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Projection of diffraction patterns for use in cold-neutral-atom trapping 
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Scalar diffraction theory is combined with beam-propagation techniques to investigate the projection of 
near-field diffraction patterns to spatial locations away from the aperture for use in optically trapping cold neutral 
alkali-metal atoms. Calculations show that intensity distributions with localized bright and dark spots usually 
found within a millimeter of the diffracting aperture can be projected to a region free from optical components 
such as a cloud of cold atoms within a vacuum chamber. Calculations also predict that the critical properties of the 
optical dipole atom traps are not only maintained for the projected intensity patterns but also can be manipulated 
and improved by adjustment of the optical components outside the vacuum chamber. 
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I. INTRODUCTION 

When an atom is exposed to the oscillating electric field 
of laser light, the light field can exert an optical dipole force 
on the atom. The first experimental observation of the optical 
dipole force was achieved in 1978 by Bjorkholm et al. [1]. 
Since that time, several fields of study have developed which 
exploit the optical dipole force on cold atoms and molecules. 
One application of the optical dipole force is to confine and 
trap cold neutral atoms within spatially varying light field 
distributions [2]. If the frequency of the laser light is less 
than the resonant frequency of the atom, the dipole potential 
energy is a minimum for localized high-intensity fields, and 
a red-detuned atomic trap (RDT) is created. Conversely, if 
the frequency of the laser light is greater than the resonant 
frequency of the atom, the dipole potential energy is a 
minimum for localized low-intensity fields, and a blue-detuned 
atomic trap (BDT) is created [3]. The difference between the 
various pursuits within the field of trapping cold neutral atoms 
is determined by the optical methods employed to create laser 
light fields with localized maxima or minima. Various methods 
to create localized high- or low-intensity fields have included 
the focusing of a single laser beam [4] to create a single 
trap at the focal spot; using the periodic interference pattern 
of counterpropagating beams to create one-dimensional [5], 
two-dimensional [6], and three-dimensional [7] arrays of 
optical traps; using axicons [8] or Laguerre-Gaussian beams 
[9] to create localized dark regions; using evanescent-wave 
traps [10]; using the interference of different evanescent waves 
outside of a waveguide from different propagation modes 
within the waveguide to create one- and two-dimensional 
arrays of optical traps [11]. 

Another method of recent interest for creating light fields 
with localized maxima and minima for trapping atoms is 
to use the diffracted light in and around spatially limiting 
apertures [12–15]. Klimov and Letokhov first theoretically 
investigated trapping atoms in light distributions, formed by 
interference of incident and scattered light, located before and 
within diffracting apertures with dimensions smaller than the 
wavelength of light [12]. In our earlier work, we investigated 
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diffracted light distributions beyond a circular aperture with 
dimensions larger than the wavelength of light using Hertz 
vector diffraction theory to create either RDTs or BDTs, 
and we investigated their associated trapping properties [13]. 
Similar calculations were performed by Bandi et al. using 
Rayleigh-Sommerfeld diffraction theory [14]. Chen and Yin 
further theoretically improved the properties of trap sites 
created by diffracted laser light by use of a binary phase plate 
in addition to the diffracting aperture [15]. 

Using diffracted laser light for the trapping of cold atoms 
allows for an experimental setup with (1) a fairly simple 
optical setup comprising an unfocused, or loosely focused, 
laser beam and a diffracting aperture or mask and (2) the 
ability to use the same optical setup for both RDTs and BDTs 
by changing only the detuning of the laser. However, there are 
two issues which make experimental implementation of using 
diffracted laser light to create red-detuned and blue-detuned 
optical dipole traps challenging. First, the location of the 
diffraction patterns is very close to the diffracting aperture. 
Experimentally, this would mean that the diffracting aperture 
would have to be placed within the vacuum chamber so 
that cold atoms could be loaded into the diffraction pattern 
locations. The diffracting aperture would need to be included 
with the design and construction of the vacuum chamber and 
the optical system for the chosen atom cooling technique. For 
example, one commonly used technique is a magneto-optical 
trap (MOT). Experimentally, adjustment or replacement of 
the diffracting aperture or mask would require a significantly 
time-consuming process of venting and disassembly of the 
vacuum chamber, adjustment and/or replacement, cleaning the 
vacuum chamber, baking the vacuum chamber, and waiting for 
it to reach the ultra-high vacuum (UHV) level required for 
atomic trapping. The second main experimental challenge 
for implementation of diffraction-based atom trapping is the 
fact that the diffraction pattern just beyond the aperture (and 
consequently the trap size, shape, trap frequencies, etc.) is a 
fixed function of the chosen aperture. Adjustment of the trap 
properties would require the replacement of the diffracting 
aperture or mask and all of the complexities involved in 
doing so. 

