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ABSTRACT . We show that the first betti number b1 (0) = d im H 1(0, !R) of 
a compact Riemannian orbifold 0 with Ricci curvature Ric(O ) ~ -(n - 1)k 
and d iameter diam(O) :5 D is bounded above by a constant r (n, kD2 ) ~ 0 , 
depending only on dimension , curvature and diameter. In the case when t he 
orbi fold has nonnegative Ricci curvature, we show that the b1 (0) is bounded 
above by the dimension dim 0 , and that if, in addition, b1 (0 ) =dim 0 , then 
0 is a Rat torus T" . 

I NTROD UCTION 

In 1946, S. Bochner [Bo] proved that if M is a compact n- dimensional Rie­
mannian manifold with nonnegative Ricci curvature, t hen the first betti number 
b1(M) =dim H 1(M,IR) ~ dim M. Moreover, the universal cover M of M is the 
product N xJRbt (M). The question naturally ar ises as to which manifolds admit max­
imal first betti number. The answer is that M must be ann- dimensional flat torus 
rn = !Rn / Z". The original proof is based on the study of harmonic 1- forms and uses 
the Weitzenoock formula ~a-= D"Da-+Ric a- which expresses t he Hodge La placian 
of a 1- form a- in terms of its connection Laplacian and Ricci curvature. See [Be]. 
Later, Gromov [GLP] and Gallot [G] showed that there is a constant c(n, kD2

) ~ 0 
such that the class of n- dimensional compact Riemannian manifolds with Ricci 
curvature Ric(M) ~ -(n -1)k and dia meter diam(M) ~ D have first betti number 
b1 (M) ~ c(n, kD2 ). Moreover, limk02-o+ c(n, kD2 ) = c(n, 0) = dim(M). 

In this paper we generalize these results to t he class of Riemannian orbifolds. 
Specifically, we prove the following 

T he ore m L Let 0 be a compact n - dimensional Riemannian orbifold whose Ricci 
curvature Ric(O) ~ -(n-1)k and diameterdiam(O) ~ D. Then there ts a constant 
c(n, kD2 ) ~ 0 depending only on dimension, curvature and diameter such that 

(i) b1 (0 ) ~ c(n, kD2 ). 

(ii) c(n, kD2
) = 0 fork < 0. 

(iii) limkD,-o+ c(n, kD2 ) = c(n, 0) = n. 

Remark 2. For orbifolds there is a notion of the orbifold fundamental group rrfrh(O), 
and thus one can define a first orbifold betti number as the rank of the abelianiza­
tion of rr?'h(O). It turns out, however, that this orbifold betti number agrees with 
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the standard one (Proposition 9), and hence there is no loss in generality in stating 
our theorems in terms of the standard betti number br {0). These matters will be 
discussed more thoroughly in the next section. 

We have the following immediate corollary of Theorem 1: 

Corollary 3. Let 0 be a compact n - dimensional orbifold whose Ricci curvature 
Ric(O) ~ -(n- 1)k and diameter diam(O) :::; D . There exists an~ = ~(n) > 0, 
such that if kD2 < ~ . then br (0) :::; n. 

As a consequence of Theorem 1 and Proposition 9 we will be able t.o generalize 
Bochner's Theorem to Riemannian orbifolds. Note that Theorem 4 (i) and (ii) are 
immediate corollaries of Theorem 1. 

Theorem 4. Let 0 be a compact n - dimensional Riemannian orbifold. 

(i) If the Ricci curvature is strictly positive, then b1 (0) = 0. 
(ii ) If the Ricci curvature is nonnegative, then br (O) :::; n. 
(iii) If the Ricci curvature is nonnegative and if b1 (0) = n, then 0 is a 
good orbifold. In fact, 0 is isometric to ann- dimensional fiat torus. 

Remark 5. One might expect that in the orbifold situation the equality case would 
only yield a flat orbifold of the form yn /G where G is some finite group acting 
isometrically (with possible fixed points) on yn . The fact is, however, that the 
maximality of the first betti number rules out the possibility of singularities. 

