

Architectural Optimization of Decomposition

Algorithms for Wireless Communication Systems

Ali Irturk†, Bridget Benson†, Nikolay Laptev‡, Ryan Kastner†

Abstract— Matrix decomposition is required in various
algorithms used in wireless communication applications. FPGAs
strike a balance between ASICs and DSPs, as they have the
programmability of software with performance capacity
approaching that of a custom hardware implementation.
However, FPGA architectures require designers to make a
countless number of system, architectural and logic design
decisions. By performing design space exploration, a designer can
find the optimal device for a specific application, however very
few tools exist which can accomplish this task. This paper
presents automatic generation and optimization of decomposition
methods using a core generator tool, GUSTO, that we developed
to enable easy design space exploration with different
parameterization options such as resource allocation, bit widths
of the data, number of functional units and organization of
controllers and interconnects. We present a detailed study of area
and throughput tradeoffs of matrix decomposition architectures
using different parameterizations.

I. INTRODUCTION

Matrix decompositions are essential computations for
simplifying and reducing the computational complexity of
various algorithms used in wireless communication. For
example, decomposition methods are used for simplifying
matrix inversion which are used in MIMO-OFDM systems’
minimum mean square error algorithms for pre-coding in
spatial multiplexing [1], equalization algorithms to remove the
effect of the channel on the signal [2] and detection-estimation
algorithms in space-time coding [3].

The choice of computational platform plays a significant
role in the overall design and implementation of wireless
communication systems. A designer should determine an
appropriate platform between a wide range of hardware:
Application Specific Integrated Circuits (ASICs) and software:
Digital Signal Processors (DSPs). ASICs offer exceptional
performance results at the price of long time to market and
high non-recurring engineering (NRE) costs. On the other
hand, DSPs ease the development of these architectures and
offer a short time to market, however they lack the
performance capacity for high throughput applications. Field
Programmable Gate Arrays (FPGAs) strike a balance between
ASICs and DSPs, as they have the programmability of
software with performance capacity approaching that of a
custom hardware implementation. FPGAs present designers
with substantially more parallelism allowing more efficient
application implementation. FPGAs are becoming an

increasingly common platform for wireless communication [4
6] as they provide powerful computational architectural
features such as vast amounts of programmable logic
elements, embedded multipliers, shift register LUTs (SRLs),
Block RAMs (BRAMs), DSP blocks and Digital Clock
Managers (DCMs).

When building an FPGA architecture, designers need to
make a countless number of system, architectural and logic
design decisions with regards to resource allocation, bit widths
of the data, number of functional units and organization of
controllers and interconnects. The main goal is to deliver the
smallest, fastest device for the application that uses the least
power. However achieving all of these goals in one design is
at times contradictory since designing a faster device also
frequently results in a larger, more power hungry device. By
performing design space exploration, a designer can find the
optimal device for a specific application, however very few
tools exist which can accomplish this task. To ease the design
space exploration of different matrix computations, we design
an easy to use tool, GUSTO (“General architecture design
Utility and Synthesis Tool for Optimization”)[7, 8]. GUSTO
takes 5 inputs, namely the operation type (QR, LU, Cholesky
decompositions), the matrix dimension, the type and number
of arithmetic resources, data representation (the integer and
fractional bit width) and modes of operation. GUSTO has two
different modes of operation: Mode 1 and Mode 2. Mode 1
automatically generates a general purpose architecture and
Mode 2 optimizes the general purpose architecture creating an
application specific architecture to improve its area and
performance results.

Our major contributions are as follows:
1) Automatic generation and optimization of different

decomposition architectures with parameterized inputs:
resource allocation, bit widths, matrix dimensions, modes
and methods.

2) Comparison of different matrix decomposition methods in
terms of different matrix dimensions, bit widths and
parallelism.