In this article, we present an optical method, a mathematical 
model, and computational results for projecting the diffraction 
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pattern located just beyond a diffracting aperture to another 
location away from optical components, that is, inside a MOT 
cloud of cold atoms inside a UHV chamber. This method 
eliminates the two experimental challenges of using diffracted 
light to trap atoms. First, by projecting the pattern away from 
the diffracting aperture, the need to place the aperture inside 
the vacuum chamber is eliminated, and all optical components 
would be located outside the chamber, where they can be easily 
aligned, adjusted, and/or replaced. Second, it is demonstrated 
here that adjustment of the aperture-to-lens distance allows 
for control and adjustment of the size and depth of the optical 
traps for a fixed diffracting aperture. If a different aperture is 
desired, exchanging it is a quick and straightforward process, 
as it is located outside the vacuum chamber. The method 
presented here is only for the projection of a single aperture 
yielding a single RDT or BDT site within the MOT cloud. 
However, the method is extendable for the projection of a 
more complex diffracting mask of a one- or two-dimensional 
array of apertures yielding a projected array of trap 
sites. 

II. DIFFRACTION AND LIGHT-PROPAGATION THEORY 

A. Choosing a model 

In general, the difference between various established 
diffraction models is which mathematical approximations 
can be assumed in order to decrease both the mathematical 
complexity and computational times. The location of the 
point of interest with respect to the plane or surface area 
of the diffracting aperture to be integrated determines which 
mathematical approximations are valid. The closer the point 
of interest is to the diffracting aperture, the fewer the 
number of valid mathematical approximations, and hence 
the more complicated the diffraction model. One model 
which employs very few approximations (i.e., an infinitely 
thin and perfectly conducting aperture) and whose region 
of validity includes all points within the aperture plane 
and beyond is Hertz vector diffraction theory (HVDT) 
[16,17]. Therefore HVDT is the diffraction model used in 
this work to calculate the diffraction pattern in the region 
of interest just beyond the circular aperture. The results 

primary primary 
red-detuned trap blue-detuned trap 

are depicted in Fig. 1. The parameters used to calculate 
Fig. 1 are an aperture radius of 50 µm and a laser wavelength 
of 780 nm. It should be noted here that for a circular aperture 
of radius a and a laser wavelength of λ, there will be a/λ 

on-axis bright spots and a/λ − 1 on-axis dark spots [18]. For 
the purposes of this investigation, the dark spot farthest from 
the aperture is referred to as the primary BDT, and the second 
to last bright spot farthest from the aperture is referred to as the 
primary RDT, as noted in Fig. 1. Of all of the on-axis maxima 
and minima, these two regions are chosen for investigation 
because they are the largest of each, which makes them easier 
to identify, load with cold atoms, and probe the atoms trapped 
within them in initial experiments. Both the primary BDT and 
the primary RDT lie within the region of validity of Fresnel 
approximations [18], or 

π3 z1 » [(x1 − x0)2 + (y1 − y0)2]2 , (1)
4λ

where x1, y1, and z1 are the coordinates of the point of 
interest and x0 and y0 are the locations of an integration point 
in the aperture plane. Therefore the diffraction model used 
to calculate the projected diffraction patterns is the Fresnel 
integral diffraction model. For a complete discussion of the 
Fresnel integral model, see Refs. [18,19]. 

B. Diffraction and beam-propagation model 

Figure 2 illustrates the theoretical setup for this investiga
tion, where a single lens of focal length f is placed a distance 
L from a circular aperture of radius a to project the diffraction 
pattern from just behind the metallic aperture into a MOT 
cloud of cold atoms located within an optics-free region inside 
the UHV chamber. 

