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Introduction

The purpose of this paper is the study of two extensions of a completely regular
ordered space eX, T, "S). On the one hand, the Nachbin ordered compactification



.NtX, T,~) and on the other, the ordered realcompactilication "J?( X, T, ,,::),which
we introduce and which coincides with the Hewitt rcalcornpactification when the
order is discrete.

Both of these constructions are obtained as "ordered nonstandard hulls". The
Nachbin order compactification arises from the nonstandard extension *X of X
and the order realcompactification from the set /Y of prenearstandard points of *X.

In the classical theory of rings of continuous functions, the points of the Stone-
tech compactification and of the Hewitt realcompactification are intimately con-
nected with the maximal ideals of the rings of hounded continuous C,,( X, IR) and
continuous C(X, IR) real-valued functions defined on X. In the ordered case let
Ch(X, IR) and CI(X, IR) denote the sets of functions from e,,( X, iR) and C(X, IR),
respectively, which are monotone nondecreasing, in the sense that [! .v) ~.f(I') if
x~y. Let Ab(X,IR) and A(X,IR) denote the smallest suhrings of e,,(X,IR) and
C(X, IR) which contain C),(X, IR) and C· (X, IRl, rcspcct ively. We prove that the
points of }f(X, T,~) and 0'2(X, T,~) completely describe the maximal ideals of
Ab(X, IR) and A(X, IR), respectively. The maximal ideals of ;\,,( .Y, iRj and A(X, IR)
are also related to nonstandard points in * X and .\' and we give the exact relation
in Proposition 4.3 and Corollary 4.6. For the nonordered case, which presents
features essentially different from the ordered one, we mention the work of Dyre [3].

Our work also enables us to give a characterization of the completely regular
ordered spaces which are closed subspaces of products of copies of (IR, 7, <), the
real line with the usual topology and the usual order. This characterization answers
a question raised by Choe and Hong [2].

The methods used in the paper are topological (standard) as well as nonstandard,
in the belief that this interaction will prove fruitful.

For topology and the theory of rings of continuous functions, we refer to Gillman
and Jerison [5] as well as Weir [12]. For ordered topological spaces and quasi-
uniform spaces to Nachbin [9] and to Fletcher and Lindgren [4]. The nonstandard
concepts and results can be found in Hurd and Loeh [8]. We emphasize that we
use systematically the saturation principle and require a set of individuals S that
contains both X and IR. The degree of saturation is the larger of 2e"" and 2e""'\, in
particular, any polysaturated nonstandard model of S will do.

1. Nonstandard compactification of ordered topological spaces

Let (X, T,~) be an ordered topological space, i.e., a topological spacewith a
binary relation <, reflexive, antisymmetric and transitive, whose graph is a' closed
subset of X (Nachbin [9]). Recall that the closed ness of the graph implies that the
space (X, T,~) is Hausdorff. We represent the classes of continuous and bounded
continuous real-valued functions defined on X by C(X, IR) and C,,(X, IR), respec-
tively, and by CI(X, IR) and Ch(X, IR) we will denote the monotone nondecreasing
functions in C(X, iR) and C,,(X, IR), respectively.



Definition I.1 (Nonstandard compactification). Let cp1S C1(X, IR) be a family of
monotone nondecreasing continuous real-valued functions defined on X We define
the topological space with an additional binary relation (* X, T,~) by:

(i) *X is the nonstandard extension of X and T is the standard topology in
*X (also denoted by T) [II, Section I] with basic open sets *0, where 0 is an
open set in (X, T).

(ii) Let a,{3E*X Put a-{3 if '"j(a)=*j({3) for all jEcp1 where = is the
infinitesimal relation in *IR.

(iii) Let a,{3E'1'X. Put a~{3 if'1'f(a)'1'<'1'f({3) or'1'f(a)=*f({3) forallfEcp1,
where *< is the nonstandard extension of the usual order < in IRinto *IR.

The space ('1'X, T,~) will be called the "cpT-nonstandard compactification of
(X, T, ~)".

The terminology "nonstandard cornpactification" arises from the fact that (*X, T)
is a compact topological space containing (X, T) as a dense subspace [11,
Proposition (1.5)].

Proposition 1.2. (i) The relation ~ is reflexive and transitive. For any a, {3E: *X,
(a: :S {3and (3 :S a) implies (a - (3).

(ii) "-" is an equivalence relation on '"X
(iii) l(a,a',{3,{3'E:'1'X, then (a~{3, a-a' and (3-{3') implies (a'~{3').

Proof. The proof is straightforward and will be omitted. 0

Remark. Norice that the relations ~ and (~ and 7-) in *X do not coincide, in
general, with the nonstandard extensions *~ and *< of ~ and <, respectively. First
of all :S is not an order relation in *X and *~ is. Concerning (~ and 7-) and *<,
they both are strict order relations in *X but the following example shows that they
do not coincide. Let (X, T,~) be (IR, 7, ~), the real line with the usual topology
and usual order, and let a, {3E: *IR, be two finite nonstandard numbers such that
a: *< {3and a = {3 (e.g. a = 0 and (3 any positive infinitesimal). Then, by continuity
of the functions in cpT, we have *f( a) = *f({3) for allf in cp1, which means that the
numbers a and {3 are not in the relation given by (~ and 7-).

Definition 1.3 (Prenearstandard points). Let cp1S C1(X, IR). We define X s *X by

X={aE*XI*j(a)E*IRF for all j s cp1} (1)

where *IRF is the set of finite nonstandard real numbers. The points in X will be
called ep T -preneatstandard points.

We shall require the following lemma.

Lemma 1.4. Let a and {3 be points of *X such that a 7- (3 and a is C1(X, IR)-
prenearstandard. Then there exists a continuous monotone non decreasing function
g: (X, T, ~) --'> (IR, 7, ~), 0 ~ g ~ I, such that (*g( a) = 0 and *g({3) = 1) or (*g( a) = 1
and *g({3) = 0).



.N'(X, T,~) and on the other, the ordered realcompactification !?/leX, T, ~), which
we introduce and which coincides with the Hewitt realcompactification when the
order is discrete.

