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As the universe expands astronomical observables such as brightness and angular size on the sky 
change in ways that differ from our simple Cartesian expectation. We show how observed quantities 
depend on the expansion of space and demonstrate how to calculate such quantities using the Fried­
mann equations. The general solution to the Friedmann equations requires a numerical solution 
which is easily coded in any computing language (including EXCEL). We use these numerical cal­
culations in four student projects that help to build their understanding of high-redshift phenomena 
and cosmology. Instructions for these projects are available as supplementary materials. 

I. INTRODUCTION 

In the past decade the field of observational cosmol­
ogy has made significant progress. Recent observations 
have dramatically improved density estimations for the 
primary components of the universe. Two of these com­
ponents, dark matter and dark energy, have so far eluded 
direct detection although a variety of indirect measure­
ments clearly point to their existence. Something as sim­
ple as the dynamics of a rotating galaxy implies that 
galaxies contain large amounts of unseen mass—the so-
called cold dark matter (CDM). Also, the observed red­
dening of distant supernovae implies that the expansion 
of the universe is accelerating, powered by Einstein’s fa­
mous cosmological constant (Λ) and attributed to some 
not-yet-understood dark energy. 

A surprisingly simple model of the Universe that uses 
energy conservation to relate the spatial expansion to 
the energy density can account for the increasingly de­
tailed and accurate observations now becoming available. 
This model, embodied in the Friedmann equations, has 
resulted in a widely accepted Standard Model of Cosmol­
ogy.1 In this paper we show how the Friedmann equations 
relate to astronomical observables such as brightness and 
angular size on the sky.2–4 Moreover, we show how stu­
dents can use these relations to compute accurate dis­
tances and ages just as professional astronomers do. 

Although no analytic solution exists for the general 
Friedmann equations, simplifying assumptions can be 
used to solve a number of interesting special cases. Tay­
lor expansions can also be used to compute approximate 
distances and ages, but for our universe such expansions 
are only accurate to a distance where the redshift (z) is  
around 0.1. A redshift of 0.1 corresponds to light emitted 
when the universe was already 90% of its current size. To 
study events occurring at earlier times, when the universe 
was a tiny fraction of it’s current size, we need accurate 
calculations out to redshifts of 1000 or more. 

To go beyond analytic solutions requires a computa­
tional approach, which can be both instructive and re­
warding for students. Besides giving students practice 
using numerical techniques, these computations allow 
them to accurately compute ages and distances back to 
the time of the Big Bang. Reproducing the latest pub­

lished age and size of the visible universe builds student 
confidence and removes much of the mystery of where 
these numbers come from. Students can also compute 
the physical size of high-redshift objects (in their rest 
frame) and compare such objects to our own galaxy or 
other nearby galaxies. It is a powerful learning experi­
ence for a student to deduce that seven billion years ago 
gravitational attraction formed structures similar to the 
ones visible in our night sky. 
In this paper we give a brief description of the quan­

tities that astronomers measure and how such quanti­
ties relate to the spatial expansion of the universe. We 
then present the solution to the Friedmann equations 
and the numerical techniques used to solve them. Fi­
nally, we present four important projects that make use 
of these computational solutions to help students under­
stand high-redshift phenomena. 

II. ASTRONOMICAL OBSERVABLES 

Telescopes point at astronomical sources to measure, 
among other things, their light intensity, spectra, and 
angular extent on the sky. At large distances these ob­
servables depend on the geometry and expansion rate of 
the universe. In fact, the expansion leads directly to an 
observed reddening of distant objects—the so-called red-
shift. We define this redshift in terms of the wavelength 
of observed light. If a distant galaxy emits light of wave­
length λe, and we observe (redshifted) light of wavelength 
λob, the redshift is defined by 

λob − λe 
z = . (1) 

λe 

Spectral lines of hydrogen, helium, and a number of 
other elements are routinely measured in undergraduate 
laboratories. In astronomy, a spectrometer can be used 
to measure the observed wavelength of astronomical ob­
jects with strong spectral lines. Because we already know 
the emitted wavelengths from our laboratory studies we 
can easily determine the redshift. This redshift can result 
from a Doppler shift due to the velocity of the astronom­
ical source or from the expansion of the universe. In gen­
eral, redshifts are a combination of the two. Galaxy clus­
ter velocities5 almost never exceed ∼ 1 000 km/s, which 
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corresponds to a Doppler redshift of 0.003. Redshifts 
of cosmological origin are often significantly higher than 
this. Beyond a redshift of z ∼ 0.03, the expansion of the 
universe generally dominates and the Doppler shift can 
be neglected. 
To understand redshifts due to the expanding uni­

verse we need to see how length is defined during the 
expansion. The metric adopted to define length is the 
Robertson-Walker metric. It is the solution to Ein­
stein’s field equations under the simplifying assumption 
of a homogeneous and isotropic universe. These assump­
tions are appropriate for this problem because measure­
ments confirm that on scales larger than about 100 Mpc 
(1 parsec = 3.26 lighyears = 31 trillion km) the uni­
verse is uniformly dense, and therefore homogeneous and 
isotropic. The Robertson-Walker metric expresses the 
observed length ds, in terms of the space-time elements 
in spherical coordinates (t, r, θ, φ) as  

ds2 = −c 2dt2 + a 2(t)[dr2 + Sκ
2(r)dΩ2]. (2) 

