ASICs offer exceptional 
performance results at the price of long time to market and 
high non-recurring engineering (NRE) costs. On the other 
hand, DSPs ease the development of these architectures and 
offer a short time to market, however they lack the 
performance capacity for high throughput applications. Field 
Programmable Gate Arrays (FPGAs) strike a balance between 
ASICs and DSPs, as they have the programmability of 
software with performance capacity approaching that of a 
custom hardware implementation. FPGAs present designers 
with substantially more parallelism allowing more efficient 
application implementation. FPGAs are becoming an 

increasingly common platform for wireless communication [4
6] as they provide powerful computational architectural 
features such as vast amounts of programmable logic 
elements, embedded multipliers, shift register LUTs (SRLs), 
Block RAMs (BRAMs), DSP blocks and Digital Clock 
Managers (DCMs). 

When building an FPGA architecture, designers need to 
make a countless number of system, architectural and logic 
design decisions with regards to resource allocation, bit widths 
of the data, number of functional units and organization of 
controllers and interconnects. The main goal is to deliver the 
smallest, fastest device for the application that uses the least 
power. However achieving all of these goals in one design is 
at times contradictory since designing a faster device also 
frequently results in a larger, more power hungry device. By 
performing design space exploration, a designer can find the 
optimal device for a specific application, however very few 
tools exist which can accomplish this task. To ease the design 
space exploration of different matrix computations, we design 
an easy to use tool, GUSTO (“General architecture design 
Utility and Synthesis Tool for Optimization”)[7, 8]. GUSTO 
takes 5 inputs, namely the operation type (QR, LU, Cholesky 
decompositions), the matrix dimension, the type and number 
of arithmetic resources, data representation (the integer and 
fractional bit width) and modes of operation. GUSTO has two 
different modes of operation: Mode 1 and Mode 2. Mode 1 
automatically generates a general purpose architecture and 
Mode 2 optimizes the general purpose architecture creating an 
application specific architecture to improve its area and 
performance results. 

Our major contributions are as follows: 
1) Automatic generation and optimization of different 

decomposition architectures with parameterized inputs: 
resource allocation, bit widths, matrix dimensions, modes 
and methods. 

2) Comparison of different matrix decomposition methods in 
terms of different matrix dimensions, bit widths and 
parallelism.   

3) Thorough study of area and throughput tradeoffs of matrix 
decomposition architectures using different 
parameterizations and a case study: Implementation of 
Adaptive Weight Calculation Core using QRD-RLS 
algorithm. 
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Fig. 1. QR decomposition (QR-MGS) Fig.  2. LU decomposition algorithm is presented in Fig. 3. Cholesky decomposition algorithm is 
algorithm is presented in (a). The resulting (a). The resulting matrices of the decomposition are presented in (a). The resulting matrices of the 
matrices of the decomposition are shown in shown in (b). decomposition are shown in (b). 
(b). 

This paper is organized as follows. Section II introduces 
decomposition methods: QR, LU and Cholesky, which are 
frequently used in wireless communication systems. Section 
III describes our tool to generate matrix decomposition 
architectures and the optimizations performed, namely: static 
architecture generation and resource trimming for 
optimization. Section IV presents our implementation results 
in terms of area, timing and throughput as well as a case study 
that implements Adaptive Weight Calculation and compares 
our results with previously published work. We conclude in 
Section V. 

II.MATRIX DECOMPOSITION METHODS 

Decomposition methods such as QR, LU and Cholesky, 
provide analytic simplicity and computational convenience for 
many different wireless communication algorithms. The 
selection of the decomposition method depends on the 
characteristics of the given matrix. As an example in matrix 
inversion, QR decomposition is used to generate an equivalent 
upper triangular system for non-square matrices. We further 
explain these decomposition methods, their characteristics and 
algorithms, and the resulting matrices in the next subsections 
[9]. Note that for square matrices, n denotes the matrix size 
(i.e. matrix with n = 4 implies a 4 × 4 matrix). For rectangular 
matrices, m and n denote the number of rows and columns in 
the matrix respectively (i.e.  matrix with m = 3, n = 4 denotes 
a 3 × 4 matrix). 