Both of these constructions are obtained as "ordered nonstandard hulls". The
Nachbin order compactification arises from the nonstandard exten ion *X of X
and the order realcompactification from the set X of prenearstandard point of *X.

In the classical theory of rings of continuous functions, the points of the Stone-
tech compactification and of the Hewitt realcompactification are intimately con-
nected with the maximal ideals of the rings of bounded continuous Cb(X, IR) and
continuous C(X, IR) real-valued functions defined on X. In the ordered case let
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points of N(X, T, 'S) and !?/leX, T, 'S) completely describe the maximal ideals of
Ab(X, IR) and A(X, IR), respectively. The maximal ideals of Ah(X, IR) and A(X, IR)
are also related to nonstandard points in *X and X and we give the exact relation
in Proposition 4.3 and Corollary 4.6. For the nonordered case, which pre ents
features essentially different from the ordered one, we mention the work of Dyre [3].

Our work also enables us to give a characterization of the completely regular
ordered spaces which are closed subspaces of products of copies of (IR, 7', :!5;), the
real line with the usual topology and the usual order. This characterization answers
a question raised by Choe and Hong [2].

The methods used in the paper are topological (standard) as well as nonstandard,
in the belief that this interaction will prove fruitful.

For topology and the theory of rings of continuous functions, we refer to Gillman
and Jerison [5] as well as Weir [12]. For ordered topological spaces and quasi-
uniform spaces to Nachbin [9] and to Fletcher and Lindgren [4]. The nonstandard
concepts and results can be found in Hurd and Loeb [8]. We emphasize that we
use systematically the saturation principle and require a set of individuals S that
contains both X and IR. The degree of saturation is the larger of 22"0 and 22C
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particular, any polysaturated nonstandard model of S will do.

1. Nonstandard compactification of ordered topological spaces

Let (X, T,~) be an ordered topological space, i.e., a topological space with a
binary relation'S, reflexive, antisymmetric and transitive, whose graph is a closed
subset of X (Nachbin [9]). Recall that the closedness of the graph implies that the
space (X, T, ~) is Hausdorff. We represent the classes of continuous and bounded
continuous real-valued functions defined on X by C(X, IR) and Cb(X, IR), respec-
tively, and by ct(X, IR) and Cl(X, IR) we will denote the monotone nondecreasing
functions in C(X, IR) and Cb(X, IR), respectively.



Definition 1.1 (Nonstandard compactification). Let cpl <;; CI(X, IR) be a family of
monotone nondecreasing continuous real-valued functions defined on X. We define
the topological space with an additional binary relation (* X, T,~) by:

(i) *X is the nonstandard extension of X and T is the standard topology in
*X (also denoted by T) [11, Section 1] with basic open sets *0, where 0 is an
open set in (X, T).

(ii) Let a, 13 E *X. Put a - 13 if *f(a) = *f(f3) for all fE cpl where = is the
infinitesimal relation in *IR.

(iii) Let a,f3E*X. Put a~f3 if *f(a)*<*f(f3) or*f(a)=*f(f3) forallfECP',
where *< is the nonstandard extension of the usual order < in IRinto *IR.

The space (*X, T,~) will be called the "CP'-nonstandard compactification of
(X, T, ~)".

The terminology "nonstandard compactification" arises from the fact that (*X, T)
is a compact topological space containing (X, T) as a dense subspace [11,
Proposition (1.5)].

Proposition 1.2. (i) The relation ~ is reflexive and transitive. For any a, 13 E *X,
(a~f3 and f3~a) implies (a-f3).

(ii) "-" is an equivalence relation on *X.
(iii) Ifa,a',f3,f3'E*X, then (a~f3, a-a' and 13-13') implies (a'~f3').

Proof. The proof is straightforward and will be omitted. 0

Remark. Norice that the relations ~ and (~ and 7-) in *X do not coincide, in
general, with the nonstandard extensions *~ and *< of ~ and <, respectively. First
of all ~ is not an order relation in *X and *~ is. Concerning (~ and 7-) and *<,
they both are strict order relations in *X but the following example shows that they
do not coincide. Let (X, T, ~) be (IR, T, ~), the real line with the usual topology
and usual order, and let a, 13 E *IR, be two finite nonstandard numbers such that
a *< 13 and a = 13 (e.g. a = 0 and 13 any positive infinitesimal). Then, by continuity
of the functions in cpl, we have *f(a)=*f(f3) for allfin cpl, which means that the
numbers a and 13 are not in the relation given by (~ and 7-).

Definition 1.3 (Prenearstandard points). Let cpl <;: CI(X, IR). We define X <;: *X by

X={aE*XI*f(a)E*IRF for allfE CPI} (1)

where *IRF is the set of finite nonstandard real numbers. The points in X will be
called cp I -prenearstandard points.

We shall require the following lemma.

Lemma 1.4. Let a and 13 be points of *X such that a 7- 13 and a is CI(X, IR)-
prenearstandard. Then there exists a continuous monotone non decreasing function
g: (X, T, ~) ~ (IR, T, ~), O~ g ~ 1, such that (*g(a) = 0 and *g(f3) = 1) or (*g(a) = 1
and *g(f3) = 0).



Proof. Let *f(ex) "!' *f(f3) for some fE Ci(X, IR) and assume *f(cx) *> *f([3). Since
*f(ex) is finite, there are r, s in IRsuch that *f(cx) *> r> s *> *f(f3)· Let tp : (IR,7, ~)-7
(IR, 7,~) be such that O~ sp ~ 1, cp = 1 on [r, --7) and cp = 0 on (~, s]. Then for g = Ii> 0 f,
we have *g(ex)=*cp(*f(ex)) = 1 (since *cp~[{l}]=*(cp-[{1}])2*[r,--7)3*f(ex)).
Also, *g(f3) =0. If *f(cx) *< *f(f3), then g can be found such that *g(ex)=O,
*g(f3) = 1. The proof is complete. 0

We recall the following definition of Nachbin [9, p. 52]:

Definition 1.5. Let (X, T,~) be an ordered topological pace and let cP £; i(C,IR).
We say that ep i distinguishes the points and closed sets of (X, T, ~) if for any x E X
and any closed set F <:; X not containing x there exist two function j, g E cP uch
that 0 ~f ~ 1, 0 ~ g ~ 1,/ is nondecreasing, g is nonincreasingJ(x) = 1, g(x) = 1 and

(fllg)(y)=O forallyEF.