Here, c is the speed of light, a(t) is a dimensionless scale 
factor that describes the spatial expansion of the uni­
verse, dΩ2 = dθ2 + sin2θ dφ2, and  Sκ(r) accounts for the 
curvature of space and is given by 

⎧ ⎪R0 sin(r/R0)  if  κ = +1  ⎨ 
Sκ(r) =  r if κ = 0  (3) ⎪ ⎩R0 sinh(r/R0) if  κ = −1, 

where R0 is the radius of curvature of the universe and 
κ is the sign of the curvature. Our universe appears to 
be flat with Sκ(r) =  r, but the metric can also model 
universes with positive curvature (κ = +1) and negative 
curvature (κ = −1). Notice that the flat metric reduces 
to the familiar spherical coordinates with the addition of 
the special relativistic term −c2dt2 , and the expansion 
scale factor a(t). It is convenient to define the value of 
the scale factor to be unity at the present time: a(t0) =  1.  
This definition implies that the scale factor was smaller 
than one in the past. 
We use light traveling between fixed emission and ob­

servation points to measure the distance interval. Let’s 
set the origin of the coordinate system at the telescope 
that observes the light. In this coordinate system a pho­
ton travels radially toward the observation point at con­
stant angles (θ and φ) from the emitting source, giving 
dΩ = 0. Furthermore, because light travels along null 
geodesics defined by ds = 0,  we  can  solve  Eq.  (2)  to  get  
the distance interval 

c dt  
dr = . (4) 

a(t) 

Hence, the distance interval is determined by the speed 
of light and the expansion of the universe during transit. 
Two important results arise from this equation. First, 

if we consider the wavelength of a photon λ = cΔt, where  
Δt is the period of the photon’s oscillation, we find that 

this wavelength is given by λe = a(te)Δr at the emission 
time and λob = a(tob)Δr when it is observed. The coor­
dinate system itself (r, θ, φ) is independent of time, so 
for observers at fixed coordinates, Δr is independent of 
time. Using Eq. (1), we then find that the scale factor is 
related to the redshift by 

1 
z = − 1, (5) 

a(te) 

where we have used our definition that a(t0) =  1 for  
observations at the present time (tob = t0). Thus, by 
measuring the wavelength shift of an astronomical source 
and determining the redshift, we can deduce the value of 
the scale factor at the time the light was emitted. 

The second important result arising from Eq. (4) is 
the calculation of the line-of-sight distance to the source 
at the time of observation. This is called the conformal 
distance Dc, and is given by   Dc te c dt  

Dc = dr = . (6) 
0 tob 

a(t) 

Most of us are familiar with the proper distance. In spe­
cial relativity it is defined as the distance between events 
occurring at the same instant of time (dt = 0). The radial 
proper distance (dΩ = 0) is then given by 

 Dc 

Dp(t) =  a(t) dr = a(t)Dc. (7) 
0 

Today, the radial proper distance is equal to the confor­
mal distance; in an expanding universe the proper dis­
tance was smaller when the light was emitted Dp(te) =  
a(te)Dc < Dc. 
Now that we have a handle on the definitions of dis­

tances in the Robertson-Walker metric, we can define 
the quantities important to astronomers. To determine 
a source’s intrinsic brightness and physical size we must 
convert our observations into the object’s rest frame. The 
observed angle subtended by a galaxy on the sky Δθ, is  
related to the diameter of the galaxy in its rest frame at 
the time the light was emitted according to 

galaxy diameter = DAΔθ, (8) 

where DA is called the angular diameter distance by as­
tronomers. Equation (2) shows that this distance is given 
by 

DA = a(te)Sκ(Dc). (9) 

In a flat universe, the angular diameter distance is just 
the proper distance to the galaxy at the time the light 
was emitted. 
Similarly, the observed brightness of a source depends 

on how far away it is. Experimentally the flux is deter­
mined by dividing the energy detected (Eob) by  the  area  
of the detector’s aperture (Adet) and the exposure time 
(ΔTob). 

Eob
fluxob = (10) 

ΔTobAdet 
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To study the emitting source, we have to transform this 
expression into the rest frame of the emitter. Because the 
universe expands while the photons are in transit, the ob­
served exposure time is dilated [ΔTob = ΔTe/a(te)] and 
the photons’ energy is lowered due to redshift [Eob = 
Eea(te)]. Also, since photons are emitted by a source in 
all directions the fraction that make it into a fixed aper­
ture at a distance r is Adet/(4πr

2). Here the surface area 
in the denominator is determined for the detected light 
at the present time with radius r = a(t0)Sκ(Dc). With 
these modifications the observed flux can be expressed as 

Eob Eea
2(te)

fluxob = = (11) 
ΔTobAdet ΔTe4πSκ

2(Dc) 

where we have once again set a(t0) to unity. The techni­
cal name for the source brightness is luminosity and it is 
the energy emitted per second (Ee/ΔTe). Astronomers 
relate flux and luminosity with the following relation, 

source luminosity 
fluxob = , (12) 

4πD2 
L 

where DL is called the luminosity distance. The luminos­
ity distance is defined to make the denominator look like 
a surface area even though there is a lot physics hidden 
in DL. DL is given by 

DL = Sκ(Dc)/a(te). (13) 