3) Thorough study of area and throughput tradeoffs of matrix
decomposition architectures using different
parameterizations and a case study: Implementation of
Adaptive Weight Calculation Core using QRD-RLS
algorithm.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

«
«
«
«
¬

ª

=

41

31

21

11

Q
Q
Q
Q

Q

«
«
«
«
¬

ª

=

11

0
0
0

R

R

42

32

22

12

Q
Q
Q
Q

22

12

0
0

R
R

43

33

23

13

Q
Q
Q
Q

33

23

13

0
R
R
R

»
»
»
»
¼

º

44

34

24

14

Q
Q
Q
Q

»
»
»
»
¼

º

44

34

24

14

R
R
R
R

«
«
«
«
¬

ª

=

11

0
0
0

U

U

«
«
«
«
¬

ª

=

41

31

21

11

L
L
L
L

L

22

12

0
0

U
U

42

32

22

0

L
L
L

33

23

13

0
U
U
U

43

33

0
0

L
L

»
»
»
»
¼

º

44

34

24

14

U
U
U
U

»
»
»
»
¼

º

44

0
0
0

L

«
«
«
«
¬

ª

=

11

0
0
0
L

LT

«
«
«
«
¬

ª

=

41

31

21

11

L
L
L
L

L

22

21

0
0

L
L
42

32

22

0

L
L
L

33

32

31

0
L
L
L

43

33

0
0

L
L

»
»
»
»
¼

º

44

43

42

41

L
L
L
L

»
»
»
»
¼

º

44

0
0
0

L

Fig. 1. QR decomposition (QR-MGS) Fig. 2. LU decomposition algorithm is presented in Fig. 3. Cholesky decomposition algorithm is
algorithm is presented in (a). The resulting (a). The resulting matrices of the decomposition are presented in (a). The resulting matrices of the
matrices of the decomposition are shown in shown in (b). decomposition are shown in (b).
(b).

This paper is organized as follows. Section II introduces
decomposition methods: QR, LU and Cholesky, which are
frequently used in wireless communication systems. Section
III describes our tool to generate matrix decomposition
architectures and the optimizations performed, namely: static
architecture generation and resource trimming for
optimization. Section IV presents our implementation results
in terms of area, timing and throughput as well as a case study
that implements Adaptive Weight Calculation and compares
our results with previously published work. We conclude in
Section V.

II.MATRIX DECOMPOSITION METHODS

Decomposition methods such as QR, LU and Cholesky,
provide analytic simplicity and computational convenience for
many different wireless communication algorithms. The
selection of the decomposition method depends on the
characteristics of the given matrix. As an example in matrix
inversion, QR decomposition is used to generate an equivalent
upper triangular system for non-square matrices. We further
explain these decomposition methods, their characteristics and
algorithms, and the resulting matrices in the next subsections
[9]. Note that for square matrices, n denotes the matrix size
(i.e. matrix with n = 4 implies a 4 × 4 matrix). For rectangular
matrices, m and n denote the number of rows and columns in
the matrix respectively (i.e. matrix with m = 3, n = 4 denotes
a 3 × 4 matrix).

A. QR Decomposition

and accuracy). If the input matrix, A, is well-conditioned and
non-singular, the resulting matrices, Q and R, satisfy their
required matrix characteristics and QRD-MGS results are
accurate to floating-point machine precision [12]. We
therefore present the QRD-MGS algorithm in Figure 1(a) and
describe it below.

A, Q, R and X are the input, orthogonal, upper triangular and
intermediate matrices, respectively. The intermediate matrix is
the updated input matrix throughout the solution steps.
Matrices with only one index as Ai or Xj represent the columns
of the matrix and matrices with two indices like Rij represent
the entry at the intersection of ith row with jth column of the
matrix where 1 � i,j � n.

In Figure 1(a) we show that we start every decomposition
by transferring the input matrix columns, Ai, into the memory
elements (2). Diagonal entries of the R matrix are the
Euclidean norm of the intermediate matrix columns which is
shown as (4). The Q matrix columns are calculated by the
division of the intermediate matrix columns by the Euclidean
norm of the intermediate matrix column, which is the diagonal
element of R (5). Non-diagonal entries of the R matrix are
computed by projecting the Q matrix columns onto the
intermediate matrix columns one by one (7) such that after the
solution of Q2, it is projected onto X3 and X4 to compute R23
and R24. Lastly, the intermediate matrix columns are updated
by (8).