An ordered topological space (X, T, ~) is a completely regular ordered pace if it
admits a family cpi <:; Ci(X, IR) which distinguishes points and clo ed et of X.

The following result establishes a connection between the monads J.t(x), x E X,
of the space (X, T,~) (Hurd and Loeb [8, p. Ill]) and the equivalence cla es q(x),
x E X, under the equivalence relation - defined above.

Lemma 1.6. J.t(x) <:; q(x) for any x E X. When the family cPi distingui he points and
closed sets in X, then J.t(x) = q (x) for all x E X.

Proof. J.t(x) <:; q(x) follows immediately from the continuity of the functions f in
epi. Let cPi distinguish points and closed sets. Suppose that ex E q(x) - J.t(x) and let
ex E *0 for some open neighbourhood 0 of x. Let f and g be two functions which
distinguish x and X - 0 in the sense of Definition 1.5. We have *(f II g)(ex) = 0, so
that *f(cx)=0 or *g(cx)=O. This contradicts o e qt x). The proof is complete. 0

2. Nonstandard ordered hulls and the Nachbin ordered compactification

In this section we show that by identifying points of the nonstandard order
compactification (*X, T, 'S) we obtain the Nachbin ordered compactification intro-
duced by Nachbin [9] and characterized by the following universal property: If
(X, T, ~) is a completely regular ordered space which is a dense order subspace of
a compact ordered space (X, t; ';;:;),then every bounded f: (X, T, ~)--7 (IR,7,~)
admits a unique extension J: (X, t; ';;:;)--7 (IR, 7, ~). The Nachbin order cornpac-
tification of (X, T, <), denoted by .H(X, T, ~), has the above stated extension
property [9]. By contrast, it should be noted that in our context the extension of a
given function f is simply the restriction of the nonstandard extension *f to the
equivalence classes arising from the identification.



Definition 2.1 (Nonstandard ordered hulls). Let (X, T, "S) be an ordered topological
space, cPi <;; Ci(X,~) and (* X, T,~) be its nonstandard cPi -compactification
(Definition 1.1).

(i) Let

X=X/- (2)

be the corresponding nonstandard <pi-hull f the quotient topology and ,s the
(order) relation in X defined by: if a, b e X, then a ,s b if IX ~ f3 for some a E a and
f3 E b. The space

(3)

will be called the nonstandard cP i -hull of (X, T, "S).
(ii) For any f E cPi, we define j: X ~ ~ by j 0 q = st 0 *f where q is the quotient

mapping from X onto X and "st' is the standard part mapping of *~.

Proposition 2.2 (Properties of ,s). (i) ,s is an order relation in X which is an extension
oj"S in X in the sense that if x, y E X, then (q(x);; q(y)¢:>x "S y).

(ii) The following formula for the graphs is valid:

(4)

(iii) Every f e cPi, f: X ~~, has a unique continuous monotone nondecreasing
extension j: X ~ ~ (Definition 2.1 (ii)) and

f(x)=j(q(x)), XEX (5)

(iii) (iv) The graph [,s] of,s is a closed subset of X.

Proof. (i) Follows immediately from Proposition 1.2. (ii) Formula (4) is a simple
interpretation of the definition of ;;. (iii) The continuity of j and formula (5) are
proved in [11, Proposition (2.6)] and the property of j to be monotone and
nondecreasing follows from the fact that *f (by the transfer principle (Hurd and
Loeb [8])) and standard part mapping are so. (iv) Suppose that (a, b) t [,s] for
some a, b e X and let a = q( IX) and b = q(f3) for some a, f3 E X. That means (a, f3) t
[~], i.e., there exists a function j s cPi such that *j(a) *> *f(f3) and *j(a) "I:*j(f3).
Taking the standard part we obtain j(a» j(b). Let r be a real number between
j(a) and j(b), i.e., j(b) < r <j(a) and define

H = j~[(~, r)].

The sets G, H are open in X since j is continuous and hence G x H is open in
X x X. We have, obviously, (a, b) E G x Hand (G x H) (\ [,s] = 0 since j is
monotone nondecreasing. The proof is complete. 0



Proposition 2.3. If cpt <;; ct(X, IR), then the graph [~] of ~ is TxT-closed and
TxT-compact in X x X.
Proof. In this case X x X is compact [11, Proposition (2.11)]. 0

Proposition 2.4. Let cpt = ct(X, IR). Then the nonstandard hull (X f,~) of iX, T, "')
coincides with the Nachbin order compactification .H( X, T, ~) of (X, T, "').

Proof. We have X = * X in this case, (X, f) is Hau dorff and compact and contains
a continuous image of X [11, Propositions (2.9) and (2.11)]. The tatement follows
directly from Proposition 2.2 and the universal property characterizing the achbin
order compactification. The proof is complete. 0

Example 2.5. (1) Consider (IR, T, "'S) and let cpt consist of the ingle functionf(x) =
arctan x. Then iR = *IR and iR = *IR/ - is the two-point cornpactification of the real
line regarded as an ordered topological space.

(2) (IR, T, "'S) and let cpt consist of all bounded monotone continuou real-valued
functions on (IR, T, "'S). The universal property characterizing the achbin ordered
compactification .H(IR, T, "'S) shows that .H(IR, T, ~) is the two-point ordered com pac-
tification of (IR, T, "'S).

(3) When "'S is the discrete order on X, then .H(X, T, ~) = (3(X, T,~) where '"
is the discrete order on the Stone -Cech compactification (3(X, T, ~) of (X T, "')
(Nachbin [9]).

(4) Consider (IR, T, ~). When cpt consists of all monotone continuou real-valued
functions defined on X, then the corresponding nonstandard hull X/ - i imply
(IR, T, ~), see Section 6.