For the theoretical setup depicted in Fig. 2, the Fresnel 
approximation for the diffracted fields at a point in the near-
field diffraction region [Eqs. (4)–(17) of Ref. [19]] can be 
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FIG. 1. (Color online) Intensity distribution pattern just beyond 
a metallic circular aperture with a radius of 50 µm and a laser 
wavelength of 780 nm, normalized to the intensity incident upon the 
aperture. The locations of the localized bright region for the primary 
red-detuned trap site and the localized dark region for the primary 
blue-detuned trap site are noted. 

FIG. 2. (Color online) Theoretical setup for projecting near-field 
diffraction patterns to an optics-free location within a MOT cloud 
of cold atoms. The key parameters are the aperture radius, a, the  
aperture-to-lens distance, L, the focal length of the lens, f , and the 
axial distance between the lens and the point of interest, z. Plane  0 is  
the axial location of the aperture, and plane 1 is an axial plane within 
the diffraction region. 
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expressed as [ ] 
keikz1 k ( )

2 2E1 (x1,y1,z1) = exp i x1 + y
i2πz1 2z1

1[ ]   ∞ k ( )× Ez0 exp i x0
2 + y0

2 

−∞ 2z1 [ ]
k × exp −i (x1x0 + y1y0) dx0 dy0, (2) 
z1 

where k is the wave number, or 2π/λ, (x1,y1,z1) is the location 
of the point of interest in the diffraction region, (x0,y0,z0) is an 
integration point in the aperture, and Ez0 is the distribution of 
the incident electric field within the open area of the aperture. 
Here Ez0 is assumed to be a constant to represent an incident 
plane wave (i.e., a loosely focused beam with a width »a). For 
the diffraction of light by a circular aperture, the net light fields 
within the aperture plane do not have cylindrical symmetry 
as a result of scattering effects of the aperture rim due to 
the vector field polarization direction [16,17]. However, for 
points with axial distances greater than the aperture radius, the 
diffracted light fields do exhibit cylindrical symmetry [17]. 
Converting Eq. (2) to cylindrical coordinates and assuming 
cylindrical symmetry, the field beyond the aperture in the 
Fresnel diffraction region becomes [ ]

keikz1 kr2 

E1 (r1,z1) = exp i 1 

iz1 2z1 ( ) [ ]  a kr0r1 kr2 
0× Ez0 J0 exp i r0 dr0, (3) 

0 z1 2z1 

where J0 is a Bessel function of the first kind of order zero. 
The effect of the lens on the electric field can be approxi

mated using a phase transformation of the light fields incident 
upon the lens [19]. For the lenses and optical setups used in 
this investigation, the paraxial thin lens phase transformation 
can be used. The electric field leaving the lens, EL, in the  
cylindrical coordinate system of the lens, (rL,zL), the origin of 
which is at the center of the lens, is related to the field incident 
upon the lens, E1, in the diffraction plane coordinate system, 
(r1,z1), by  

EL (rL,zL = 0) = E1 (r1,z1 = L) t (rL) , (4) 

where L is the axial distance between the diffracting aperture 
and the lens and t (rL) is the thin lens phase transformation 
as a function of radial distance from the optical axis. The thin 
lens phase transformation for a lens of focal length f is given 
by Eqs. (5)–(10) of Ref. [19], or 

[ ] 
kr2 

Lt (rL) = exp −i , (5)
2f 

using cylindrical coordinates with cylindrical symmetry. Sub
stituting Eqs. (3) and (5) into Eq. (4), the field at a single point 
in space immediately after the lens becomes 