B. LU Decomposition
 and its leading principal ,ൈԹܣ א�� is a square matrix, If A

QR decomposition
decomposes a matrix into
matrix. Given � ܣ א� is an elementary operation, which submatrices are all nonsingular, det(A(1:k, 1:k)) � 0 for k = 1 :

anԹൈ with rank(A) א ܳ� where A = Q×R

n-1, matrix A can be decomposed into unique lower triangular orthogonal and a triangular
= n,� Թൈ

QR and upper triangular matrices. LU decomposition of a matrix A
has is shown as A = L × U, where L and U are the lower and upper decomposition exists as

orthonormal columns, QT × Q = Q × QT

is an upper triangular matrix (Figure 1(b)). ൈ Թא� ܴ� = I, Q-1 = QT, and triangular matrices respectively (Figure 2(b)).
The LU algorithm is shown in Figure 2(a). It writes lower

methods: and upper triangular matrices onto the A matrix entries. Then There are three different QR decomposition
Gram-Schmidt orthogonormalization (Classical or Modified),
Givens Rotations (GR) and Householder Reflections. QRD-
Modified Gram-Schmidt (MGS) is a slightly modified version
of the QRD-Classical Gram-Schmidt (CGS) algorithm. QRD
MGS is numerically more accurate and stable than QRD-CGS
and numerically equivalent to the Givens Rotations solution
[10-12] (the solution that has been the focus of previously
published hardware implementations because of its stability

,

it updates the values of the A matrix column by column ((4)
and (7)). The final values are computed by the division of each
column entry by the diagonal entry of that column (9).

C. Cholesky Decomposition

 definite
Cholesky decomposition is another elementary operation,

which decomposes a symmetric positive �ܣ א�into a unique lower triangular matrix, , ൈԹ �ܩ א matrix, � Թൈ

 is positive ൈԹܣ��א�with positive diagonal entries. A matrix
 where if A isͲݔ� ് and Թݔ א�� for Ͳݔ்ݔܣdefinite if

. A positive definite ൌ then symmetric positive definite ܣ்ܣ
matrix is always nonsingular and its determinant is always
positive. Cholesky decomposition of a matrix A is shown as
A = G×GT, where G is a unique lower triangular matrix,
Cholesky triangle, and GT is the transpose of this lower
triangular matrix (Figure 3(b)).

Figure 3(a) shows the Cholesky decomposition algorithm.
We start decomposition by transferring the input matrix, A,
into the memory elements. The diagonal entries of lower
triangular matrix, G, are the square root of the diagonal entries
of the given matrix (2). We calculate the entries below the
diagonal entries by dividing the corresponding element of the
given matrix by the belonging column diagonal element (4).
The algorithm works column by column and after the
computation of the first column of the diagonal matrix with
the given matrix entries, the elements in the next columns are
updated (7). For example after the computation of G11 by (2),
G21, G31, G41 by (4), the second column: A22, A32, A42, third
column: A33, A43, and fourth column: A44 are updated by (7).

III.	 GUSTO : GENERAL ARCHITECTURE DESIGN UTILITY AND
SYNTHESIS TOOL FOR OPTIMIZATION

When implementing decomposition methods in hardware,
there are different architectural and design decisions that a
designer needs to make such as choosing the decomposition
method, matrix dimension, number of bits, number of
arithmetic resources, and organization of controllers and
interconnects. Matrix dimension changes with the number of
antennas that are employed, the number of bits defines the
precision of the hardware, and the number of arithmetic
resources affects the area as well as the throughput of the
design. Design space exploration allows us to set various
options, such as number of bits and arithmetic resources used,
in order to find the optimal design for a given application and
therefore it is a critical step in design process. With an
increasingly strict time to market, designers need to perform
design space exploration and do the necessary optimizations to
the original architecture in a short amount of time. The design
of a tool which provides automatic generation and
optimization of these architectures is therefore crucial to the
success of an efficient design.

Therefore, we design a tool, GUSTO “General architecture
design Utility and Synthesis Tool for Optimization,” which
automatically generates and optimizes hardware for matrix
computations. GUSTO offers different inputs to the user such
as decomposition method, matrix dimension, number of
arithmetic resources, number of integer and fractional bit
width, and two modes of operation (Mode 1 or Mode 2) as
shown in Figure 4. This automatic generation and optimization
provides fast results to the designer, so the designer can
consider different architectural implementations and choose
the most suitable one for his needs. GUSTO creates
architectures which use fixed-point arithmetic and provides an
error analysis after the resource allocation step to find an
appropriate fixed point representation with similar accuracy to

Fig. 4. Flow and modes of GUSTO.

that of a floating point implementation. The error analysis step
uses the user defined input data, and performs decomposition
with variable bit-length fixed-point and floating-point (single
or double precision) arithmetic, and presents error in terms of
mean error, standard deviation of error and mean percentage
of error. Error is defined as the difference between fixed-point
and floating-point arithmetic results.