3. The algebras of functions A(X,~) and Ab(X,~)

In what follows, for the sake of simplicity and without loss of generality we shall
restrict ourselves to completely regular ordered topological pace (X, T, "')
(Definition 1.5), and also to cpt being CL(X, IR) or C (X, IR). In thi case X is a
topological ordered subspace of X and formula (5) reduces to j(x) = f(x), x E X
and the monads and the equivalence classes coincide for the standard point (Lemma
1.6).

The points of the Stone.-Cech compactification specify uniquely the maximal
ideals in Cb(X, IR) and C(X, IR) (Gillman and Jerison [5, Theorems (7.2) and (7.3)]).
We shall show that the points of the Nachbin compactification .H(X, T,~) and
points of the nonstandard compactification (*X, T, :oS) determine maximal ideals in
certain algebras of functions Ah(X, IR) and A(X, IR), which are naturally associated
with ct(X, IR) and Ct(X, IR), respectively. In this section we shall present basic
properties of the algebras Ah(X, IR) and A(X, IR) and in Section 4 we describe their
maximal ideals.



Definition 3.1. (i) We denote by Ah(X, IR) = CL(X, IR) - CL(X, IR) the algebra of all
continuou function which can be represented as a difference of two functions
from b(X, IR).

(ii) By A(X, R) =
ce of function In

1(X, IR) - C 1(X, IR) wi II be denoted the algebra of all differen-
(X, IR).

Propo ition 3.2. (i) A(X, IR) is the smallest suba/gebra of C(X, IR) which contains
C (X, R). A(X, IR) i a/so a sublattice of C(X, IR), in the usual ordering of C(X, R).

(ii) Ab( ,IR) i the smallest subalgebra ofC(X,IR) and of C; (X, R) which contains
Cb( ,R). h( ,IR) is a/ 0 a sublattice of C(X, IR).

Proof. (i) We fir t e tabli h that A(X, IR) is a subalgebra and a sublattice of C(X, R).
It i clear that if I. g are in (X, IR), then 0 are f + g, fv g and fAg. For the
product in ( ,IR) ob erve that

I: s v I: (gvO)-(-f)· (gAO),

hence J- g E (X, IR) for all f, g E A( X, IR), since the product of a function in Cl (X, IR)
and a nonnegative function in l(X, IR) is also in Ci(X, IR) and, furthermore, the
product of a function in -Ci(X,IR) and a negative function in C1(X, IR) is in
C ( R). inally if f, g are in (X, IR), then If I - f21 E A(X, IR) since If I - f21=

(fl v f2) - (fl Af2)' The re ult now follows since f v g and t :« can be expressed
algebraic lIy in term off + g, If + sl. If - g], (ii) is proved similarly. 0

Lemma 3.3. For any f E Ab(X, IR) and any c E IR there exist functions fl and f2 in
Ab(X, R) such that f = fl - f2 and fl (x) ;?; c, and f2(X) ;?; c for all x E X.

Proof. (i) Let f = 'PI- 'P2 for some functions 'PI and 'P2 in Cl(X, IR) and let b be a
lower bound for both of them, i.e.,

for all x E X. Then the functions

fl = 'PI- b + c,

are a required. 0

Example 3.4. From the above result, with c = 0, it follows that

Ab(X, R) = C b+(X, IR) - cL+(X, IR) (6)

where Cb+(X, IR) con ists of all nonnegative functions in CL(X, IR). The following
example show that it is not always possible to express a monotone function as the
difference of two nonnegative monotone functions, which, in particular, implies
that A+(X, IR), the algebra of functions Cl+(X, IR) - Cl+(X, IR), is a proper sub-
algebra of A(X, IR). For uppose

f: (IR, 7, :s;) ~ (IR, 7, :s;)



isf(x) = x. Iff(x) = fl(x) - f2(X) where bothf, andf2 are nonnegative, and monotone
nondecreasing, then

lim fl(X)=CI,
x-+-oo

lim f2(X) = C2
x--co

both exist in IR, so that

lim (fl(x)-f2(X))=Cj-C2¢ lim f(x).
x_-oo x--oo

Lemma 3.5. Let the function f: X ~ IR be bounded away from the zero, If(x)l;:i?; c> 0
for all x E X and some c E IR, and let 1/f be its reciprocal function. Then:

(i)

(ij)

f E A(X, IR) =>
f« Ab(X, IR) =>

1/ f E A(X, IR),

1/f E Ab(X, IR).

Proof. (i) Let f E A(X, IR), i.e., f = fl - f2 for some f, , f2 E Ci (X, IR). Obviously, we
have l/f='P,-'P2 where 'P,=Cf2 and 'P2=cf2-1/f and these functions are con-
tinuous. Then, consider the real functions

FI (x, y) = cy,
1

FAx, y) = cy ---,
x-y

1
x, Y E IR, [x - yl > JC'

These functions are monotone nondecreasing with respect to both x and y and,
obviously, we have

So, 'PI> 'P2 are monotone nondecreasing, i.e., they belong to Ci(X, IR), as composi-
tions of monotone nondecreasing functions. Hence 1/ f E A(X, IR). Moreover, they
are bounded whenever J, and f2 are bounded which means thatf E Ab(X, IR) implies
l/fE Ab(X, IR). The proof is complete. 0

As for the case when the order is discrete, we have:

Proposition 3.6. If cpi is et(X, IR) or ei(X, IR), then cpr - cpt and A(X, IR) are
isomorphic as algebras under the mapping f --'? J where X is the corresponding nonstan-
dard cpi -hull of X, J is the extension off on X (Proposition 2.2) and A(X, IR)=
et(.x, IR)- et(X, IR) where ei (X, IR) consists of all continuous monotone nondecreas-
ing real-valued functions defined on X.

The proof is similar to the proof of [11, Proposition (2.14)] and will be omitted.

4. Maximal ideals of A(X, 1R1)and Ab(X, 1R1)

In this section we shall describe the maximal ideals of A(X, IR) and Ab(X, IR)by
means of the points of the Nachbin ordered compactification N(X, T, ~) and the



non tandard ornpactific tion (* X, T,:;;::::) of (X, T, ~). We shall present a unified
de ription, whenever po sible, of A(X, IR) and A,,(X, IR) and shall use F to denote
one or the other of the e algebras.