The author would like to thank the referee for suggesting improvements to the 
original paper, and Professor Peter Petersen for some helpful discussions. 

0RBIFOLD PRELIMINARIES 

The basic reference for orbifolds is [T ]. The book [R, Chapter 13] is also a good 
reference for the notions that appear in this paper. The essential facts we need are 
that 7rfrh(O) is the group of (orbifold) homotopy classes of loops in 0, and that 
associated to every orbifold 0 there is a connected universal covering orbifold 6 
with 1rfrh(O) = 0 such that the elements of 1r(rh(O) are t he deck t ransformations of 
6. The group 1rfrh(O) acts (properly) discontinuously and isometrically (but not 
necessarily freely) on 6 and as orbifolds 0 = 0/?r(rh(O). 

Definit io n 6. Let 7rfrh(O) be the orbifold fundamental group. We define the first 
orbifold homology group Hfrh ( 0 , Z) to be the abelianization of 7rfrh ( 0) and the first 
orbifold betti number to be dim (Hfrh(O,Z) ® ~). 

Example 7. Consider the standard 2- sphere S 2 c ~3 . Define a Zp- action on S 2 

by rotation around the z-axis by an angle of 21r j p. The quotient space 0 = S2 /Zp 
is commonly referred to as a Zp- football. In this case, 7rfrh(O) = Hfrh(O, Z) ~ Zp, 
but H 1 (0, Z) = 0. Note, however, that bf rh (O) = b1 (0 ) = 0. 

Remark 8. Although, as Example 7 illustrates, H frh(O, Z) is in general not equal 
to H1 (0, Z), it is always true that bf,.h(O) = b1 (0). We prove this in Proposition 9. 

Note that by the construction of the orbifold fundamental group (for example, 
see [HD]) there is an epimorphism <p : 7rfrh(O) -+> 1r1 (0 ) from the orbifold funda­
mental group to t he (standard) fundamental group. This gives rise to the following 
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commutative diagram: 

rrfrh(O) AI> Hf•h(O,Z) ®R Hf,..,(O, Z) ® IR = Hfrh(O, IR) ------+ ------+ 

~1 ~1 ~ 1 
71" ) (0) AI> 

H,(O,Z) ® IR H1 (0, Z) ® IR = H1 (0, IR) ------+ ------+ 

where Ab : G --. G / [G, G] is the abelianization of a group G, and tp = Ab orpoAb - I. 

It's easy to see that tp is well-defined and that all arrows are epimorphisms. 
We thus conclude the following 

P roposit ion 9. Let 0 be a Riemannian orbifold. Then the first orbifold homology 
group with real coefficients H?rh(O, IR) = H 1 (0, IR), and hence the first orbifold betti 
number Wh(O) = b, (0) . 

Proof. Let & E Kertp. If & f:: 0, then any preimage & E Hfrh(O, Z) has infinite order 
in Hf,..,(O,Z). Similarly, let a E rrf•h(O) be any preimage of&. Commutativity of 
the diagram implies that r,O(&) has finite order. Then tp(am) = 0, which implies that 
rp(am) E [rr1 (0) , rr1 (0)], and thus am E [rrfrh(O), rrfrh(O)]. But then [Ab(a)]m = 0, 
which implies that & has finite order, which is a contradiction. Thus, & = 0 and tp 
is an isomorphism. This completes the proof. 0 

GROWTH OF THE ORBI FOLD FUNDAMENTAL GROUP 

Let G be a finitely generated group and let S = {g1, . . • , gk} be a system of 
generators. Each element g of G can be represented by a word gf/ gf

2
2 

• • • gftt and 
the number IP1 I + · · · + !Pd is called the length of the word. The norm ll9llworrl 
(relative to S) is defined as the minimal length of words representing g. For any 
t E z+, the number of elements of G which can be represented by words whose 
length is :::; t will be denoted rps(t); that is, rps(t) is the number of elements with 
llgllworrl :::; t. A group G is said to have polynomial growth of degree :::; n if for some 
system of generators S there is a constant c > 0 such that rps(t) :::; c · tn. It is not 
hard to see that this definition is independent of the choice of generators S. See 
[Z]. 