Mode 1 of GUSTO creates a general purpose architecture
using resource constrained list scheduling. The benefit of a
general purpose architecture is that it is capable of performing
all three decomposition methods with a selection input
provided to the user. A general purpose architecture is useful
if the determination of which decomposition method to use is
not possible beforehand. However general purpose
architectures come at a price of larger area, lower throughput
and higher power consumption. Since general purpose
architectures do not lead to high performance results, it is best
to create an application specific architecture for a specific
decomposition method by optimizing the general purpose
architecture.

Mode 2 of GUSTO creates an application specific
architecture for a specific decomposition method. The
architecture becomes scheduled, static and optimized while
maintaining the correctness of solution. Application specific
architecture implementation is performed in two steps:
generating a scheduled and static architecture, and trimming
the unused resources from the architecture for further
optimization. After generation of the general purpose
architecture, this architecture is simulated by Mode 2 of
GUSTO to gather information for the assignments done to the
memory elements and arithmetic units during the scheduling
process. This information is used in the application specific
architecture to cancel the scheduling process and dynamic
memory assignments making the architecture scheduled and
static which provides significant area and timing savings.

1000

10000

Fig. 5. Trimming feature of GUSTO.

GUSTO also performs optimization by trimming the unused
resources and interconnects to improve its area results as well
as throughput. GUSTO defines the connections between the
resources with optimization matrices, simulates the
architecture to fill up the optimization matrices with 1s and 0s
denoting used and unused resources respectively and trims the
unused resources away. The trimming process is shown with
an example in Figure 5 (a,b,c and d). Assume that there are
three arithmetic units (2 inputs/1 output) and a memory unit (2
inputs/2 outputs) as shown in (a). The possible inputs to
arithmetic unit B are shown in (b). An optimization matrix for
arithmetic unit B is created by GUSTO and this matrix is filled
up with 1s and 0s through simulation (c). Even though Out_A,
Out_B, Out_C, Out_Mem_1 and Out_Mem_2 are all inputs to
the arithmetic unit B, not all may be used during the
decomposition process. As can be seen from the matrix in (c),
Out_A, Out_C and Out_Mem_2 are never being used as inputs
to the In_B_1 and Out_B, Out_Mem_1 are never being used as
inputs to In_B_2. GUSTO performs optimization by trimming
away these unused interconnects (d). Also it is important to
note that if an optimization matrix of an arithmetic unit is
filled by 0s, the arithmetic unit can be removed with its
interconnects.

6000
QR
LU

IV. RESULTS
This section presents the effectiveness of our tool, GUSTO,

by showing its different design space exploration examples.
We divided this section into two parts: inflection point
analysis and architectural design alternatives analysis.
Inflection point analysis presents timing results of
decomposition methods in terms of clock cycles for different
executions (sequential and parallel), matrix sizes and bit-
widths. Inflection point analysis answers at what matrix size
does an inflection point occur and how does varying bit width
and degree of parallelism change the inflection point for a
specific decomposition method? Architectural design
alternatives analysis presents area and performance results of
different decomposition architectures using different
parameterizations. Area and performance results are presented
in terms of slices and throughput respectively. This analysis
also shows how GUSTO finds the optimal hardware by
showing Mode 1 and Mode 2 results of different
decomposition methods. Throughput is calculated by dividing
the maximum clock frequency (MHz) by the number of clock
cycles to perform matrix decomposition. Our designs are
written in Verilog and synthesized using Xilinx ISE 9.2.
Resource utilization and design frequency are post place and
route values obtained using a Virtex 4 SX35 FPGA.
 Inflection Point Analysis: We present three different
analyses for comparison of decomposition methods in Figure 6
(a), (b) and (c). The total number of operations for different
decomposition methods is shown in Figure 6 (a) in log
domain. We compare sequential and parallel execution of
different decomposition methods for different bit widths (16,
32 and 64 bits) and matrix sizes in Figure 6 (b) and (c)
respectively. QR, LU and Cholesky decomposition methods
are shown with square, spade and triangle respectively. 16, 32
and 64 bits of bit widths are shown with smaller dashed,
dashed and solid lines respectively. We show inflection points
between these decomposition methods by balloons.
 The total number of operations (a) shows that QR
decomposition requires significantly higher number of
operations compared to LU and Cholesky decompositions. LU
and Cholesky decompositions require a close number of
operations where LU decomposition requires more operations
than Cholesky decomposition after 4 ൈ 4 matrices. The
sequential execution of decomposition methods (b) show that