Finally, it is rare to measure a luminosity or 
flux directly. Usually we find ourselves taking the 
logarithm of Eq. (12) and expressing this in what 
are called magnitudes. Astronomers define the ap­
parent magnitude by m = −2.5 log[flux/(2.53 × 

2
10−8watt/m )], and the absolute magnitude by M = 
−2.5 log[luminosity/(78.7Lsolar)]. The absolute magni­
tude of a source is related to the apparent magnitude 
by 

  
DL

M = m − 5 log , (14) 
10

where DL is given in parsecs. The second term in 
this equation is called the distance modulus: DM = 
5 log(DL/10). Notice that the distance modulus is deter­
mined theoretically and can be computed directly from 
the metric at any  emission time. A prediction of DM 
exists for every specific cosmological model of Sκ(r) and  
a(te). Direct tests of the expansion have been made 
by measuring the apparent magnitude for sources with 
known absolute magnitude and comparing the difference 
(m − M) to the predicted distance modulus (DM). 
In summary, from the angular diameter distance and 

the luminosity distance we can compute the rest-frame 
size and intrinsic brightness or luminosity of a source 
emitting radiation. These distance factors allow us to 
study the physics of the emitters. To compute these 
quantities, we need to determine the conformal distance 
of the source given by Eq. (6). But to calculate Dc we 

must first find the scale factor a(t) that describes the ex­
panding universe. This scale factor is found by solving 
the Friedmann equations. 

III. GENERAL SOLUTION TO THE
 
FRIEDMANN EQUATIONS
 

The Friedmann equations model a fluid or several fluids 
composed of different types of particles moving under 
the influence of gravity in the Robertson-Walker metric. 
Although the full derivation is beyond the scope of this 
paper, we will introduce the underlying physics. 
A description of the physics begins by considering con­

servation of energy in a self-gravitating pool of matter. 
The classical picture is that of a small test mass m, em­
bedded at a radius s, within an expanding sphere of mat­

1 2ter. The kinetic energy of the test mass is K = mṡ2 
and the potential energy is Ug = −GMm/s(t) − Uzero, 
where M is the mass inside the volume of radius s and 
Uzero is the zero point of the potential energy. The sum 
of kinetic and potential energy is a constant: 

1 −GMm 2Etot = mṡ + − Uzero. (15) 
2 s(t) 

To change this into the classical version of first Fried­
mann equation, we need to make three modifications. 
First, we divide by the test mass m and express every­
thing in terms of a potential, e.g. U = Uzero/m. Second, 
we define the value of the zero point so that the total 
energy is zero at all times. Third, we use the Robertson-
Walker metric to write ṡ = ȧDc. With these changes, we 
have 

20 =  
1 
D2 ȧ − 

GM 
− U. (16) c2 D2a2(t)c 

If we imagine that the Big Bang resulted in a high den­
sity fluid [ρ(t) =  M/ 4 πs3(t)] expanding radially due to 3 
a large amount of kinetic energy, then the expansion (ȧ) 
will slow in time as the scale factor (a) increases. The 
question then becomes, does the expansion ever actually 
stop? The answer to this depends on the value of U . If  
U is positive, ȧ can never be zero. If U is negative, ȧ will 
become zero when the two right-most terms cancel. The 
equation works equally well for expansion (ȧ >  0) and 
for contraction (ȧ <  0), but because only ȧ2 is specified, 
the sign  must be determined by the context. 
Equation (16) can be rearranged into the classical form 

of the first Friedmann equation

  2 
ȧ 8πG 2U 

= ρ(t) +  . (17) 
a 3 D2a2(t)c 

Einstein’s general theory of relativity leads to a simi­
lar equation for energy conservation with two important 
differences.2,3 First, the energy of all particles (Ei = J

2 2mi c
4 + pi c

2) contributes to the potential energy and 
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not just the mass. This means massless particles such 
as photons also contribute to the potential energy. We 
therefore replace the mass density ρ(t) with the energy  
density Ei(t)/c

2, where  i is the sum over all parti­
cle species. Second, the potential energy depends on 
the curvature of the universe. We state without proof 
that 2U/Dc 

2 = −κc2/R0
2 . It is also convenient to define 

2H2the critical density Ec = 3c 0 /8πG, where  H0 is Hub­
ble’s constant, defined by the present rate of expansion: 
H0 = ȧ(t0). The result is the fully relativistic Friedmann 
equation 

 2 
ȧ Ei(t) κc2 

= H2 
− , (18) 0a Ec R0

2a(t)2 

which has the same form as the classical Friedmann equa­
tion given in Eq. (17). 
Before we solve Eq. (18), it is interesting to look at 

different types of fluids and how their energy densities 
evolve with the scale a(t). Various known and hypothet­
ical energy densities are shown in Table I.7 These are 
derived by considering the thermodynamic properties of 
each type of energy density during an adiabatic expan­
sion. The matter density mc2/V , for example, evolves as 
1/a3(t) because the volume (V ) expands as a3(t). The ra­
diation density hc/λV , on the other hand, goes as 1/a4(t) 
because the volume expands as a3(t) while the wave­
length expands as a(t). Although Table I is organized 
in increasing powers of a(t), there is no deep significance 
to this ordering. In a ΛCDM cosmology the energy den­
sity of the universe has three main components: a cos­
mological constant [Λ → EΛ(t)], matter [non-relativistic 
particles, either dark or normal baryonic → Em(t)], and 
radiation [photons and highly-relativistic particles such 
as low-mass neutrinos → Er(t)]. While other components 
may exist at a low level, experiments are not yet sensitive 
to their effects. By setting Ew,0, Ecs,0, and  Eq,0 equal to 
zero we reduce the general solution to the ΛCDM case 
which shows spectacular agreement with observations. 