A. QR Decomposition 

and accuracy). If the input matrix, A, is well-conditioned and 
non-singular, the resulting matrices, Q and R, satisfy their 
required matrix characteristics and QRD-MGS results are 
accurate to floating-point machine precision [12]. We 
therefore present the QRD-MGS algorithm in Figure 1(a) and 
describe it below. 

A, Q, R and X are the input, orthogonal, upper triangular and 
intermediate matrices, respectively. The intermediate matrix is 
the updated input matrix throughout the solution steps. 
Matrices with only one index as Ai or Xj represent the columns 
of the matrix and matrices with two indices like Rij represent 
the entry at the intersection of ith row with jth column of the 
matrix where 1 � i,j � n. 

In Figure 1(a) we show that we start every decomposition 
by transferring the input matrix columns, Ai, into the memory 
elements (2). Diagonal entries of the R matrix are the 
Euclidean norm of the intermediate matrix columns which is 
shown as (4). The Q matrix columns are calculated by the 
division of the intermediate matrix columns by the Euclidean 
norm of the intermediate matrix column, which is the diagonal 
element of R (5). Non-diagonal entries of the R matrix are 
computed by projecting the Q matrix columns onto the 
intermediate matrix columns one by one (7) such that after the 
solution of Q2, it is projected onto X3 and X4 to compute R23 
and R24. Lastly, the intermediate matrix columns are updated 
by (8). 

B. LU Decomposition 
 and its leading principal ,ൈԹܣ א�� is a square matrix, If A 

QR decomposition 
decomposes a matrix into 
matrix. Given � ܣ א� is an elementary operation, which submatrices are all nonsingular, det(A(1:k, 1:k)) � 0 for k = 1 : 

anԹൈ with rank(A) א ܳ� where A = Q×R 

n-1, matrix A can be decomposed into unique lower triangular  orthogonal and a triangular 
= n,� Թൈ 

QR and upper triangular matrices. LU decomposition of a matrix A 
has is shown as A = L × U, where L and U are the lower and upper decomposition exists as 

orthonormal columns,  QT × Q = Q × QT

is an upper triangular matrix (Figure 1(b)). ൈ Թא� ܴ� = I, Q-1 = QT, and triangular matrices respectively (Figure 2(b)). 
The LU algorithm is shown in Figure 2(a). It writes lower 

methods: and upper triangular matrices onto the A matrix entries. Then There are three different QR decomposition 
Gram-Schmidt orthogonormalization (Classical or Modified), 
Givens Rotations (GR) and Householder Reflections. QRD-
Modified Gram-Schmidt (MGS) is a slightly modified version 
of the QRD-Classical Gram-Schmidt (CGS) algorithm. QRD
MGS is numerically more accurate and stable than QRD-CGS 
and numerically equivalent to the Givens Rotations solution 
[10-12] (the solution that has been the focus of previously 
published hardware implementations because of its stability 

, 

it updates the values of the A matrix column by column ((4) 
and (7)). The final values are computed by the division of each 
column entry by the diagonal entry of that column (9). 

C. Cholesky Decomposition 

 definite 
Cholesky decomposition is another elementary operation, 

which decomposes a symmetric positive �ܣ א�into a unique lower triangular matrix, , ൈԹ �ܩ א matrix, � Թൈ



 

 

   
  

  
     

  
  

   
 

  
 

  
 
 

 
 

 
  

     
   

   

 

  

 
 

   
 

  

 
  

 

 
    

 
  

 
 
 

  
   

   

 

    
 

 
  

 
    

 
 

 
 

  
 

  
 

  

 

  

 
 
 

 
 

 
  

 is positive ൈԹܣ��א�with positive diagonal entries. A matrix 
 where if A isͲݔ� ്  and Թݔ א�� for Ͳݔ்ݔܣdefinite if 

. A positive definite ൌ  then symmetric positive definite ܣ்ܣ
matrix is always nonsingular and its determinant is always 
positive. Cholesky decomposition of a matrix A is shown as 
A = G×GT, where G is a unique lower triangular matrix, 
Cholesky triangle, and GT is the transpose of this lower 
triangular matrix (Figure 3(b)). 