1400

To
ta

l N
um

be
r

of
 O

pe
ra

ti
on

s 1200 Cholesky 5000

o

f
C

lo
ck

 C
yc

le
s

(s
eq

u
en

ti
al

)

of

 C
lo

ck
 C

yc
le

s (
pa

ra
lle

l)

1000

800

600

400

4000

3000

2000

1000

1
2 2 3 3 4 4 5 5 6 6

Matrix Size
7 7 8 8

0
2 2 3 3 4 4 5 5

Matrix Size
6 6 7 7 8 8

0

200

2 2 3 3 4 4 5 5

Matrix Size
6 6 7 7 8 8

Fig. 6. Different design space exploration: inflection point analyses, of our tool. (a), (b) and (c) show the total number of operations of decomposition methods in
log domain, the comparison between different decomposition methods using sequential execution and parallel execution respectively.

10

100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000
o

f S
lic

es

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Th
ro

ug
hp

ut

Fig. 7. The comparison of the general purpose architecture (Mode 1 results
of our tool) and application specific architectures (Mode 2 results of our
tool) in terms of slices (area) and throughput (performance).

QR decomposition requires more clock cycles than the other
decomposition methods for all bit widths. Execution of 16 bit
QR decomposition requires the same number of clock cycles
with the 64 bit LU decomposition. Cholesky decomposition
requires more clock cycles than LU decomposition because of
its square root operation; however the difference between LU
and Cholesky becomes smaller for smaller number of bit
widths. The parallel execution of decomposition methods (c)
shows that LU decomposition performs better than other
methods. 64 bit implementation of LU decomposition
performs almost the same as the 32 bit Cholesky
decomposition and also the 32 bit LU decomposition performs
almost the same as the 16 bit implementation of Cholesky
decomposition.

Architectural Design Alternatives:�We present two different
analyses for comparison of decomposition methods in terms of
architectural design alternatives in Figure 7 and Figure 8 for 4ൈ 4 matrices. The general purpose architecture (Mode 1
results of our tool) and application specific architectures
(Mode 2 results of our tool) are compared in Figure 7 in terms
of slices (area) and throughput (performance). We compare
area and throughput results of different bit width
implementations of decomposition methods in Figure 8.

The general purpose architecture is able to perform different

throughput for all bit widths. Also, it is important to see that
there is

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

19 bits 26 bits 32 bits

Fig. 8. Area and throughput tradeoffs for different bit width of data: 19, 26
and 32 bits. A user can determine the length of the data by the error analysis
part of our tool. High precision can be obtained by using more number of bits
as data width which comes at the price of larger area and lower throughput.

 ଵdecomposition methods with a selection input. However, it isݔ��

inflection point between QR and Choleskyan
decompositions at 25 bits in terms of area where Cholesky
decomposition requires more area for bit widths larger than 25
bits. On the other hand, Cholesky decomposition provides
higher throughput compared to QR decomposition for all bit
widths due to the fact that Cholesky decomposition requires
less clock cycles.

In the next subsection, we present a case study:
Implementation of Adaptive Weight Calculation Core, using
the QR decomposition core generated by GUSTO.

A. Case Study: Implementation of Adaptive Weight
Calculation Core using QRD-RLS Algorithm
Adaptive weight calculation (AWC) is required in many

wireless communication applications including adaptive
beamforming, equalization, predistortion and multiple-input
multiple-output (MIMO) systems [13]. These applications
involve solving systems of equations in many cases which can

ଵଶ ଵ ܽ ܽଶଶ
be seen as: ଵݔଵݔ ����������� ڭ�� ܽଶ

ଶଶ

 ݁ଵ ݁ଶଵଵଶܽଵܽܽ���ڭ�� �ݔݔ ଵ ݔݔݔ���������������� ڭ��

ൌ ܾൌ ܾൌ ܾଶ ݁

ڮڮ ܽ ܽଶݔ���������ڭ�����������ڭ�� ڮ ܽଵ
application specific architecture for a specific decomposition where A is the observations matrix which is assumed to be

ଶpossible to provide better area and throughput results by
optimizing the general purpose architecture and creating an

method. As can be seen in Figure 7, by creating an application noisy, b is a known training sequence and x is the vector to be
described ܾ݁ൌ ݔܣcomputed. This

resources (using Mode 2 of our tool), we can decrease the area notation
is

by 83%, 94% and 86% for QR, LU and Cholesky equations as there are unknowns, i.e. n = m, this system of
decompositions respectively. Optimizing the architecture also equations has a unique solution, x = Aí1b. However, high
provides higher clock frequencies and leads 16%, 68% and sampling rate communication applications are often over-

specific architecture which uses the optimal number of more compactly in matrix
. If there is the same number ofas

14% increase in throughput for QR, LU and Cholesky
decompositions respectively.