J. Milnor [M] observed that if M is an n- dimensional compact Riemannian 
manifold with nonnegative Ricci curvature, then the fundamental group rr1 (M) has 
polynomial growth of degree :::; n . We should point out, however, that A. Schwarz 
[S] was the first to discover the relationship between the growth of the fundamental 
group and the volume growth of balls in the universal cover M. Essentially, the 
same argument yields 

Proposition 10. Let 0 be a compact n - dimensional Riemannian orbifold with 
nonnegative Ricci curvature. Then the orbifold fundamental group rrj>rh ( 0) has 
polynomial growth of degree :::; n. 

Proof. rrfrh(O) acts isometrically and (properly) discontinuously on the universal 
orbifold cover 6. Let p E 6 be a nonsingular point of 6. There exists r > 0 such 
that forgE rrf,.h(O) the balls B(g(p) , r) are pairwise disjoint. LetS= {g1, ... , gk} 
be a system of generators of rrf•h(O) . Let 

L = m~d(p,g; (p)). 
' 
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If 9 E 1ryrh(O) can be represented as a word of length ~ t with respect to the 
9, 's, then 9 = 9~,' · · · 9':,', 1 ~ { ~ t , with p, = ±1. Note that 

d(p,9(P)) = d(p, 9~,· ... 9':,' (p)) 

~ d(p, 9~/ (p)) + d(9~/ (p), 9~,· . .. 9':,' (p)) 

~ L + d(p, 9~: · · · 9':,' (p)) since the 9, 's are isometries 

~ · · · ~ L + L + · · · + L = L · t . 
t t iuuo~ 

Taking all such g's, we obtain <;s(t) disjoint balls B(9(p) , r) such that B(9(p) , r) 
C B(p, Lt + r). Thus, 

<;s(t) ·Vol B(p, r) ~Vol B(p, Lt + r) 

which implies that 

cp ~· (t) < Vol B(p, Lt + r) < (Lt + r)n 
·' - Vol B(p, r) - rn 

The last inequality follows from the relative volume comparison theorem for orb­
ifolds [B]. Hence we conclude that 7Tfrh(O) has polynomial growth of degree ~ n. 
This completes the proof. 0 

niGIDIT't' OF ORBIFOLDS OF t.IAX IMAL FIRST BETTI NUMBER 

In this section we prove Theorem 4 (iii). We now assume that 0 has maximal 
first betti number b1 (0) = n. By Proposition 10, the orbifold fundamental group 
?Tj'rh(O) has polynomial growth exactly = n. 

By the orbifold generalization of the Cheeger- Gromoll splitting theorem [BZ] we 
know that the universal orbifold cover 6 splits as an isometric product N x JRk, 
where N is a rompact orbifold with nonnegative Ricci curvature. Also, the isometry 
group splits, namely, lsom(O) = lsom(N) x Isom(JRk). Now rrj'~'"(O) c Isom(O) 
acts properly discontinuously on 6. As a result, we have the exact sequence 

1-+ F-+ 1rj'rt>(O) ~ C-+ 1 

where F is finite and C is a crystallographic group acting on IRk, and where pr2 
denotes the homomorphism pr2 : rrj•rh(O) --+ lsom(JRk) with kernel F. See [BZ]. 
It then follows that C must have polynomial growth of degree = n. By applying 
(standard) relative volume comparison it follows that k = n; that is, C must act 
on IR". This implies that 6 = IR" and thus 0 is the (good) flat orbifold 6 / C , and 
C = rrJ"'h(O). 