Figure 3(a) shows the Cholesky decomposition algorithm. 
We start decomposition by transferring the input matrix, A, 
into the memory elements. The diagonal entries of lower 
triangular matrix, G, are the square root of the diagonal entries 
of the given matrix (2). We calculate the entries below the 
diagonal entries by dividing the corresponding element of the 
given matrix by the belonging column diagonal element (4). 
The algorithm works column by column and after the 
computation of the first column of the diagonal matrix with 
the given matrix entries, the elements in the next columns are 
updated (7). For example after the computation of G11 by (2), 
G21, G31, G41 by (4), the second column: A22, A32, A42, third 
column: A33, A43, and fourth column: A44 are updated by (7). 

III.	 GUSTO : GENERAL ARCHITECTURE DESIGN UTILITY AND 
SYNTHESIS TOOL FOR OPTIMIZATION 

When implementing decomposition methods in hardware, 
there are different architectural and design decisions that a 
designer needs to make such as choosing the decomposition 
method, matrix dimension, number of bits, number of 
arithmetic resources, and organization of controllers and 
interconnects. Matrix dimension changes with the number of 
antennas that are employed, the number of bits defines the 
precision of the hardware, and the number of arithmetic 
resources affects the area as well as the throughput of the 
design. Design space exploration allows us to set various 
options, such as number of bits and arithmetic resources used, 
in order to find the optimal design for a given application and 
therefore it is a critical step in design process. With an 
increasingly strict time to market, designers need to perform 
design space exploration and do the necessary optimizations to 
the original architecture in a short amount of time. The design 
of a tool which provides automatic generation and 
optimization of these architectures is therefore crucial to the 
success of an efficient design.   

Therefore, we design a tool, GUSTO “General architecture 
design Utility and Synthesis Tool for Optimization,” which 
automatically generates and optimizes hardware for matrix 
computations. GUSTO offers different inputs to the user such 
as decomposition method, matrix dimension, number of 
arithmetic resources, number of integer and fractional bit 
width, and two modes of operation (Mode 1 or Mode 2) as 
shown in Figure 4. This automatic generation and optimization 
provides fast results to the designer, so the designer can 
consider different architectural implementations and choose 
the most suitable one for his needs. GUSTO creates 
architectures which use fixed-point arithmetic and provides an 
error analysis after the resource allocation step to find an 
appropriate fixed point representation with similar accuracy to 

Fig. 4. Flow and modes of GUSTO. 

that of a floating point implementation. The error analysis step 
uses the user defined input data, and performs decomposition 
with variable bit-length fixed-point and floating-point (single 
or double precision) arithmetic, and presents error in terms of 
mean error, standard deviation of error and mean percentage 
of error. Error is defined as the difference between fixed-point 
and floating-point arithmetic results. 

Mode 1 of GUSTO creates a general purpose architecture 
using resource constrained list scheduling. The benefit of a 
general purpose architecture is that it is capable of performing 
all three decomposition methods with a selection input 
provided to the user. A general purpose architecture is useful 
if the determination of which decomposition method to use is 
not possible beforehand. However general purpose 
architectures come at a price of larger area, lower throughput 
and higher power consumption. Since general purpose 
architectures do not lead to high performance results, it is best 
to create an application specific architecture for a specific 
decomposition method by optimizing the general purpose 
architecture.     

Mode 2 of GUSTO creates an application specific 
architecture for a specific decomposition method. The 
architecture becomes scheduled, static and optimized while 
maintaining the correctness of solution. Application specific 
architecture implementation is performed in two steps: 
generating a scheduled and static architecture, and trimming 
the unused resources from the architecture for further 
optimization. After generation of the general purpose 
architecture, this architecture is simulated by Mode 2 of 
GUSTO to gather information for the assignments done to the 
memory elements and arithmetic units during the scheduling 
process. This information is used in the application specific 
architecture to cancel the scheduling process and dynamic 
memory assignments making the architecture scheduled and 
static which provides significant area and timing savings. 
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Fig. 5. Trimming feature of GUSTO.  