To indi ate an e sential difference between the ordered and nonordered (or
di retely ord red) ituations, consider a maximal ideal M of C(X, IR). The zero
et (f), f eM, are nonempty, since otherwise 1/f E C(X, IR), so 1= (1/f) . f EM.

In the ord red ca e the following example shows that :!l(f) can be empty for some
I in M wh n Mia maximal ideal of A(X, IR).

E ample 4.1. Let ( , T ~) be the set [ -I, 1] - {O} with the usual topology and the
u ual order. Ob er e that f( -I) ~f(x) ~/( 1) for every function f in Ci(X, IR), so
that ( , )=A,,( ,1R).The etlofmultiplesoff,wheref(x)=x,formsaproper
ideal of ( , IR), ince 1 = k(x) . x gives

1 = (lim k(X)) . 0= 0
,-oo()

(lim k(x) exists and is finite).
'\.....0

Thu I can e included in a maximal ideal M of A(X, IR), nevertheless :!l(f) is
empty and T i in M.

e e tabli home ba ic properties of maximal ideals in F

Propo ition 4.2. Let M be a maximal ideal in F, then the following properties hold:

(i) f « M ~ I/IE M,

(ii) f,geM ~ /vgEMand/lIgEM,

(iii) feM ~ Oll/VIEM.

Proof. Only (iii) requires a proof. (ii) shows that OVfE M when j e M. So we may
a ume that f i nonnegative and show that fill E M. We first show that (f -1) v 0 E
M from which it follows that f - ((f - 1) v 0) E M, but

f - ((f - I) v 0) = -( ((f - 1) v 0) - f) = -( (-1) v (-f)) = 1 1If,

a required. If (f - 1) v 0 i!:: M, then for some g E F and hEM we have

g(x)((f(x)-I)vO)+h(x)= 1, XEX,

a that h(x)= Ion {XE Xllf(x)l~ I}, hence 1/1+lhl> 1, which is impossible since
III + IhlEM and M has no invertible element. 0

We can now characterize maximal ideals of F using the nonstandard ordered
compactification.

Propo ition 4.3. Let M <:::; F Then M is a maximal ideal of F if and only if there exists
a point a e *X such that

M ={fE FI*f(a) *g(a) =0 for all gE F}. (7)



Proof. Suppose M is given by (7). Obviously, M is an ideal of F To how that M
is maximal, assume f EM' - M for some ideal M' of F uch that Me M'. Then,
there is g in F such that *f(o.) *g(o.) 7"0. By multiplying by -I, if nece ary, we
may take *f(o.)*g(o.) *> 0, so that *f(o. )*g(o.) *> 1'> ° for some I' in lit Taking
g'=glr and writing g for g', we have *f(o.)*g(o.) *> I+28 for orne geF and
some 8 e IR, 8> O. Then, there is a function he F, h : X --+ [0, I], uch that h = I on
(fg )~[(~, 1+8]] and h = 0 on H = (fg) [[1+ 28, --+)]. For example

h = (l+ 28) - fg II I v O.
8

We have *h(o.)=O since o.E*H. Hence hEM. Also we have Ifgl+h~l, 0 by
Lemma 3.5, Ifgl + h is invertible. Now, the representation

Ifllgl + h = 1
Ifllgl + h Ifllgl + h

shows that 1EM', since Ifllgll (Ifllgl + h) EM' and hl(lfllgl + h) EM, by Propo i-
tion 4.2(i). Hence, M is maximal. Conversely, suppose Mia maximal ideal of F.
Then for each f E M, each g E F and each n E N the set

Af,g,n = {x E X Ilf(x)g(x)1 < lin} (8)

is not empty. For suppose not, then If(x )g(x)1 ~ 1I n for all x E X would imply that
II fg E F, by Lemma 3.5, which is impossible since fg EM. Moreover, we have

so that the family (8) has the finite intersection property. By the aturation principle
(Hurd and Loeb [6, p. 106]), there exists a point a. uch that

a. En {*Af,g." If E M, g E F, n E N},

i.e. *f(o.)*g(o.)=0 for all f « M and all gE F The proof is complete, 0

Corollary 4.4. For any maximal ideal M of F there exists a point a. E *X uch that

M ~ {f E F 1*f( a. ) = O}.

Moreover, if *g( 0') is finite for all g E F, then equality in (9) holds,

(9)

Corollary 4.5. The maximal ideals of F preserve the usual order in F

Proof. We have to show that M is convex, i.e., °~f, ~f EM in F implies f, E M
which follows immediately from (7). 0

Corollary 4.6. Let M ~ Ah(X, IR). Then, M is a maximal ideal of Ab(X, IR) if and
only if there exists a point a. E *X such that

M = {fe Ab(X, IR) I *f(o.) = O}, (10)



Proof. In this case F=A,,(X,IR), so that *g(a) is finite. D

The maximal ideals in Ab(X, IR) can be completely specified by the points of
J{(X, T,~) just as the maximal ideals in Cb(X, IR) are characterized by /3(X, T) in
the discrete-order case (Gillman and Jerison [5, Theorem (7.2)]).

Proposition 4.7. Let M c;:; Ab(X, IR). Then M is a maximal ideal of Ab(X, IR) iff Mis
of the form

M = if « Ab(X, IR) I lea) = O} (11)

for some point a E J{(X, T,~) (Proposition 2.4). The point a is uniquely determined
by M.

Proof. Let M be defined by (l 1). The set

Ma = it E A(X, IR) I lea) = O} (12)

is, obviously, a maximal ideal of A(X, IR) and, therefore, M is a maximal ideal of
Ab(X, IR), since Ab(X, IR) and A(X, IR) are isomorphic as rings, by Proposition 3.6,
and M; is the image of M under this isomorphism. Conversely, suppose Me
Ab(X, IR) is a maximal ideal of Ab(X, IR). Then, by Corollary 4.6, M can be
represented by (l O) for some a E *X. Hence, l(a) = 0 for all f E M where a = q(a),
i.e., M c;:; {fE Ab(X, IR) I lea) =a}, which immediately implies the equality, by the
maximality of M. To show that a is unique, suppose b e X, a v: b, and let b generate
the same ideal M, i.e.,

So, we have either a ~ b or b ~ a. Suppose a ~ b (the case b ~ a is treated similarly).
Then, by Nachbin [9, Theorems 4 and 6], there exists a function g E Cl(X, IR) such
that

§(a)=l and §(b)=O.