The first step in the solution is to set the boundary 
conditions by evaluating the Friedmann equation at the 
present time t0, for which a(t0) = 1. As mentioned, the 
time derivative of the scale factor was first measured by 

TABLE I: Evolution of energy densities considered in cosmol­
ogy. It is also common to find these expressed as fractional 
energy densities, Ei(t)/Ec = Ωi,0/a

i . 

Component Index i Energy density Ei(t) 

Cosmological constant 0 EΛ,0 

Domain walls 1 Ew,0/a(t) 

Cosmic strings 2 Ecs,0/a
2(t) 

Matter (non-relativistic) 3 Em,0/a
3(t) 

Radiation 4 Er,0/a
4(t) 

Quintessence varies Eq,0/a
i(t) 

Edwin Hubble in 1929 and is known as the Hubble con­
stant H0 = ȧ(t0). Finally, we define the fractional energy  
density Ω(t) = Ei(t)/Ec, and note that the fractional  
energy density is presently Ω0 = Ei(t0)/Ec. At  the  
present time, Eq. (18) becomes 

κc2 

H2 = H0
2Ω0 − , (19) 0 R2 

0 

which allows us to express the curvature (κ, R0) in terms  
of H0 and Ω0 as 

κc2 

= H0
2(Ω0 − 1). (20) 

R2 
0  

In this form we see that if the total density, Ei(t0), is 
greater than the critical density Ec, then the curvature J 
is positive and R0 = c2/H2(Ω0 − 1). If the total den­0 
sity is less than the critical density, then the curvature J 
is negative and R0 = c2/H2(1 − Ω0). These constants 0 
are not time dependent and therefore the curvature will 
be independent of time. 
Rewriting the Friedmann equation in terms of constant 

fractional densities allows us to show the dependence on 
the scale factor explicitly 

2  H2ȧ Ωi,0 0 (1 − Ω0) 
= H0

2 + . (21) 
a ai a2 

The solution to this first-order separable differential 
equation is 

te a da'
H0 dt = J . (22) 

t0 1 Ωi,0/a'(i−2) + (1  − Ω0) 

where we integrate from a(t0) = 1 to a time in the past, 
a(te). If we set t0 = 0,  then  te is called the look-back time 
and is the time measured backwards from today. In the 
limit a → 0, te equals the age of the universe. Another 
choice is to set te equal to zero, in which case t0 becomes 
the age of the universe. 
Unfortunately, the integrand on the right-hand side 

is not easily integrated so numerical methods are typ­
ically required. In fact, analytic integration is only 
possible for simplified universes in which some compo­
nents are ignored. Such solutions can be useful for 
times when one component dominates the expansion. 
Two special cases are particularly useful for debugging 
the numerical routine. The first is a flat universe con­
taining only matter (Ω0 = Ωm,0 = 1),  where  the  
analytic solution is a(te) = (3H0 te/2)

2/3 . The sec­
ond is a flat universe containing matter and lambda 
(Ω0 = 1 = Ωm,0 + ΩΛ,0), where the analytic solution J 
is a(te) =  (Ωm,0/ΩΛ,0)

1/3 sinh2/3(3 ΩΛ,0 H0 te/2), for 
0 < Ωm,0 < 1. 
It is common to use a change of variables to write 

the solution in terms of the conformal distance.4 Using 
dr = c dt/a(t) from Eq. (6) leads to an alternative form 

http:Ei(t0)/Ec.At
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of Eq. (22) given by 

H0 
Dc 

dr = 
a J 

da' 
. (23) 

c 0 1 Ωi,0/a'(i−4) + (1  − Ω0)a '2 

In this form, the conformal distance is computed directly 
instead of the look-back time. In addition, it is common 
to find Eqs. (22) and (23) in the literature expressed as an 
integral over redshift z, where Eq. (5) is used to change 
variables from scale factor to redshift. 

IV. NUMERICAL SOLUTION 

Implicit in the solution to Eqs. (22) and (23) is the 
judicious choice of integration limits. Because the in­
tegrand is undefined at the start of the universe, it is 
important to integrate from a time after the Big Bang 
(te) until  today  (t0). Without extending the model, it is 
also a good idea to avoid epochs prior to 10−32 seconds 
when inflation and quantum gravity play an important 
role. 
We begin by integrating both sides of Eq. (22) nu­

merically to find the scale factor as a function of time. 
Although this may seem simple, because we are inter­
ested in finding the scale factor as a function of time, 
we must integrate many times. We explore the full ex­
pansion history by choosing a series of integration limits 
from today’s value (a = 1) back to a time when the scale 
factor was very small, say a = 10−6 . Unfortunately, the 
calculation naturally produces t(a) instead of a(t). Be­
cause the equation cannot be inverted analytically, we 
limit our solutions to unique single-valued functions and 
just swap the a-axis with the t-axis to get a(t). As an 
alternative, because Eq. (21) is an ordinary differential 
equation (ODE), many computing languages include nu­
merical solvers that will calculate a(t) directly. Although 
usually somewhat slower, this method has the advantage 
of working even when the function is not single valued. 
Direct integration of Eq. (22) can be accomplished in 