[ ]  ( )
keikL akr2 kr0rLLEL (rL,0) = exp i Ez0 J0 
iL 2L L0 [ ] [ ] 

kr0
2 krL 

2 

× exp i exp −i r0 dr0, (6)
2L 2f 

where rL is the radial location of a point within the plane of 
the center of the lens. To obtain the projected electric field 
at the point of interest in the optics-free region of the MOT 
cloud of cold atoms, it is necessary to integrate the electric 
field just after the lens over the open area of the lens and 
propagate the fields to the point of interest. Using the Fresnel 
diffraction integral, the field at the point of interest, (r,z), 
where the coordinate system has the same origin as the lens 
coordinate system, becomes a function of the field distribution 
just after the lens: [ ]  

keikz Rkr2 

E (r,z) = exp i EL (rL,L)
iz 2z 0 ( ) [ ] 

krLr kr2 
L× J0 exp i rL drL, (7) 

z 2z 

where the integration is over the open area of the lens and R 

is the radius of the lens. Substitution of Eq. (6) into Eq. (7) 
yields ( ) 

k2 ik(z+L)e kr2 

E (r,z) = −  exp i 
Lz 2z [ ( ) ( ) ]   R a kr0rL kr2 

× Ez0 J0 exp i 0 r0 dr0 
0 0 L 2L ( ) [ ( ) ] 

krLr k 1 1 1 × J0 exp i + − r 2 rL drL. 
z 2 L z f L 

(8) 

If the lens size is significantly larger than the diffraction 
pattern incident upon the lens, then the limit of the drL 

integral can be assumed to be infinity. The integral of the 
lens plane can then be evaluated explicitly, and Eq. (8) can be 
simplified to [ ( ) ]

dkeik(z+L) k d 
E (r,z) = exp i 1 − r 2

iLz 2z z ( )  a kr0rd × Ez0 J0 
0 Lz [ ( ) ] 

k d 2× exp i 1 − r0 r0 dr0, (9)
2L L 

where the parameter d is defined to be 
[ ]−11 1 1 

d = + − . (10)
L z f 

Equation (9) is the general integral result of this article, 
yielding the electric field at the point of interest in the 
optics-free region within the MOT cloud. It should be noted 
here that the axial distance from the lens which forces the 
value of d to approach infinity is the axial location of 
the image of the aperture plane according to geometrical 
optics. 

C. On-axis fields 

While the general integral result of Eq. (9) is complete and 
yields the scalar light field for any point within the desired 
projection region, it can be cumbersome to quickly determine 
where the projected light distributions can be found. The 
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mathematics of the general integral result of Eq. (9) simplify 
for on-axis locations, r = 0, and the integral can be directly 
evaluated, yielding the more convenient analytical form 

Ez0 d ik(z+L)E (0,z) = −  ( ) e 
z 1 − d 

L  [ ( )]  
ka2 d × exp i 1 − − 1 , (11)
2L L

which is dependent upon the wave number of the light, k, 
the aperture radius, a, the distance between the aperture and 
the lens, L, and the focal length of the lens, f . The on-axis 
projected scalar field of Eq. (11) only exhibits localized 
maxima and minima around the region of the location of 
the imaged near-field pattern, according to geometrical optics. 
Equation (11) can be evaluated to obtain the locations of the 
on-axis maxima and minima. The exact locations of on-axis 
maxima and minima occur when 

1 − nL λ 
az = f 

2 
, (12)

λ1 − n (L − f ) 2a

where n is a nonzero integer. On-axis maxima correspond 
to when n is an odd integer, and on-axis minima correspond to 
when n is an even integer. On-axis maxima represent locations 
of possible projected RDTs, and on-axis minima represent 
locations of possible projected BDTs. Equation (12) can also 
be written in the more familiar style of a thin lens equation in 
geometrical optics, or 

1 

z 
+ 1 

L − a2 

nλ 

= 1 

f 
. (13) 

For the two on-axis locations of interest for this inves
tigation, a value of n = 2 corresponds to the projection of 
the primary BDT, and a value of n = 3 corresponds to the 
projection of the primary RDT. 

III. ATOM-TRAPPING POTENTIAL ENERGY 

When an atom is exposed to an electromagnetic field, the 
interaction of the light and the induced dipole moment of the 
atom results in a dipole potential energy and its associated 
dipole force. For detunings that are large compared to the 
excited state hyperfine splitting but small compared to the fine 
structure splitting, and for linearly polarized light, the position-
dependent potential energy of this interaction for an atom in a 
hyperfine ground state F can be expressed as [20] 

2¯ r E (r)|hr |
U (r) = β 2 , (14)