GUSTO also performs optimization by trimming the unused 
resources and interconnects to improve its area results as well 
as throughput. GUSTO defines the connections between the 
resources with optimization matrices, simulates the 
architecture to fill up the optimization matrices with 1s and 0s  
denoting used and unused resources respectively and trims the 
unused resources away. The trimming process is shown with 
an example in Figure 5 (a,b,c and d). Assume that there are 
three arithmetic units (2 inputs/1 output) and a memory unit (2 
inputs/2 outputs) as shown in (a). The possible inputs to 
arithmetic unit B are shown in (b). An optimization matrix for 
arithmetic unit B is created by GUSTO and this matrix is filled 
up with 1s and 0s through simulation (c). Even though Out_A, 
Out_B, Out_C, Out_Mem_1 and Out_Mem_2 are all inputs to 
the arithmetic unit B, not all may be used during the 
decomposition process. As can be seen from the matrix in (c), 
Out_A, Out_C and Out_Mem_2 are never being used as inputs 
to the In_B_1 and Out_B, Out_Mem_1 are never being used as 
inputs to In_B_2. GUSTO performs optimization by trimming 
away these unused interconnects (d). Also it is important to 
note that if an optimization matrix of an arithmetic unit is 
filled by 0s, the arithmetic unit can be removed with its 
interconnects.    

6000 
QR 
LU 

IV. RESULTS 
This section presents the effectiveness of our tool, GUSTO, 

by showing its different design space exploration examples. 
We divided this section into two parts: inflection point 
analysis and architectural design alternatives analysis. 
Inflection point analysis presents timing results of 
decomposition methods in terms of clock cycles for different 
executions (sequential and parallel), matrix sizes and bit-
widths. Inflection point analysis answers at what matrix size 
does an inflection point occur and how does varying bit width 
and degree of parallelism change the inflection point for a 
specific decomposition method? Architectural design 
alternatives analysis presents area and performance results of 
different decomposition architectures using different 
parameterizations. Area and performance results are presented 
in terms of slices and throughput respectively. This analysis 
also shows how GUSTO finds the optimal hardware by 
showing Mode 1 and Mode 2 results of different 
decomposition methods. Throughput is calculated by dividing 
the maximum clock frequency (MHz) by the number of clock 
cycles to perform matrix decomposition. Our designs are 
written in Verilog and synthesized using Xilinx ISE 9.2. 
Resource utilization and design frequency are post place and 
route values obtained using a Virtex 4 SX35 FPGA. 
  Inflection Point Analysis: We present three different 
analyses for comparison of decomposition methods in Figure 6 
(a), (b) and (c). The total number of operations for different 
decomposition methods is shown in Figure 6 (a) in log 
domain. We compare sequential and parallel execution of 
different decomposition methods for different bit widths (16, 
32 and 64 bits) and matrix sizes in Figure 6 (b) and (c) 
respectively.  QR, LU and Cholesky decomposition methods 
are shown with square, spade and triangle respectively. 16, 32 
and 64 bits of bit widths are shown with smaller dashed, 
dashed and solid lines respectively. We show inflection points 
between these decomposition methods by balloons. 
 The total number of operations (a) shows that QR 
decomposition requires significantly higher number of 
operations compared to LU and Cholesky decompositions. LU 
and Cholesky decompositions require a close number of 
operations where LU decomposition requires more operations 
than Cholesky decomposition after 4 ൈ 4 matrices. The 
sequential execution of decomposition methods (b) show that 
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Fig. 6. Different design space exploration: inflection point analyses, of our tool. (a), (b) and (c) show the total number of operations of decomposition methods in 
log domain, the comparison between different decomposition methods using sequential execution and parallel execution respectively.   
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Fig. 7. The comparison of the general purpose architecture (Mode 1 results 
of our tool) and application specific architectures (Mode 2 results of our 
tool) in terms of slices (area) and throughput (performance). 