almost any computing language using Simpson’s Method 
or a faster Romberg algorithm8 and the numerical inte­
gration routines in MATLAB and MATHEMATICA are 
based on these algorithms. Many students taking as­
tronomy classes, however, may not be proficient in these 
languages, so an alternative is to use a trapezoid method 
in EXCEL.9 In fact, because we integrate repeatedly, the 
trapezoid method avoids evaluating the integrand multi­
ple times. First, a column or array is created for the 
scale factors stepping backward from log10(a) = 0 to  
log10(a) =  −6. More columns are needed to compute the 
area of each trapezoid formed by the step size Δa, and  
the average of the integrand computed at ai and ai−1. 
The solution is then computed as a running sum in the 
final column. This column is then relabeled H0(te − to), 
the left-hand-side of Eq. (22). Another column for the 
age can be computed by setting te = 0 years and solving 
for t0. 

Look−back Time (Gy) 
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FIG. 1: Scale factor a(t), for the parameter sets described in 
Table III. Notice that a(t) and  H0(te − t0) are unitless. The 
scale factor has a value of 1 today. For the parameter sets 
shown, it is smaller in the past and larger in the future. 

It’s a good idea to check the numerical integration us­
ing the analytical solutions for a few special cases as dis­
cussed above. Plotting the scale factor as a function of 
the look-back time, age, or redshift shows the expansion 
of the universe visually. As an example, Fig. 1 shows 
a(te) for a variety of cosmologies. The slope and cur­
vature of this plot can be interpreted as the speed and 
acceleration of the spatial expansion of the universe. The 
numerical derivatives (ȧ and ä) are also easy to compute 
and visualize graphically. The figures in this paper were 
created using MATLAB but they are easily created in 
any computing language. 
To compute four significant figures precisely, it is im­

portant to use a small step size and physical constants 
with at least six significant figures of precision. Table II 
shows the constants and conversion factors used in our 
calculations. To sample smoothly at all time scales, steps 
in the logarithm of a are preferable to linear steps. Com­
parisons with analytical solutions show that a step size 
of Δ log10(a) = 0.01 results in at least four significant 
figures of precision. Table III shows the cosmological pa­
rameters for the test cases included in Fig. 1. The den­
sity parameters are expressed as fractions of the critical 
density: Ωm,0 = Em,0/Ec is the fractional non-relativistic 

TABLE II: For precise computations, constants and conver­
sion factors with six significant figures must be used. 

c (km/s) sec/year Mpc/km 

2.99792 × 105 3.15581 × 107 3.24078 × 10−20 

http:�log10(a)=0.01
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TABLE III: Four sample parameter sets of interest. The WMAP parameters are taken from the seven-year release10 plus 
radiation.14–16 The Benchmark parameters are a simplified one-significant figure set circa 2003 that are in Ryden’s textbook.2 

The Low Density parameters include only radiation and baryonic densities. The Matter Only parameters set the matter density 
to the critical density. 

H0 (km/(s Mpc)) Ωm,0 Ωr,0 ΩΛ,0 Ω0 

WMAP 7-year 70.4 0.2722 8.42E-5 0.728 1.000000 

Benchmark 70 0.3 8.4E-5 0.7 1.000084 

Low Density 70 0.05 8.4E-5 0 0.050084 

Matter Only 70 1.0 0 0 1.0 

matter density that includes normal and dark matter, 
Ωr,0 = Er,0/Ec is the fractional relativistic energy density 
that includes photons and neutrinos, and ΩΛ,0 = EΛ,0/Ec 

is the fractional energy density attributed to the cosmo­
logical constant. Notice that we have explored only a 
subset of the possible parameters. Projects involving cos­
mic strings or quintessence could be easily implemented 
by including more terms in Eq. (22). 
Here we focus on the recent 7-year release from the 

Wilkinson Microwave Anisotropy Probe (WMAP) col­
laboration.10 These density parameters are obtained by 
fitting a combination of data from WMAP measure­
ments, the Sloan Digital Sky Survey measurements of 
baryon acoustic oscillations,11 and the Hubble Space 

12Telescope measurements of H0. These fits yield the 
best observationally-based determinations of H0, Ωm,0, 
and ΩΛ,0. The best estimate for the radiation density 
still comes from the Cosmic Observation Background Ex­
plorer (COBE) collaboration,13,14 and the neutrino en­
ergy density is included according to the theoretical ex­
pectation for the effective number of neutrino species: 
Neff = 3.04.15,16 Because the measured curvature is con­
sistent with zero and theoretically this is difficult to ex­
plain unless the universe is indeed flat, the WMAP team 
set Ω0 = 1.  