To finish the proof we use the Bieberbach theorems on crystallographic groups. 
Let C' be the normal subgroup of pure translations of C. T he Bieberbach theorems 
[W, Theorem 3.2.9] imply that any crystallographic group C satisfies the exact 
sequence 

1 -. (Z" ~ C' ) -+ C = 1rj'rt>(O) -+ H -+ 1 

where H ~ C/C' is a finite group. 
Recall the following argument in the case that C acts freely (that is, C is a 

Bieberbach group). In this case, 0 is a compact flat manifold and C = rr1 (0). 
1r1 (0) is torsion free by [W, Theorem 3.1.3]. We claim in fact that 1r1 (0) is abelian. 
Hence, 1r1 (0) = Z", and by the Bieberbach theorems [W, Theorem 3.3.1], 0 must 
be a flat torus. 
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To show that 1r 1 (0) is abelian we proceed as follows. Suppose not. Then by 
abelia:1izing 1r1 (0) some nontrivial element, say a, gets sent to 1. Now the exact 
sequence implies that any element a E 1r 1 (0) satisfies ak E Z" where we regard Z" 
as a subgroup of 1r 1 (0) . Since 1r 1 (0) is torsion free, ak -::j:. 1, and ak gets sent to 
1 under abelianiza tion. T hus, dim H 1 ( 0 , IR) < n, contradicting the assumption of 
maximality of the first betti number of 0 . To see the last statement, just observe 
that since any element of 1r1 (0 ) has a power which is in Z", after abelianization aJJd 
tensoring with IR, one finds that any element in HI(O,IR) is a word in the (images) 
of t he generators of Z". T hese images obviously generate a group of rank $ n. 

Now consider the case when C is only assumed to be crystallographic. That is, 
C may have fixed points and thus IR" /C is an orbifold with possible singularities. 
LetT" denote then-dimensional torus IR" ;c·. Then 0 is the orbifold T " /( C /C' ). 
Let <p denote the quotient map <p : T" ~ 0. It is not hard to see [Br, Corollary 
11.6.5] that the map <p. : H 1 (T", iR) --> H 1 (0 , IR) is onto. By hypothesis b1 (0 ) = 
dim H 1 (0, IR) = n which implies that <p. is an isomorphism. \o\'e show that if(' 
contains an element which has a fixed point, then the map <p. has nontrivial kernel. 
giving a contradiction. 

Let "'! E C be an element with fixed point p. T hen"'!= (A, ;) with A E O(n ), A -::f:. 

I and ; E IR". "'! acts on IR" by "t(x) =Ax+;. Choose a minimal set of generators 
{a, , ... ,a,} for C'. Then by[\-\' , Theorem 3.2.1], relative to these generators A 
has integral entries. That is, A preserves the lattice C'. Translate the origin of 
IR" top. Note that"! preserves the translated lattice p + c·. Let a ,(t) denote the 
line segment p + ta ;, t E [0, 1]. Since A =I= I , there exists a segment a, such that 
"f(a;) -::j:. a,. That is, 

"!(a, )= p + ht•(a 1 , ••• , a,)= /3(t) -::j:. n,(t) 

where t t' = A(a, ) denotes a word in the generators a1 (with integer coefficients). 
Regarding"'! as an element of C/C' , we can think of"'! as acting on the torus T " 
and the a1 as generators of H 1 (T " ,IR). But then <p.(a,- /3) = 0, which shows that 
<p . has nontrivial kernel, and we have our desired contradiction. 

