ALEXANDER'S SUBBASE LEMMA

S. SALBANY AND T. D. TODOROV

(Communicated by James E. West)

This note provides a very simple proof of Alexander's subbase lemma, from the point of view of Nonstandard Analysis. There is no direct appeal to Zorn's lemma or equivalent principle (as in [1]). This set theoretic principle is, of course, embodied in the construction of the nonstandard extension *X.

Notation and terminology is that of A. Hurd and P. Loeb [2].

Lemma (Alexander). Let (X, T) be a topological space and \mathcal{S} a subbase of closed sets. If every family of closed sets in \mathcal{S} with the finite intersection property has nonempty intersection, then (X, T) is compact.

Proof. Recall that (X, T) is compact iff ${}^{*}X = \bigcup_{x \in X} \mu(x)$ [2, Theorem (2.9), Chapter III] and that the monad of x is $\mu(x) = \bigcap \{{}^{*}G | x \in G, X - G \in \mathscr{S}\}$ [2, Proposition (1.4) of Chapter III]. Let $\alpha \in {}^{*}X$. Consider $\mathscr{F} = \{F | F \in \mathscr{S}, \alpha \in {}^{*}F\}$. Then \mathscr{F} has the finite intersection property and, by assumption, there is a point x such that $x \in \bigcap \{F | F \in \mathscr{F}\}$. We show that $\alpha \in \mu(x)$: if $x \in G$ and $X - G \in \mathscr{S}$, then $\alpha \notin {}^{*}(X - G)$, by our choice of x, hence $\alpha \in {}^{*}G$, as required.

References

- 1. J. L. Kelley, General topology, Van Nostrand, New York, 1955.
- 2. A. E. Hurd and P. A. Loeb, An introduction to nonstandard real analysis, Academic Press, 1985.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZIMBABWE, HARARE, ZIMBABWE

INTERNATIONAL SCHOOL FOR ADVANCED STUDIES (SISSA/ISAS), 34014 TRIESTE, ITALY

Received by the editors June 13, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 03H05, 54J05, 54D30. Key words and phrases. Nonstandard extension, Alexander's subbase lemma.