We also present area and throughput results for different bit

determined, i.e. n > m. Introducing the least squares approach
helps ݁σ݊݉݅ to

ଶsolve the problem by minimizing the residuals:
.

widths of data: 19, 26 and 32 bits in Figure 8. The user can
determine the length of the data by the error analysis part of
our tool. High precision can be obtained by using a larger
number of bits but this comes at the price of larger area and
lower throughput. As can be seen in Figure 8, LU
decomposition provides the smallest area and highest

In general, the least squares approach, e.g. Least Mean
Squares (LMS), Normalized LMS (NLMS) and Recursive
Least Squares (RLS), is used to find an approximate solution
to these kinds of system of equations. Among them, RLS is
most commonly used due to its good numerical properties and
fast convergence rate [14]. However, it requires matrix

inversion which is not efficient in terms of precision and
hardware implementation. Applying QR decomposition to
perform adaptive weight calculation based on RLS is a better
method and leads to more accurate results and efficient
architectures. Therefore, we use our tool, GUSTO, to
implement a QR decomposition core for use in adaptive
weight calculation. The resulting upper triangular matrix, R,
which is the solution of QR decomposition, is used to find
coefficients of the system by back-substitution after
converting b into another column matrix, c, such that Rx = c.
Comparison: We provide comparisons in Table I using
different applications which use decomposition methods.
These related works are hard to compare with each other since
two of them are matrix inversion architectures [15, 16], one is
a beamformer design [17], and ours is an adaptive weight
calculation design. We also use fixed point arithmetic and
fully utilize FPGA resources like DSP48 multipliers instead of
Look-up Tables (LUTs). Therefore our intention is not to
directly compare these different designs, but to give an idea
about our area and throughput results compared to other
implementations that use decomposition methods. Edman et
al. proposed a linear array architecture for inversion of
complex valued matrices [15]. Karkooti et al. presented an
implementation of matrix inversion using the QRD-RLS
algorithm along with square GR and folded systolic arrays
[16]. Dick et al. considered the architecture, design flow and
the verification process of a real-time beamformer [17] which
is most similar to our work since area and timing results are
presented for QR decomposition and back substitution
architectures (clock frequency is assumed as 250 MHz). The
advantage of our work compared to the related work is that we
give the ability to the designer to study the tradeoffs between
architectures with different design parameters to find an
optimal design.

V.CONCLUSION

This paper presents automatic generation and optimization
of decomposition methods using a core generator tool,
GUSTO, which enables easy design space exploration.
GUSTO offers different parameterization options such as
resource allocation, bit widths of the data, number of

TABLE I

COMPARISONS BETWEEN OUR RESULTS AND PREVIOUSLY PUBLISHED

PAPERS. NR DENOTES NOT REPORTED.

Ref[15] Ref[16] Ref[17] GUSTO

Application Matrix
Inversion

Matrix
Inversion

Beamformer AWC

Method QR
4 ൈ 4

QR
4 ൈ 4

QR
3 ൈ 3 5 ൈ 5

QR
4 ൈ 4Matrix Size

Bit width 12 20 18 20
Data type fixed floating NR fixed

Device type
(Virtex)

II IV IV IV

Slices 4400 9117 3530 2558
DSP48s NR 22 13 12
BRAMs NR 9 6 1

Throughput
(106×s-1)

0.28 0.12 0.27 0.11 0.13

functional units and organization of controllers and
interconnects. Therefore, a designer can easily study the area
and throughput tradeoffs of different architectures. GUSTO’s
optimized application specific architectures decrease the area
by 83%, 94% and 86% and increase the throughput 16%, 68%
and 14% compared to the general purpose architecture for QR,
LU and Cholesky decompositions respectively. In this paper,
we concentrate on small matrix sizes, and employ fixed point
arithmetic in our architectures. Our future work will include
solutions for decomposition of larger matrix sizes and usage of
floating point arithmetic.