Table III also shows the Benchmark parameters sug­
gested in Ryden’s textbook.2 These are one-significant 
figure estimates suitable for homework calculations. The 
Low Density parameters are chosen because most of us 
want to know what our universe would look like with 
just the “normal” stuff we have studied in the labora­
tory. Because these parameters are so small, this Low 
Density universe is highly curved. A similar motivation 
leads us to explore the Matter Only parameters contain­
ing enough matter that this universe is flat. 
The goal of this calculation is to compute ages and dis­

tance factors. So far we have only computed the age of 
the universe. We also want to compute the various dis­
tance factors. Although it is convenient to compute the 
conformal distance by integrating Eq. (23), having stu­
dents compute the integral in Eq. (6) instead reinforces 
the idea that the conformal distance is found by inte­
grating over time as the universe expands. To compute 
the angular-diameter and luminosity distances, we need 

to know the radius of curvature of the universe R0, and  
the sign of the curvature κ, computed from Eq. (20). 
Then it is simple to find DA and DL from Eqs. (9) 
and (13). Finally we compute the distance modulus 
DM = 5 log(DL/10) remembering to convert DL into 
units of parsecs. Figure 2 shows the conformal distance, 
luminosity, and angular diameter distances as well as the 
distance modulus for a variety of cosmological models. 
The calculation takes less than 0.5 seconds in EXCEL or 
MATLAB. 
A numerical issue arises when we attempt to find dis­

tance factors and ages based on redshift. The tabulated 
array of log10(a) can easily be used to compute an ar­
ray of redshifts but it is unlikely that the exact redshift 
has been computed. With a reasonably small step size in 
log10(a), simple linear interpolation gives accurate values 
because the expansion of the universe is smooth and well 
behaved. 
An example of a class project based on this technique 

is available online17,18 and in the supplementary mate­
rials. The project is written in four parts and assumes 
that students are familiar with the theory presentation in 
Ryden’s textbook. The first part uses the Matter Only 
test case H0(te − to) =  2 (a3/2 

− 1), to compute the age 3 
and distance factors DC , DA, DL, and  DM as a func­
tion of the scale factor or redshift. General instructions 
are given for advanced students who want to choose their 
own computing language. Detailed instructions are given 
in EXCEL for less advanced students. A screen shot of 
the solution in EXCEL helps students debug their cal­
culations. Students report the age and horizon distance, 
recreate the Matter Only curves in Figs. 1 and 2, and 
interpret the results. 
In the second part of the project, we replace the Mat­

ter Only test case with the general solution to Eq. (22), 
which involves another numerical integration. After de­
bugging the solution by comparing to the analytical so­
lution of part 1, students compute Table IV to compare 
different cosmologies. In the final parts of the project, 
students explore the applications described in the next 
section. An important aspect of these applications is 
that students are directed to original sources online to 
find the latest results for themselves. 

Advanced students are able to complete the project in 

http:laboration.10
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FIG. 2: Conformal distance (top), angular diameter distance 
(2nd from top), luminosity distance (2nd from bottom), and 
distance modulus (bottom). The top three distance factors 
are divided by the Hubble distance DH = c/H0 ∼ 1600 Mpc. 

about six hours. Less advanced students require instruc­
tion on creating parameters and using them appropri­
ately in equations in EXCEL. Submitting the first part 
of the project well ahead of the others allows students 
time to recover from many of the bugs they may en­
counter. In the later parts of the project it’s important 
that the bugs are gone so that they can focus on the 
physical implications of the integration. 

WMAP 
Benchmark 
Low Density 
Matter Only 

V. OBSERVATIONAL APPLICATIONS 

Students can use these results to compute rest-frame 
properties such as luminosity and the physical dimen­
sions of sources. To help students appreciate the phys­
ical implications of their calculations, they must apply 
them to four different problems: 1) find the distance 
and size of a high redshift object; 2) find the age and 
horizon of the WMAP seven-year universe; 3) compare 
the WMAP seven-year universe to Ryden’s Benchmark 
universe; 4) examine why the low-density model is not 
acceptable compared to the WMAP model. 

A. Galaxy Zoo: Hubble (Zooniverse) 

Galaxy Zoo: Hubble19 is an excellent website to intro­
duce students to galaxy classification. It doesn’t take 
long to find a few complicated objects that make one 
ponder about the sizes of the features in the images. In 
Galaxy Zoo: Hubble students can save interesting galax­
ies into an album where more detailed information can 
be displayed. An example of such a galaxy is shown in 
Fig. 3. 
From the given redshift of z = 0.8266, our numerical 

calculation tells us that the angular diameter distance to 
the central galaxy is DA = 1580 Mpc and that the look-
back time is te = 7.01 billion years. We therefore learn 
that the light observed by the Hubble Space Telescope 
in this image was emitted when the universe was slightly 
less than half its current age. Using the angular scale 
on the image we can estimate the angular extent of the 
larger galaxy along its major axis to be Δθ = 5.12'' . 
Using Eq. (8) we then find that the galaxy’s diameter is 
39 kpc. 
It is interesting to compare the dimensions of these 

distant objects to the dimensions of galaxies in our local 
group of galaxies. The size of the larger galaxy is sim­
ilar to the size of the Milky Way galaxy. If the small 
neighboring galaxy is at the same redshift and not a 
chance alignment, it measures 18 kpc along its major axis 
which is about four times larger than the Large Magel­
lanic Cloud. The two galaxies are separated by about 
29 kpc, which is similar to the distance to our closest 
neighboring galaxies. These comparisons show that grav­
ity in the past produced structures with similar sizes and 
separations to those of galaxies in our vicinity today. 