8  |Es |
where r is the location of the point of interest, β is the line-
strength factor of the atomic transition [2,21], r is the spon
taneous decay rate, Es is the saturation field of the transition, 
and  is the laser detuning from the transition from F to the 
center of the excited state hyperfine manifold. The detuning,
 , is the difference between the angular frequency of the light 
field, ω, and the angular frequency of a photon in resonance 
with the atomic transition, ωo, or

 = ω − ωo. (15) 

The particular cold neutral atoms used for this study are 85Rb 
atoms, and the specific transition of interest is the D2 transition 
(2S1/2 → 2P3/2), which has a line-strength factor of β = 2/3. 
Including the line-strength factor and the cylindrical symmetry 
of the diffracted light fields, the atom-trapping potential energy 
becomes 

22 ¯ r E (r,z)|hr |
U (r,z) = 2 . (16)

3 8  |Es |
For cold 85Rb atoms and 780 nm laser light, the saturation 
electric field for this transition is Es = 111.5 V/m [22] (or an 
intensity of 16.5 W/m2), and the spontaneous decay rate is 
r = 2π × 6 MHz  [22]. 

The magnitude of the optical potential energy of the atom 
is directly proportional to the intensity of the laser field. 
The sign of the potential energy is determined by the sign 
of the detuning. If ω <  ωo, the energy of a photon in the 
laser field is less than the energy of the atomic transition, 
the potential energy is negative and becomes more negative 
for higher intensity locations, and the atom is drawn toward 
regions of higher intensity light and RDTs are created. If the 
detuning is positive, or ω >  ωo, the atoms are drawn toward 
regions of lower intensity light and, consequently, BDTs are 
created. 

IV. PROJECTION CALCULATIONS 

A. Intensity calculations 

The method introduced in this article allows for the remote 
control and manipulation of the optical dipole traps within 
the vacuum chamber by placing the diffracting aperture and 
projection lens outside the vacuum chamber. Without breaking 
vacuum, the placement, radial and axial sizes of the trap sites 
as well as the trap depths can be adjusted and controlled for 
a given laser frequency by changing any one of three optical 
parameters: the aperture radius, a, the focal length of the lens, 
f , and the aperture-to-lens distance, L. 

Figure 3 illustrates some of the control over the projected 
diffraction pattern by adjustment of only the parameter L. 
All the image plots for Fig. 3 are for a wavelength of 
780 nm, an aperture radius of 25 µm, and a focal length of 
40 mm. The numerical intensity scale of each part of Fig. 3 
is normalized to the intensity of the laser light incident upon 
the diffracting aperture. Figure 3(a) is a calculation of the 
fields just beyond the aperture using HVDT. Figure 3(b) is an 
image plot of a projected diffraction pattern, using Eq. (9), and 
approximately equal in size to that of the original. To project 
a diffraction pattern equal to that of the original pattern in 
physical size and relative intensity, an aperture-to-lens distance 
of just over twice the focal length is chosen, or L = 80.4 mm. 
This particular choice forces the size of the projected pattern 
to approximately equal that of the original and forces the dis
tance of the projected BDT from the lens to equal exactly the 
distance of the original BDT to the lens. The relative intensity 
of the projected pattern is equal to that of the original pattern, 
where the intensity of the RDT is 4 times that of the incident 
laser intensity. Increasing the aperture-to-lens distance beyond 
2f has two effects upon the projected pattern: The entire 
projected pattern will be smaller than the original and, 
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FIG. 3. (Color online) Diffraction patterns for an aperture with 
a radius of 25 µm, where (a) is the original pattern just beyond 
the diffracting aperture, (b) is a projection with the aperture-to-lens 
distance, L, chosen such that the projection is approximately the same 
size as the original, (c) is a projection with L chosen such that the 
projection is smaller than the original, and (d) is a projection with L 

chosen such that the projection is larger than the original. Parts (b)–(d) 
are all set to the same distance scaling as (a) for direct comparison 
of the size differences, and (e) is an expansion of (c). All numerical 
intensity scaling values are normalized to the intensity incident upon 
the aperture. 