T HE FIRST BETTI NUMBER ESTIMATES 

We now prove Theorem 1. For the proof of part (ii ), we use the fact that strictly 
positive Ricci curvature implies t hat 0 is compact. Since the universal orbifold 
cover satisfies the same curvature restrictions as 0 , we conclude that the universal 
orbifold cover 6 is compact and t hus 1rj'rh(O) is finite, and b1 (0 ) = 0. To see that 
strictly positive Ricci curvature implies compactness of 0, assume for simplicity 
that Ric(O) 2' (n- 1). We show that diam(O ) :5 1r. Suppose not and choose 
points p', q' with d(p' , q' ) > 1r + e. We can choose nonsingular points p, q such 
that d(p,p' ) < e/3 and d(q, q' ) < e/3, since the singular set is nowhere dense. Then 
d(p, q) > 1r + e/3. Let "'! be a minimal unit speed geodesic joining p to q. Then "! 
does not intersect the s ingular set. See [B]. T hus 7(7r) is inside the cut locus of p 
and hence the distanct' function from p, d(p,·) is smooth at "!(7r). By the Laplacian 
comparison theorem for orbifolds [BZ] we have that t:.d(p, -) $ ( n - 1) cot d(p, ·). 
Letting d(p, ·) --> 1r from the left implies that t:.d(p, ·) $ -oo, which contradicts 
smoothness of d(p, ·) at "'!( 1r) . 

T he proof of part (i) follows clos<.>ly th<.> proof of the standard case given in 
[Z]. Th<.> first observation to make is that it is sufficient to show that there is a 
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finite (orbifold) cover 6 --. 0 such that 11'fr~'>(6) has at most c(n,kD2 ) genera­

tors. To see this, suppose that {h1 , ... , hk} generate 11'i".,(6). Then the index 

[11'fr~'>(O): 11'frh(6)] = m < x, so there are {gJ, .. . ,gm} such that gi E 11'fr~'>(6) 

and 11'fr~'>(O) = U;':1 g,11'fr~'>(6). As before, let Ab : G--. Gj[G,G] be the abelian­

ization of a group G, and consider the composition: 

11'?r~'>(O) ~ Hfr~'>(O,Z) ~ Hfr"(O,IR) 

and let f = (®IR) oAb denote this composition. Since {h1, ... ,hk,g1 , ... ,gm} 

generates 11'fr"(O), the set {Ab(h1),Ab(gi)} generates Hfr~'>(O,Z). Now note that 

m· f(g1 ) = f (gj) =/(h) for some hE 11'fr"(6). Thus {f(h,)} generate Hfr~'>(O, IR), 

and hence to bound b1 (0) it is sufficient to bound the number of generators of 

11'frh(6). 

Let ii' : 6 -+ 0 denote the universal orbifold cover. Choose a nonsingular point 

p E 0, and choose p E 6 with ii'(f>) = p. Fix c > 0. Denote ilgll = d(p, g(p)). Take 

a maximal set {g1 , . •• , 9m} of 11'fr~'>(O) such that 

llgdl $2D+e, and [lg,- 19ill ~c, i=tfj. 

Let r be the subgroup of 11'fr"(O) generated by {g,} and let -fi' : 6 -+ 0 be the 

orbifold covering of 0 with 11'fr"(6) = r. To show that -fi' is a finite cover we show 

that diam(6) $ 2D + 2c. Let p E 6 be such that ii'(f>) = p. Then pis nonsingular. 

If diam(6) > 2D + 2c, then there is a point ij E 6 such that d0 (p, q) = D +e. 
Since do(p, -fi'(ij)) $ diam(O) = D , there is a deck transformation a E 11'fr~'>(O) - r, 

such that d0 (ij, 'if(ap)) $ D , where 1f: 6--. 6 is the covering projection. Then 

so 

d0 (f>, w(af>)) ~ d0 (f>, ii)- d0 (ij, w(af>)) ~ c, 

d0 (f>, w(af>)) $ d0 (f>, ii) + d0 (ii, w(af>)) $ 2D +c. 

Now note that there is a {3 E 11'fr"(6) = r such that d0 (fp, ap) = d0 ({3p, ap), 

11!3- 1 all = d0 (f>, {3- 1 af>) = d0 ({3f>, af>) = d0 (rp, af>) 

= d0 (p, 'if( of>)) $ 2D +c. 