Hence g, 1 - gEM which is a contradiction. The proof is complete. D

Proposition 4.8. Let Me A(X, IR). Then M is a real maximal ideal of A(X, IR) if and
only if there exists a point a E X such that

M = {f E A (X, IR) I *f( a) = O}

where X is the set of Ci(X, IR)-prenearstandard points of *X (Definition 1.3).

(13)

Proof. Suppose M is a real maximal ideal of A(X, IR), i.e., A(X, IR)/ M and IRare
isomorphic as fields. Then, by Corollary 4.4, there is a point a E *X for which
*f(a)=O, when f« M. To show that aEX, consider any gEA(X,IR). Since M is
a real ideal, we have g=c+f for some CEIR and some f « M, so that *g(a)=c,



i.e., *g(a) is a finite number for all gEA(X,IR). Hence, (13) holds, by Corollary
4.4. Conversely, suppose M is given by (13) for some a E X. Then, *g(a) is finite
for all g E A(X, IR), so representation (13) is equivalent to (7), which mean that M
is a maximal ideal of A(X, IR). Then for any g E A(X, IR) we have g - C EM where
c = st(*g(a)). That means that M is a real maximal ideal. The proof is complete. D

Note. The characterization of maximal ideals M of C(X, IR) due to Gelfand and
Kolmogorov (Gillman and Jerison [5, Theorem (7.3)])

f « MP ¢:> P E c1px U!l(f))

does not hold in the ordered case, for example, the maximal ideal M of A(X, IR)
which contains f(x) = x, where X = [-1, 1] - {a} with the u ual topology and usual
order, has ~(f)=0, so c1px(.?l'(f))=0 (see Example 4.1).

5. Ordered realcompact spaces

In [2] Choe and Hong defined and studied the class of k-compact ordered paces,
where k is an infinite cardinal and observed that the ~1-compact ordered spaces
are not the closed subs paces of products of copies of IR, in contrast with the
discrete-order case. They raised the question of characterizing these IR-compact
spaces in the category of completely regular ordered spaces.

In this section we shall define in a natural way the class of ordered realcompact
spaces and show that they are precisely the closed order subspace of a product of
copies of (IR, T, :S), thereby answering the question of Choe and Hong.

Definition 5.1. A completely regular ordered space (X, T, :S) (Definition 1.5) is an
ordered rea/compact space if every real maximal ideal M of A(X, IR) is fixed, in the
sense that there is an x in X, such that f EM¢:> f(x) = O.

Just as compact ordered spaces are order isomorphic to closed subspaces of the
canonical product lRi

, where] = Cb(X, IR) (Nachbin [9]), the analogous re ult for
ordered realcompact spaces is true. We first establish productivity and hereditary
properties for these spaces. The method of proof is that of [10], where it is only
necessary to verify that the functions that are constructed and used in the proof
are, in fact, in A(X, IR).

Definition 5.2. Let F denote Ab(X, IR) or A(X, IR). An ordered completely regular
space is an ordered F-compact space if every maximal ideal M of F such that F/ M
is order isomorphic to IR, is fixed.

When F is A(X, IR), then the ordered F-compact spaces are precisely the ordered
realcompact spaces defined above. We obtain an algebraic characterization of
ordered compact spaces when F is Ab(X, IR), in the case, as in the unordered case,
all maximal ideals are real since the ordered field Ab(X, IR)/ M is Archimedean.



Propo ilion 5.3. Let (X, T, ~) be a completely regular ordered space and let F be
A" (X, ~). Then, (X, T, ~) is compact ordered if and only if it is F-compact.

Proof. A ume (X, T,~) is compact ordered and let M be a maximal ideal of
A,,(X, ~). ow Mia real maximal ideal and there is a in *X such that *f(O') =O~
fE M. ince (X, T) is compact and Hausdorff, there is a unique x such that a E J.t(x),
ince

* X = U {J.t(x) Ix EX}.

By continuity, *J(O')=J(x), so thatJ(x)=O. Thus,fEM~J(x)=O. Conversely,
uppo e every (real) maximal ideal M of A,,(X, IR) is fixed. It remains to show that

(X, T) i a compact pace. Again, we use Robinson's criterion: consider a E *X and
find XE uch that O'EJ.t(x). Let M={fEA,,(X,IR)I*f(O')=O}. Then M is a
maximal ideal of h( X, IR) 0 there is x E X such thatf E M ~ J(x) = 0, i.e., *f(O') =
O~f(x) = O. or any function g in C),(X, IR), we have, for h = g - g(x), that h(x) = 0
and *h(O') = *g(O') - g(x), so that *g(O') = g(x). Hence, a E q(x), the equivalence
cia of x determined by <p' = Ci(X, IR). By Lemma 1.6, this equivalence class is
J.t(x). The proof i complete. 0

The following re ult concern productivity and hereditary properties of F-compact
pace. When F is Ah(X, IR) the e results were established by Nachbin [9], for

A(X,~) the corre ponding facts would require different proofs. Instead of presenting
the proof for A(X, IR) only, we have chosen to unify the F-compact cases, providing,
in particular, new proofs for the results of Nachbin quoted above.

Propo ition 5.4. Products of order F-compact spaces are ordered F-compact.