QR decomposition requires more clock cycles than the other 
decomposition methods for all bit widths. Execution of 16 bit 
QR decomposition requires the same number of clock cycles 
with the 64 bit LU decomposition. Cholesky decomposition 
requires more clock cycles than LU decomposition because of 
its square root operation; however the difference between LU 
and Cholesky becomes smaller for smaller number of bit 
widths. The parallel execution of decomposition methods (c) 
shows that LU decomposition performs better than other 
methods. 64 bit implementation of LU decomposition 
performs almost the same as the 32 bit Cholesky 
decomposition and also the 32 bit LU decomposition performs 
almost the same as the 16 bit implementation of Cholesky 
decomposition. 

Architectural Design Alternatives:�We present two different 
analyses for comparison of decomposition methods in terms of 
architectural design alternatives in Figure 7 and Figure 8 for 4ൈ 4 matrices. The general purpose architecture (Mode 1 
results of our tool) and application specific architectures 
(Mode 2 results of our tool) are compared in Figure 7 in terms 
of slices (area) and throughput (performance). We compare 
area and throughput results of different bit width 
implementations of decomposition methods in Figure 8. 

The general purpose architecture is able to perform different 

throughput for all bit widths. Also, it is important to see that 
there is
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Fig. 8. Area and throughput tradeoffs for different bit width of data: 19, 26 
and 32 bits. A user can determine the length of the data by the error analysis 
part of our tool. High precision can be obtained by using more number of bits 
as data width which comes at the price of larger area and lower throughput. 

 ଵdecomposition methods with a selection input. However, it isݔ��

inflection point between QR and Choleskyan
decompositions at 25 bits in terms of area where Cholesky 
decomposition requires more area for bit widths larger than 25 
bits. On the other hand, Cholesky decomposition provides 
higher throughput compared to QR decomposition for all bit 
widths due to the fact that Cholesky decomposition requires 
less clock cycles. 

In the next subsection, we present a case study: 
Implementation of Adaptive Weight Calculation Core, using 
the QR decomposition core generated by GUSTO. 

A. Case Study: Implementation of Adaptive Weight 
Calculation Core using QRD-RLS Algorithm 
Adaptive weight calculation (AWC) is required in many 

wireless communication applications including adaptive 
beamforming, equalization, predistortion and multiple-input 
multiple-output (MIMO) systems [13]. These applications 
involve solving systems of equations in many cases which can 

ଵଶ ଵ ܽ ܽଶଶ
be seen as: ଵݔଵݔ ����������� ڭ��  ܽଶ

ଶଶ 

 ݁ଵ ݁ଶଵଵଶܽଵܽܽ���ڭ�� �ݔݔ ଵ   ݔݔݔ���������������� ڭ��

ൌ ܾൌ ܾൌ ܾଶ  ݁ 

ڮڮ ܽ ܽଶݔ���������ڭ�����������ڭ��  ڮ ܽଵ
application specific architecture for a specific decomposition where A is the observations matrix which is assumed to be 

ଶpossible to provide better area and throughput results by 
optimizing the general purpose architecture and creating an 

method. As can be seen in Figure 7, by creating an application noisy, b is a known training sequence and x is the vector to be 
described ܾ݁ൌ ݔܣcomputed. This 

resources (using Mode 2 of our tool), we can decrease the area notation
is

by 83%, 94% and 86% for QR, LU and Cholesky equations as there are unknowns, i.e. n = m, this system of 
decompositions respectively. Optimizing the architecture also equations has a unique solution, x = Aí1b. However, high 
provides higher clock frequencies and leads 16%, 68% and sampling rate communication applications are often over-

specific architecture which uses the optimal number of more compactly in matrix 
. If there is the same number ofas 

14% increase in throughput for QR, LU and Cholesky 
decompositions respectively. 