consequently, the relative intensity of the bright spots will 
be amplified with respect to the incident laser intensity, as 
illustrated in Figs. 3(c) and 3(e), where L is set to be 125 mm. 
Conversely, by adjusting the aperture-to-lens distance to values 
less than 2f , the projected pattern will be larger than the 
original and have a lower overall intensity, as illustrated in 
Fig. 3(d), where L is  set to be 68 mm.  Both  Figs.  3(c) 
and 3(d) are intentionally set to the same radial scaling and 
axial scaling as Fig. 3(a) to better illustrate the effects of 
changing L on the overall projected pattern size. Figure 3(e) is 
an expanded view of the smaller projection of the diffraction 
pattern [Fig. 3(c)]. Note here the differences in radial and 
axial sizes of the projected traps, as compared to the original 
trap sites of Fig. 3(a). In addition, the peak intensity of the 
projected RDT is now 17.9 times the incident laser intensity, 
whereas that of Fig. 3(d) is only 1.93 times the incident laser 
intensity. 

With the diffracting aperture located outside the vacuum 
chamber, exchanging the aperture for one with a different 
radius is a straightforward process. Changing the size of the 
aperture radius affects the radial and axial scalings of the near-
field diffraction pattern differently; the radial dimensions of 
the pattern scale linearly with the aperture radius, whereas the 
axial scaling of the pattern is dependent upon the square of the 
aperture radius [18]. For circular apertures, where the radius 

FIG. 4. (Color online) (a) Original and (b) projected intensity 
patterns for the creation of a nanotrap. The aperture radius is 5 µm, 
the focal length of the lens is 40 mm, and the aperture-to-lens distance 
is set to 125 mm. Both intensity scaling values are normalized to the 
intensity incident upon the aperture. 

is much larger than the wavelength of the laser light, such as 
those of Fig. 3, where a/λ = 32, the trap sites tend to be much 
longer in the axial dimension than in the radial dimension. 
Because of the different dependencies of the radial and axial 
scalings on the aperture radius, the aspect ratio of the radial 
size to the axial size increases as the size of the diffracting 
aperture decreases. It should be noted here that care must be 
taken when choosing smaller apertures to remain within the 
region of validity of the Fresnel approximations used in this 
model, where it is assumed that a » λ. With the assumptions 
used for this model and the locations of the primary RDT and 
primary BDT, a lower limit on the aperture size would be an 
aperture size of about 5 µm, where a/λ = 6.25. Figure 4(a) 
is an image plot of the intensity pattern just beyond a 5 µm 
radius circular aperture using HVDT. Sub-micron-sized traps, 
or nanotraps, can be created by using our projection technique. 
As L becomes larger than 2f , the projected pattern becomes 
smaller than the original diffraction pattern. Figure 4(b) is an 
illustration of the creation of a nanotrap. First, we start with 
Fig. 4(a), or the smallest original diffraction pattern within the 
region of validity of the projection model used here, and then 
we set L > 2f . For this particular illustration, f is chosen to 
be a 40 mm lens, and L is chosen to be 125 mm, which yields 
RDT and BDT axial trap dimensions of ≈1 µm and radial trap 
dimensions of <1 µm. 

B. Trapping potential energy calculations 

Conversion of the intensity distributions of Figs. 3 and 4 
to potential energy wells for trapping cold neutral atoms 
requires a choice of the laser detuning and an incident laser 
intensity. Additionally, for detunings not large compared to 
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TABLE I. Properties of the primary RDT for various diffraction patterns. For all patterns, the lens 
focal length is 40 mm, the detuning parameter is set to = −104 r, and the trap depth is given per 
100 W/m2 of light intensity incident upon the aperture. For reference, a 17 mW laser focused to a 
spot diameter of ∼150 µm gives an incident intensity of ∼100 W/m2. 