REFERENCES

[1]	 K. Kusume, M. Joham, W. Utschick, G. Bauch, “Efficient Tomlinson-
Harashima precoding for spatial multiplexing on flat MIMO
channel,”IEEE International Conference on Communications, Volume
3, 16-20 May 2005 Page(s):2021 - 2025 Vol. 3.

[2]	 L. Zhou, L. Qiu, J. Zhu, “A novel adaptive equalization algorithm for
MIMO communication system,” Vehicular Technology Conference,
Volume 4, 25-28 Sept., 2005 Page(s):2408 – 2412.

[3]	 C. Hangjun, D. Xinmin, A. Haimovich, “Layered turbo space-time
coded MIMO-OFDM systems for time varying channels,”Global
Telecommunications Conference, IEEE Volume 4, 1-5 Dec. 2003
Page(s):1831 - 1836 vol.4.

[4]	 Y. Meng, A.P.Brown, R. A.Iltis, T. Sherwood, H. Lee, R.Kastner, "MP
core: algorithm and design techniques for efficient channel estimation in
wireless applications," Design Automation Conference Proceedings,
42nd , vol., no., pp. 297-302, 13-17 June 2005.

[5]	 R. A. Iltis, S. Mirzaei, R. Kastner, R. E. Cagley, B. T. Weals, "Carrier
Offset and Channel Estimation for Cooperative MIMO Sensor
Networks," Global Telecommunications Conference, 2006.
GLOBECOM '06. IEEE , vol., no., pp.1-5, Nov. 2006.

[6]	 R.E. Cagley, B. T. Weals, S. A. McNally, R. A. Iltis, S.Mirzaei, R.
Kastner, "Implementation of the Alamouti OSTBC to a Distributed Set
of Single-Antenna Wireless Nodes," Wireless Communications and
Networking Conference, 2007. WCNC 2007. IEEE, vol., no., pp.577
581, 11-15 March 2007.

[7]	 A. Irturk, B. Benson, S. Mirzaei and R. Kastner, “An FPGA Design
Space Exploration Tool for Matrix Inversion Architectures,” In
Proceedings of IEEE Symposium on Application Specific Processors
(SASP) 2008.

[8]	 A. Irturk, B. Benson, and R. Kastner, “Automatic Generation of
Decomposition based Matrix Inversion Architectures,” In Proceedings
of International Conference on Field-Programmable Technology
(ICFPT) 2008.

[9]	 G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd ed. Baltimore, MD:
John Hopkins University Press.

[10]	 A. BjĘrck, C. Paige, “Loss and recapture of orthogonality in the
modified Gram-Schmidt algorithm,” SIAM J. Matrix Anal. Appl., vol. 13
(1), pp 176-190, 1992.

[11]	 A. BjĘrck, “Numerics of Gram-Schmidt orthogonalization,” Linear
Algebra and Its Applications, vol. 198, pp. 297-316, 1994.

[12]	 C. K. Singh, S.H. Prasad, P.T. Balsara, “VLSI Architecture for Matrix
Inversion using Modified Gram-Schmidt based QR Decomposition”,
20th International Conference on VLSI Design. (2007) 836 – 841.

[13]	 Simon Haykin, Adaptive Filter Theory, Prentice Hall, Fourth Edition.
[14]	 J. Ma, K.K. Parhi, E.F. Deprettere, “Annihilation-reordering lookahead

pipelined CORDIC-based RLS adaptive filters and their application to
adaptive beamforming,” IEEE Transactions on Signal Processing, 2000.

[15]	 F. Edman, V. Öwall, “A Scalable Pipelined Complex Valued Matrix
Inversion Architecture,” IEEE International Symposium on Circuits and
Systems. (2005) 4489 – 4492.

[16]	 M. Karkooti, J.R. Cavallaro, C. Dick, “FPGA Implementation of Matrix
Inversion Using QRD-RLS Algorithm,” Thirty-Ninth Asilomar
Conference on Signals, Systems and Computers (2005) 1625 – 162.

[17]	 C. Dick, F. Harris, M. Pajic, D. Vuletic, “Real-Time QRD-Based
Beamforming on an FPGA Platform,” Fortieth Asilomar Conference on
Signals, Systems and Computers, 2006. ACSSC '06.