We also present area and throughput results for different bit 

determined, i.e. n > m. Introducing the least squares approach 
helps ݁σ݊݉݅ to 

ଶsolve the problem by minimizing the residuals: 
. 

widths of data: 19, 26 and 32 bits in Figure 8. The user can 
determine the length of the data by the error analysis part of 
our tool. High precision can be obtained by using a larger 
number of bits but this comes at the price of larger area and 
lower throughput. As can be seen in Figure 8, LU 
decomposition provides the smallest area and highest 

In general, the least squares approach, e.g. Least Mean 
Squares (LMS), Normalized LMS (NLMS) and Recursive 
Least Squares (RLS), is used to find an approximate solution 
to these kinds of system of equations. Among them, RLS is 
most commonly used due to its good numerical properties and 
fast convergence rate [14]. However, it requires matrix 



 

 

  
  

  
 

 
 

 

  

 
 

 
  

   
  

 
 

 

   
  

 

 
  

  
 
 

 
 

  
 

  

 
  

 
 

 
 

 
  

   
 

 
 

   
   

 
  

   

    
  

  
 

  
   

  
 

    
  

 
  

     
 

  
 

 
    

 
   

   
  

  
 

   
 

   
 

 
   

 
   

   
   
 

 
 

  
  

  
   

  
  

 
   

  

 
 

   
   

 
 

 
 

  

  
 

    
   
 

 
 

 
    
  

inversion which is not efficient in terms of precision and 
hardware implementation. Applying QR decomposition to 
perform adaptive weight calculation based on RLS is a better 
method and leads to more accurate results and efficient 
architectures. Therefore, we use our tool, GUSTO, to 
implement a QR decomposition core for use in adaptive 
weight calculation. The resulting upper triangular matrix, R, 
which is the solution of QR decomposition, is used to find 
coefficients of the system by back-substitution after 
converting b into another column matrix, c, such that Rx = c. 
Comparison: We provide comparisons in Table I using 
different applications which use decomposition methods. 
These related works are hard to compare with each other since 
two of them are matrix inversion architectures [15, 16], one is 
a beamformer design [17], and ours is an adaptive weight 
calculation design. We also use fixed point arithmetic and 
fully utilize FPGA resources like DSP48 multipliers instead of 
Look-up Tables (LUTs). Therefore our intention is not to 
directly compare these different designs, but to give an idea 
about our area and throughput results compared to other 
implementations that use decomposition methods. Edman et 
al. proposed a linear array architecture for inversion of 
complex valued matrices [15]. Karkooti et al. presented an 
implementation of matrix inversion using the QRD-RLS 
algorithm along with square GR and folded systolic arrays 
[16]. Dick et al. considered the architecture, design flow and 
the verification process of a real-time beamformer [17] which 
is most similar to our work since area and timing results are 
presented for QR decomposition and back substitution 
architectures (clock frequency is assumed as 250 MHz). The 
advantage of our work compared to the related work is that we 
give the ability to the designer to study the tradeoffs between 
architectures with different design parameters to find an 
optimal design. 

V.CONCLUSION 

This paper presents automatic generation and optimization 
of decomposition methods using a core generator tool, 
GUSTO, which enables easy design space exploration. 
GUSTO offers different parameterization options such as 
resource allocation, bit widths of the data, number of 

TABLE I 

COMPARISONS BETWEEN OUR RESULTS AND PREVIOUSLY PUBLISHED 


PAPERS. NR DENOTES NOT REPORTED. 

Ref[15] Ref[16] Ref[17] GUSTO 

Application Matrix 
Inversion 

Matrix 
Inversion 

Beamformer AWC 

Method QR 
4 ൈ 4 

QR 
4 ൈ 4 

QR 
3 ൈ 3 5 ൈ 5 

QR 
4 ൈ 4Matrix Size 

Bit width 12 20 18 20 
Data type fixed floating NR fixed 

Device type 
(Virtex) 

II IV IV IV 

Slices 4400 9117 3530 2558 
DSP48s NR 22 13 12 
BRAMs NR 9 6 1 

Throughput 
(106×s-1) 

0.28 0.12 0.27 0.11 0.13 

functional units and organization of controllers and 
interconnects. Therefore, a designer can easily study the area 
and throughput tradeoffs of different architectures. GUSTO’s 
optimized application specific architectures decrease the  area 
by 83%, 94% and 86% and increase the throughput 16%, 68% 
and 14% compared to the general purpose architecture for QR, 
LU and Cholesky decompositions respectively. In this paper, 
we concentrate on small matrix sizes, and employ fixed point 
arithmetic in our architectures. Our future work will include 
solutions for decomposition of larger matrix sizes and usage of 
floating point arithmetic. 
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