B.	 Age and Horizon of the WMAP Seven-year 
Universe 

Even after a course in cosmology it is likely to remain 
a bit of a mystery how professional cosmologists calcu­
late the precise age and size of our visible universe. Here 
we accurately reproduce the latest state-of-the-art results 
presented by the WMAP team10 to show all steps of the 
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FIG. 3: Image courtesy of Galaxy Zoo: Hubble project.19 This galaxy is at a redshift of 0.8266 corresponding to an emission 
time of 7.01 billion years ago. Its angular size in the long dimension is about 5.12"" , which corresponds to 39 kpc. If the neighbor 
galaxy is at the same redshift, it is located 29 kpc away from the larger galaxy and has a diameter of 18 kpc. 

calculation clearly. Table IV compares the published val­
ues to our calculation performed with the WMAP seven-
year parameters listed in Table III. The published age of 
the universe is 13.75 ± 0.11 billion years and our com­
putation reproduces this result. It is worth mentioning 
that the experimental result has two significant figures 
and that, within the experimental uncertainty, this age 
may change in the coming years. However, as new, more 
precise density parameters become available, we will con­
tinue to be able to compute the age with a precision of 
four significant figures. 
The size of the visible universe is characterized by the 

horizon distance. The horizon distance is the conformal 
distance determined for light emitted at the time of the 
Big Bang. Any observation of our universe necessarily 
occurs within a sphere of radius DC (tBigBang). We calcu­
late the horizon distance to be 14 357 Mpc for the WMAP 
universe. 
Radiation emitted at the Big Bang was reabsorbed 

many times in the dense early universe and does not reach 
our telescopes today. As the universe expanded it cooled 
and eventually reached the temperature at which free 
electrons and protons combine to form neutral hydrogen, 
an event called recombination. As recombination was oc­
curring, the mean-free-path of photons was lengthening 
dramatically because the probability that a photon scat­
ters from a neutral hydrogen atom is much smaller than 
the probability that it scatters from a charged electron. 
Shortly after recombination, therefore, the universe be­

came transparent and the radiation and matter compo­
nents of the universe decoupled. The cosmic microwave 
background light that we measure today are the photons 
that last scattered at about the time of decoupling. The 
redshift of decoupling published by the WMAP team10 

is z = 1090.89±0.68 We interpolate using this red­0.69. 
shift and find that the conformal distance to decoupling 
is DC = 14 073 Mpc and that decoupling occurred just 
377 710 years after the big bang. As noted earlier, radia­
tion energy density scales as 1/a4(t) =  (1+  z)4 . Because 
the radiation density is proportional to T 4, it follows that 

Te = Tob(1 + z). (24) 

Setting z = 1 090.9 and  Tob = 2.7255 K we find that the 
decoupling occurred when the temperature of the uni­
verse was Te = 2976.0K.  
Another cosmological marker is the time when the 

matter density surpassed the radiation density. In the 
early universe, radiation dominated the energy den­
sity. Because the radiation energy density decreases as 
1/a4(t) = (1 +  z)4 , which is faster than the 1/a3(t) =  
(1 + z)3 with which the matter energy density decreases, 
there is a redshift at which the two are equal 

Ωr,0(1 + z)4 = Ωm,0(1 + z)3 . (25) 

Solving for z and using the WMAP values of Ωr,0 and 

http:1090.89�0.68
http:project.19
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TABLE IV: The published WMAP10 ages and distance factors compared to our computed values. Notice that our calculation 
reproduces at least four significant figures, which is more numerical precision than the experimental uncertainty. It is also 
interesting that the Benchmark universe is accurate to about 3%, which although close, is not in agreement with the published 
WMAP values. 

Age Horizon Age at Dc at Dc at 

(billion yrs) distance decoupling decoupling Matter-Radiation 

(Mpc) (yrs) (Mpc) Equality (Mpc) 

PUBLISHED: 

377, 730+3205 14, 073+129 14, 238+128 WMAP 7-year 13.75 ± 0.11 
−3200	 −130 −129 

THIS WORK:
 

WMAP 7-year 13.75 14,357 377,710 14,073 14,238
 

Benchmark 13.46 13,897 368,521 13,618 13,780 

Low Density 13.04 17,802 548,438 17,421 17,664 

Matter Only 9.31 8,558 258,085 8,307 8,416 

Ωm,0 gives 

Ωm,0 .2722 
z = − 1 =  − 1 = 3 232. (26) 

Ωr,0 8.42 × 10−5 

The redshift of matter-radiation equality is published in 
the WMAP paper10 as z = 3 232 ± 87. We again inter­
polate to find that the conformal distance to this event 
is DC = 14 238 Mpc. 

These calculations reproduce four or more significant 
figures of precision, which is better than the measure­
ment uncertainties. This is not to imply that the mea­
surement uncertainties produce the numerical error, but 
rather that our numerical precision and accuracy are suf­
ficient for the time being. This exercise shows how pro­
fessional cosmologists compute these factors. It also gives 
us confidence that the calculation is accurate at all ob­
servable time and distance scales. 