Proof. We hall omit the proof which is precisely that of [10, Theorem 2], once it
i e tabli hed that the functions g,j are in A,,(X, IR). This is the content of the
following lemma. 0

Lemma 5.5. LeI (X, T, ~) be a completely regular ordered space and Van open set,
x E V. Then there is a Junction h in A,,(X, IR) such that °~h ~ 1, h(x) = 0 and h = 1
on X- V

Proof. By definition, there are continuous monotone j, g, such that °~f ~ 1, 0 ~ g ~
1,/ i nondecreasing, g is nonincreasing,/(a) = 0, g(a) = 0 and sup{f(x), g(x)} = 1
for all x EX - V. Let h = fv g. It is clear that h(a) = 0 and h = Ion X - V Moreover,
I. g E A(X, ~), so fv g E A(X, IR), by Proposition 3.2. 0

Proposition 5.6. Closed subspaces of ordered F -compact spaces are ordered F -compact.

Proof. Let Xo be a closed subspace of X. To see that Xo is ordered F-compact, let
71'0: A(Xo, IR)~ IRbe an order-preserving ring homomorphism. Then 71': A(X, IR)~ IR



given by 7T(f) = 7To(fo), where fo is the restriction of f to Xo, i also an order-
preserving ring homomorphism. By assumption, there is x E X such that 7T(f) =J(x).
It remains to show that x is in Xo. Suppose not. Then, by order complete regularity,
there are continuous monotone functionsf, g such that O~f~ 1, O~g~ l,j(x) = I,
g(x) = 1 and inf{f(a), g(a)} = 0 for all a in X - Xo, f i nondecrea ing and g
nonincreasing. It is easy to verify that a monotone ring homomorphi m from A(X,~)
to IR is a lattice homomorphism, so that 7T(f v g) = 7T(f) V 7T(g) for f, g in A(X, R).
Now, 7T(1-J)=7TO«(1-f)IXo)=(l-J)(xo)=O. Similarly, 7T(I-g)=O. However,
(1- J) v (1- g) = 1- (f II g) has a restriction to Xo which i identically I, hence
7T((1-J)v(1-g))=l, which is impossible since 7T((I-J)v(J-g))=7T(l-J)v
7T(1- g) = O. D

Proposition 5.7. Let (X, T,~) be an ordered realcompact space, then (X, T,,,;;) i
order isomorphic to a closed subspace of the canonical product IRJ

, where J i (X, Ill).

Proof. Let a be a point in e[X], where e is the canonical map e: ( , T ,,;;)~
(IR, T, "'''y. Define 7T:F ~ IR by 7T(f) = ai, - ar" where I = II - J1.J, E (X, Ill). ote
that 7Tis well defined sinceIl-f1=gl-g2'f" giECi(X,IR), give fl+g2=gl+J2,
so that 7T(fI+g2)=afl+R,=a,,+ag,=7T(fI)+7T(g1), imilarly 7T(gl+J2)=
7T(gl) + 7T(f2)' Hence 7T(fl) - 7T(f2) = 7T(gl) -7T(g1)' We have u ed the fa t that if IX

is in the closure of e[X], then, a/+g = ar+ Cl'gfor f, g in C'(X IR); it i al 0 true
that ar g = ar ag and, for f > 0 we have Cl'r~ O. Hence 7Tis an order-pre erving ring
homomorphism from F to (IR, T, ~). By assumption, there i xE uch that
7T(f) = O¢=> f(x) = O. Then for I in Ct(X, IR) we have 7T(f - Cl'r)= 0, 0 thatJ(x) = IX!>

as required. D

Corollary 5.8. Every compact ordered topological space is ordered realcompact.

Note. A characterization of pairwise realcompactness was given in [1]. The argument
can be used to establish a characterization of order realcompactne s, that i easier
to use than the algebraic characterization. We state the characterization and refer
to Fletcher and Lindgren [4] for the theory of quasi-uniform pace. s a con-
sequence of Proposition 5.7 we have the following:

Proposition 5.9. A completely regular ordered space (X, T, ~) is ordered realcompact
if and only if the quasi-uniformity C'(X, IR), induced by the function f: (X, T, ~)~
(IR, T, ~), is complete.

Proposition 5.10. (IR, T, ~) is order isomorphic to a closed order subspace oj the
canonical product (IR, T, ~)J, where J = C'(IR, IR), and (IR, T, ~) is order realcompact.

Proof. Let i : IR~ IRdenote the identity map and e: (IR, T, ~) ~ (IR, T, ~)J, the embed-
ding in the canonical product. Let a E c1(e[X]). Put x = 7Ti(Cl'). We show that



0'= e(x). Letf E Ct (~, ~), since a E c1( e[X]), we have Y" E ~ such that If(Y,,) - all <
I/n and Ix-y,,/<I/n. By continuity of J; we have f(x) = aj, so that a=e(x), as
required. 0

We state for completeness an immediate consequence of the above.

Proposition 5.11. If (X, T, ~) is isomorph ic to a closed subspace of a product of copies
of (~, T, ~), then it is order realcompact.

6. Ordered realcompactification

We now how that every completely regular ordered space (X, T,~) can be
embedded as a dense ordered subspace of an ordered realcompact space ~(X, T, ~),
denoted also by ~X, with the property that every monotone continuous function
f: (X, T, ~) ~ (~, T,~) admits a unique extension to ~(X, T, <). This universal
property characterizes ~ (X, T, ~).

9ll(X, T,~) will be obtained as a nonstandard ordered Ct(X, ~)-hull of (X, T, ~).

Proposition 6.1. The nonstandard ordered Ct(X, ~)-hull ~X = (X, i,,s) (Definition
2.1) is a completely regular ordered space.