Also, for any g E 11'fr"(6) = r , 

llg- 1{3- 1all = d0 (p,g- 1{3- 1af>) = d0 ({3gp,af>) ~ d0 (fp,af>) 

= d0 (p, w(af>)) ~c. 

So by maximality of r, {3- 1a should be in r. However, Q is not in r by 

construction and {3 is; therefore we have a contradiction, and we conclude that 

diam(6) $ 2D + 2c. 
Recall that {g1 , ••. , 9m} is a set of generators of r. We now give a bound on the 

the number of generators m in terms of dimension, curvature, and diameter. We 

denote by B(p, r) the metric r - ball in 6 centered at p and B(r), the metric r - ball 

in the simply connected space form of curvature -k. 
Since 
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the balls B(gtf5, 4c) are pairwise disjoint. Moreover, we have that U;:1 B(g,p, ~e) 
- 3 c B(p, 2D + 2c-). Thus, 

Vol (U;:, B(g,p, 4e)) Vol B(p, 2D + ~e) 
m= <--.:._--.----:-~ 

Vol B(p, ~e) - Vol B(p, 4e) 

- 3 -
Vol B(2D + 2e) Vol 8(5D) ( D2) < < = c n,k 

- Vol 8( 4c) - Vol B(D) 

where in the third to last inequality we have used the relative volume comparison 
for orbifolds [B] and in the second to last we have chosen e = 2D. This completes 
the proof of part (i) of Theorem 1. 

We now proceed to the proof of part (iii) of Theorem 1. We are going to modify 
the previous proof by choosing longer loops to generate Hlrh(O, IR). Again let 
f : 7T!rh(O) ---+ Hlrh(O, IR) be the map defined in the proof of part (i), and let 
{g1 , ... , gb, (O)} be a basis for Hfrh(O,IR) chosen as above with c = 2D. Denote 
by r the subgroup of rr?rh(O) generated by the g,'s. If r contains an element g ::F 1 
with llgll < 2D, then J(g) =f. 0 and J(g) has infinite order. Thus, there exists an 
r > 0 such that 2D::; llg''ll $ 4D. Write f(g) = atf(gl) + · · · +ab,(o>f(gb,(O)) ::F 0. 
Without loss of generality we may assume that a1 # 0. Let r 1 be the group 
generated by {g'',g2, ... ,gb,(O)}· Then clearly, the set {!(g''), ... , J(gb.CO))} is 
still a basis for Hfrh(O,IR). 

Also, g f/. r 1 • To see this suppose that 

g = Ct . (g'Y't . C2 . (gr)k2 ... C( . (g'')kt . C( + 1 

where the c.'s are words in {g2 , ... ,gb,(O)}· Then 

J(g) = / (ct) + f(grkt) + · · · + f(cl) + f(g rkt) + f(cl+l) 

= /(CtC2 · · ·C(+I) + r(kl + · · · + kl}j(g). 
Since r ~ 2, we can rewrite the expression above as 

1 
f(g) = 

1 
_ r(k

1 
+ ... + kt} f(ct c2 .. · C(+l) = a2j(g2} + .. · + ab,(O)f(gb1 (O)) 

which contradicts the assumption that a 1 =f. 0. 
Since rr?rh(O) contains only finitely many g with llgll < 2D (1r?rh(O) acts discon­

tinuously and pis nonsingular) , after finitely many such replacements we produce a 
new set {ht, ... , hb,(o,} of elements of 1r?rh(O) so that {f(h1 ), ••• , f(hb.CO>)} form 
a basis of H!rh(O, IR), and 2D ::; llh, II ::; 4D. If r' c r is the subgroup generated 
by the h,'s, then for any element h E r' - {1}, we have lihli 2: 2D. Let 

S(t) = {h E r' jllhliworo $ t}. 