C.	 Comparison of the WMAP Seven-year Universe 
to the Benchmark Universe 

Students using Ryden’s textbook will be familiar with 
the Benchmark universe parameters. These parameters 
are conveniently simple with just one significant figure, 
and nice to use in a classroom setting. It is interesting to 
compute the difference between the Benchmark Universe 
(circa 2003) and the best available measurements. Ta­
ble IV shows that ages and horizon distances differ from 
the WMAP seven-year release by about 3%. From this 
difference it is easy to argue that the basic sequence of 
cosmological events has not changed since 2003 even as 
better datasets became available. The results presented 
in the Ryden textbook are therefore close enough to the 
most accurate results to be of pedagogical value. Stu­
dents generally think 3% is very good agreement. The 
3% differences, however, are more than 3σ which makes 
for a good discussion of precision versus accuracy. Al­
though pretty close, the Benchmark model is not a good 

fit to the data. This is a rare opportunity for an under­
graduate student to witness science as it is progressing. 

D. Doesn’t the Low Density universe do a pretty 
good job? 

Finally, the indirect detection of dark matter and dark 
energy has generated a lot of enthusiasm in observational 
cosmology. This excitement has even made it into the 
popular media. What is surprising is that a simple Low 
Density universe made up of just 5% baryonic matter, a 
little radiation, and the curvature that would result from 
general relativity is pretty similar to the WMAP and 
Benchmark universes out to a redshift of about 1.5 (see 
Fig. 2). The Low Density universe contains only baryonic 
matter and radiation, the stuff we have experimented 
with in our laboratories, and none of the exciting new 
stuff. 
At redshifts below 1.5, Type IA supernovae have been 

used to measure the distance modulus vs. redshift. The 
graph of the distance modulus vs. z is called the Hub­
ble Plot. In the bottom panel of Fig. 2 we show Hubble 
plots computed for four different universes (i.e. for four 
different sets of parameters). For comparison, we have re­
produced the Riess20 and Perlmutter21 Hubble Plots in 
Fig. 4. These data come from the papers for which Perl­
mutter, Schmidt, and Riess won the 2011 Nobel Prize.6 

The solid line in the plot is the Benchmark universe. The 
Low Density universe falls about 0.1 magnitudes higher 
than the Benchmark universe at redshifts above 0.3. The 
scatter in the data at these redshifts is generally within 
about 0.2 magnitudes. When these data were published, 
the central value favored a cosmological constant. It is 
interesting to note, however, that the Low Density uni­
verse which lies about 0.1 magnitudes above the solid line 
was still a ∼ 3σ possibility. 
Today, the Union-2 SN Compilation22 contains a much 

more extensive data set. We have reproduced the more 
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FIG. 4: Distance Modulus DM = m − M , as a function of 
redshift.2,20,21 . The bottom panel shows the residuals, i.e. the 
differences between the observed distance moduli and those 
computed for a universe with ΩM = 0.3 and  ΩΛ = 0.0. This 
figure is Reprinted by permission of Pearson Education, Inc., 
Upper Saddle River, New Jersey. 

extensive data set in Fig. 5 and compared it to the 
WMAP universe. This comparison shows that the Low 
Density and Matter Only universes are now excluded by 
the data with high probability. Excluding these alterna­
tive universes is an important exercise for many students. 

VI. CONCLUSIONS 

In the early sections of this paper we presented a theo­
retical model of the expanding universe at the undergrad­
uate level. We also connected the theoretical aspects of 
the model to astronomical quantities of sources such as 
redshift, rest-frame size, and brightness. 
To accurately calculate the age and various distances 

in our universe it is important to have consistency be­
tween the theoretical presentation and the experimen­
tally determined density factors. Although specialists in 
the field routinely compute these age and distance fac­
tors, the WMAP seven-year density parameters in Ta­
ble III are not yet in the literature in this form. In the 
literature, Ωm,0 is divided into separate baryonic (nor­
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FIG. 5: Union-2 Compilation22 distance-modulus residuals 
compared to our test cosmologies. The Benchmark and 
WMAP cosmologies are both in agreement with the measured 
distributions. The Low Density and Matter Only universes 
are ruled out in the redshift range from 0.2 < z <  0.8. 

mal) and dark matter components. The simple addition 
of these leads to round-off errors. Instead Ωm,0 has to 
be computed from the more fundamental measurement 
of Ωm,0(H0/100)

2 . Also, since the Ωr,0 is not measured 
directly by WMAP, it is not presented with the other 
parameters. Only by digging into the details of the pa­
pers do we find that WMAP used the value presented 
here. Most astronomers are familiar with the theoretical 
presentation given in this paper and use it to compute 
high redshift distances and ages. We therefore believe it 
is useful to communicate the central value of the WMAP 
seven-year density parameters in this form. 

We are enthusiastic about the educational value of nu­
merically computing accurate age and distance factors in 
cosmology. The calculations presented here are accurate 
back to just moments after the Big Bang. In this paper, 
we have described four projects that can be computed in 
any language including EXCEL to build our understand­
ing of the Standard Model of Cosmology. These calcu­
lations remove much of the mystery in how the age of 
the universe is determined by professional cosmologists. 
Comparison with published values yields four significant 
figures of precision which is sufficient for the time being. 
We also show that galaxies at high redshift have similar 
gravitational characteristics to those in our nearby vicin­
ity. This is presumably due to the nature of gravitational 
attraction remaining constant over the history of the uni­
verse. Finally, we show that the Low Density and Matter 
Only universes are clearly inconsistent with the Hubble 
Plot constructed with the largest compilation of Type IA 
supernovae to date. Each of these projects gives hands-
on experience bringing observations and theory together 
to build a better understanding of reality. 
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