RDT trap depth 
Figure per 100 W/cm2 Radial width Axial length 

Diffraction pattern number (µK) (µm) (µm) 

Original 
a = 25 µm 3(a) 277 6.03 120 
Projected 
a = 25 µm, L = 80.4 mm  3(b) 280 6.03 120 
Projected 
a = 25 µm, L = 125 mm 3(c), 3(e) 1250 2.84 26.7 
Projected 
a = 25 µm, L = 68 mm 3(d) 134 8.88 252 
Original 
a = 5 µm 4(a) 241 1.31 4.89 
Projected nanotrap 
a = 5 µm, L = 125 mm 4(b) 1260 0.59 1.08 

the hyperfine ground-state splitting, a choice of a hyperfine 
ground state of the atom is required. Using the same detuning 
as our previous work [13] (  = −104 r for RDT sites and 

= 103 r from the F = 2 hyperfine ground state for BDT 
sites), disturbances of the possible atom traps because of 
photon absorption, population of excited states, and the 
spontaneous force are negligible. Including the saturation field 
for the chosen transition, the trap potential energy [Eq. (16)] 
can be expressed as a function of the chosen detuning and 
normalized to the intensity incident upon the aperture, or 

( )
U (r,z) I (r,z) µK = 9.70 × 103 r , (17)

Io Io W/cm2 

where the term I/Io is the normalized intensity displayed in 
the numerical intensity scaling of Figs. 3 and 4. 

C. Properties of calculated traps 

Tables I and II give the trap depths and trap dimensions 
for all the diffraction patterns illustrated in Figs. 3 and 4. 
The depth of each trap site is taken to be the difference 
between the minimum of the trap potential well and the 
lowest potential barrier to getting out of a RDT or a BDT 
along the escape path. (For a complete discussion on escape 
paths from each type of trap, see our previous work [13].) 
The radial and axial dimensions reported for each diffraction 
pattern are defined as the approximate width and length of 
each of the traps within the equipotential energy surface equal 
to the trap depth. Tables I and II quantitatively illustrate the 
effects of changing either the distance between the lens and the 
diffracting aperture or the size of the diffracting aperture on 
the depth, dimensions, and axial-radial aspect ratio of the trap 
sites. 

TABLE II. Properties of the primary BDT for various diffraction patterns. For all patterns, the 
lens focal length is 40 mm, the detuning parameter is set to = 103 r, and the trap depth is given 
per 100 W/m2 of light intensity incident upon the aperture. 

BDT trap depth 
Figure per 100 W/cm2 Radial width Axial length 

Diffraction pattern number (µK) (µm) (µm) 

Original 
a = 25 µm 3(a) 820 9.05 125 
Projected 
a = 25 µm, L = 80.4 mm  3(b) 823 9.05 125 
Projected 
a = 25 µm, L = 125 mm 3(c), 3(e) 3680 4.26 27.9 
Projected 
a = 25 µm, L = 68 mm 3(d) 393 13.1 264 
Original 
a = 5 µm 4(a) 818 1.86 5.24 
Projected nanotrap 
a = 5 µm, L = 125 mm 4(b) 3700 0.85 1.11 
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V. CONCLUSION 

Scalar diffraction theory and beam-propagation methods 
have been employed to overcome two experimental challenges 
with using diffraction patterns to optically trap atoms: the 
requirement for the diffracting plane or mask to be placed 
inside the vacuum chamber and the inability to adjust the 
trap properties for a given diffracting aperture. The model 
presented here uses a single lens to project the diffraction 
pattern found just beyond a circular aperture to an optics-free 
region beyond the lens. An integral method has been used to 
calculate the complex scalar field of the diffracted light for any 
point of interest in the region beyond the projecting lens. For 
quickly determining the location and spacing of the projected 
maxima and minima locations, an analytical model can be 
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used for on-axis locations. Calculations show that control of 
the trap depth and size is possible by adjustment of the aperture 
to lens distance and that additional control over the axial-radial 
aspect ratio is possible by changing the size of the diffracting 
aperture. Although the model presented here is for a single 
circular aperture producing a single projected atom trap, the 
model can be extended to one-dimensional or two-dimensional 
arrays of traps using a diffracting mask of one-dimensional or 
two-dimensional arrays of pinholes. 
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[6] A.	 Hemmerich and T. W. Hänsch, Phys. Rev. Lett.  70, 410 
(1993). 

[7] G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, and 
C. Salomon, Phys. Rev. Lett.  70, 2249 (1993). 

[8] Y. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and 
R. Grimm, Europhys. Lett. 43, 510 (1998). 

[9] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and 
H. Sasada, Phys. Rev. Lett.  78, 4713 (1997). 

[10] M. Hammes, D. Rychtarik, B. Engeser, H.-C. Nägerl, and 
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