If h,h' E r', with h =f. h' , then llh- 1h'li 2: 2D, which implies that the balls 
B(hp, D), hEr', are pairwise disjoint. lf b1 (0) ~ b, then it is not hard to see that 
card(S(t)) ~ (E)b where card(S(t)) denotes the cardinality of S(t). Since 

U B(hp, D) c B(p,4Dt +D) 
hES(I) 
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we have 

Vol B(fj, 4Dt + D) ~ Vol ( U B(hfj, D)) = card (S (t)) · Vol B(fj, D ) 
h€S(t) 

~ G r Vol B (fj, D ). 

By a pplying relat ive volume comparison for orbifolds again, we see that 

(
t) b Vol B (fj,4Dt + D ) Vol B(4Dt + D ) - < < --~::::--___:_ 
b - Vol B(fj, D ) - Vol B (D ) 

fo4Dt+D ( k - 1/2 sinh sJk) n-1 ds JJ4t+l )D..!k si nhn-1 s ds 
----~------~---- = ~--=-------

fo0 (k-112 sinhsv'kf-
1 

ds f0°./ksinhn-l sds 

= (4t + l )n + · · · :5 5ntn if kD2 is small enough. 

Thus, if b1(0) ~ (n + 1), then we set b = (n + 1) above and fix t > 5n. 
(n+ l )n+l. Now choosing kD2 sufficiently small gives a contradiction, for we would 

have ( n~l ) n+ I :5 5ntn which implies that t :5 5n · (n + l)n+l. Thus b1 (O) :5 n . 

This completes the proof. 0 

REFERENCES 

(Bel A. Be~e. Einstein Manifolds, Springer-Verlag, New York 1987. MR 88f:53087 
(Boj S. Bochner. Vector Ftelds and Ricct Curvature, Bull. Am. Math. Soc. 52 (1946), 776- 797. 

MR 8:230a 
(B] J. Borzellino. Orbifolds of Maximal Diameter, Indiana U. Math. J . 42 (1993), 37 53. MR 

94d:53053 . 
(BZ] J . Borzellino a nd S. Zhu. The Splttting Theorem for Orbifolds, Illinois J . Math. 38 (1994), 

679- 691. MR 95c:53043 
(Br] G. Bredon. Introduction to Compact Transformation Croups, Academic Press, New York 

1972. MR 54:1265 
(GJ S. Gallot. A Sobolev Inequality and Some Geometric Applicattons, Spectra of Riemannian 

Manifolds, Kaigai PublicAtions, Tokyo, 1983, 45 55. 
(GLP] M. Gromov, J . Lafontaine, a nd P. Pansu. Structures metriques pour les varietes neman­

mennes, Cedic Nathan, Paris, 1980. MR 85e:53051 
(HD] A. Haefiiger and Q. Du. Une presentation du Groupe Fondamental d'une Orbifold, in 

Structure Transverse Des Feuilletages, Asterisque No. 116, (1984), 98-107. MR 86c:57026b 
(M] J . Milnor. A Note on Curuature and Fundamental Croup, J . Diff. Geo. 2 (1968), 1-7. MR 

38:636 
(RJ J . Ratcliffe. Foundations of Hyperbolic Mamfolds, Springer- Verlag, New York 1994. MR 

95j:57011 
(S] A. Schwarz. A Volume Invariant of Covermgs, Dokl. Ak. Nauk. USSR 105 (1955), 32-34 

(in Russia n]. 
(T] W. Thurston. The Geometry and Topology of 3 -Mamfold.~. Lecture Notes, Princeton Uni­

versity Math. Dept., 1978. 
(W] J . Wolf. Spaces of Con.~tant Curoature, 5th Ed., Publish or Perish, Delawa re 1984. MR 

88k:53002 
(Z] S. Zllll. The Comparison Geometry of Ricct Curoature, preprint. 

DF:PART~!F:NT OF MATHF:~!ATICS, PF:NNSYLVAN!A STATF: UNl VF:RSlTY, ALTOONA , PF:NNSYLVAN!A 

16601 
E-mail addres.~: borzelli\llmath. psu. edu 