Proof. Let a E X and let F s; X be a closed subset not containing a. Since q<-[F]
is closed in X, there is a closed set K in *X such that K n X = q<-[F]. Since (*X, T)
i compact, it follows that K is compact. Let a E X be such that q(a) = a. Clearly,
at. K so that a 7- {3for all {3E K. By Lemma 1.4, for any {3E K there is gl3 : (X, T, ~) ~
(~,T,~) such that O~gl3~ I, *gl3(a)=O and *gl3({3) = 1 or there is h13:(X, T,~)~
(~,T,~) such that O~hl3~I, *h13(a)=l and *h13({3) =0. By compactness of K,
there are finitely many points {31'" ., {3,,, {3"+1" .. , 13m such that

K s; (~ *g;'[*(il, I]]) U(}~I *h;'[*[O, m).
Put g=supHgl3li\lI1~j~n}, h=inf{~(hI3J-:k)vOln+l~j~m}. Now
U;'=I *gi3J*(il, 1]] = *g-[{l}] and U;:"+1 *hi3J*[O, :k)] = *h<-[{O}], so K c

*g<-[{l}] U *h -[(On Also, *g( a) = 0, *h( a) = 1. Hence, k = 1- g is monotone nonin-
creasing, h is monotone nondecreasing and O~k~I, O~h~I, *h(a)=*k(a)=1
and inf{*h({3), *k({3)} = 0 for all {3E F = X n K. Hence, h(q(a)) = *h(a) = 1,
k(q(a)) = *k(a) = 1 and

inf{h(q({3)), k(q({3))} = 0,

which means that ~X = (X, i; ~) is a completely regular ordered space. 0

Note. This result could also have been established by first showing that ~X is an
ordered subspace of the Nachbin ordered compactification N'X: It would follow
that ~X is a completely regular ordered space (Nachbin [9, Theorem 7]).



The points of PAX are intimately related to the algebraic structure of A(X, IR).

Proposition 6.2. The real maximal ideals M of A(X, IR) and the points of the ordered
realcompactification PAX of X are in one-to-one correspondence given by

M= {fE A(X, IR) IJ(a) = a}, a E PAx. (14)

Proof. Let M be a real maximal ideal of A(X, IR). Then, (13) holds for some a EX
so we obtain J( a) = 0 for a = q( a). Also a E gj'lX since a EX. Conversely, let M be
defined by (14) for some a E PAx. Then J(a) = 0 is equivalent to *f(a) ==0 for any
a E a and hence, by Proposition 4.8, M is a real maximal ideal, since a EX. To
show the uniqueness of a, suppose b e PAX, a ¥- b, and b determines the same real
maximal ideal, i.e.,

M={jEA(X,IR)IJ(b)=O}. (15)

Since a¥- b we have a v: b or b ~ a. Assume a ~ b. Since (X, T, ~) is a completely
regular ordered space, hence, there are continuous functions j, g: (X, T)~ (IR,7)
such thatf is monotone nondecreasing, g is monotone nonincreasing, 0 ~j, g ~ 1,and

O~J~ 1,

J(a) = 1,

O~g~ 1,

g(a) = 1,

inf{](c), g(c)} = 0, for all c E X, such that c ~ b,

we have (J /I g)(b) = 0, so J /I gEM. Also .r /I g) = 1,so that 1- (j /I g) EM. This is
impossible, the proof is complete. 0

Proposition 6.3. The ordered realcompactification PA(X, T, ~) = (X, i; ~) is an
ordered realcompact topological space and every function f: (X, T, ~) ~ (IR, 7, ~),

f s: C'(X, IR), has a unique continuous monotone nondecreasing extension to
PA(X, T, ~).

Proof. The existence and uniqueness of the extension j' off are proved in Proposition
2.2. Moreover, A(X, IR) and A(X, IR) are isomorphic as rings, by Proposition 3.6,
and hence, every real maximal ideal M of A(X, IR) determines a real maximal ideal
M; of A(X,IR) such that M=Mo. By Proposition 6.2, fEMo~J(a)=O, hence
f E M~ J( a) = 0, so that M is fixed, as required. 0

From the categorical properties established above, it follows that the ordered
realcompactification of (X, T, ~) with the extension property for continuous
monotone real-valued functions is essentially unique (see, for example, Herrlich
[6] and Herrlich and Strecker [7]). We shall give a direct argument for the sake of
completeness.



Proposition 6.4. If (X, T,"':;) ~ (X, f,~) is such that X is a dense order subspace of
X and every f: (X, T, ",:;)~ (IR, 7, ",:;) has an extension J: (X, f, ~) ~ (IR, 7, "':;), then
every map to an ordered rea/compact space F: (X, T, ",:;)~ (Y, S, <) has an extension
F : (X, f, ~) ~ ( Y, S, <).

Proof. (Y, S, <) is essentially an order subspace of the canonical product (IR,7, ",:;)J,
J == c1( Y, IR), by Proposition 5.7. We shall identify (Y, S, <) with its image in the
product. Let F: (X, T, ",:;)~ ( Y, S, <) be given. For each f in Ci (Y, IR), we have
f of: (X, T, ",:;)~ (IR, 7, "':;), so there is an extensionf of: (X, i; ~) ~ (IR, 7, <). These
exten ions give a mapping tp : (X, T, ",:;)~ (IR, 7, ",:;)J, with sp IX equal to F on X. Now,

rp[X]==rp[c1TX]~cITF[X]= y,
since Y is closed in the product. The proof is complete. 0

We can now prove the uniqueness of the order realcompactification.

Proposition 6.5. Suppose (X, t; ~) is an ordered rea/compact space containing
(X, T,"':;) as a dense order subspace. If every f:(X, T,"':;)~(1R,7,,,,:;) admits an
extension J: (X, t; ~) ~ (IR, 7, "':;), then (X, t; ~) is order isomorphic to the ordered
realcompactification eX, T, ~) of (X, T, ",:;).

Proof. By the above, there is a continuous monotone nondecreasing ~ap
tp : (X, t; ~)~ (X, i; ~) such that rp(x) = x for all x in X. There is also rf;: (X, T,"':;) ~
(X,f,~) such that ljJ(x)=x for all x in X. Hence ljJoljOlX and ljOoljJlX both
coincide with the identity mapping on X. Hence, rf; ° tp = lx, rp ° ljJ = Ix· 0

Example 6.6. Let Ll = (x, y) be an open interval of IR. Then 971(Ll, 7,"':;) = (zl, 7,"':;)
and hence, (zl, 7,"':;) is an ordered realcompact space. Indeed, applying the non-
standard ordered-hull construction of the realcompactification for 1> = Ci(L1, IR),
we obtain

.1= {a E *IR Ix *",:; a *",:; y, a >6 x, a >6 y},

so that, J = .1/ - is isomorphic to Ll, ~ reduces to the usual order rs in IR and T
to 7.
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