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This article was inspired by the myriad answers, excuses, embarrassed 
looks and extended discussions I engendered when innocently asking many 
colleagues to compute limx-+0 JX. Of course, the two obvious answers, 
"zero" and "does not exist" , were eagerly proffered. I started then to con
template why these professional mathematicians and educators (including 
myself) were in seeming disagreement over such an apparently simple ques
tion. After all, I had been telling students of mine for years that mathemat
ics is a precise science. It is universal. A carefully posed purely mathemat
ical question (the kind we hope we put on our exams) has an irrefutably 
accurate answer. In pursuit of the answer as to why mathematics had 
seemingly failed to give this "irrefutably accurate answer" to the problem 
of computing limx-+O JX, I embarked on a long, enlightening journey. Al
though the path the journey takes us is much too treacherous for first-year 
students, as it is a path ravaged by scoundrel functions, it is certainly one 
in which the seasoned mathematical adventurer will surely find challenge 
and delight . In a tongue-in-cheek style that I hope you, the reader, find 
enjoyable, I now recount that journey. 

Many individuals who would consider themselves fluent in mathematics 
would no doubt agree that the concept of limit is fundamental. If asked to 
give a mathematically rigorous definition of the (2- sided) limit of a function 
f(x), the most frequent response would most likely be a recitation of the 
mantra: 
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LIMIT DEFINITION 1: limx-ta j(x) = L means that given any 
c: > 0, there exists 8 > 0 so that lf(x) - Ll < c: whenever 
0 < lx- ai < 8. 

What is interesting and often overlooked about this definition is that it 
is only valid for "simple" functions, that is those functions whose domains 
contain a deleted neighborhood of x = a. Simple functions include poly
nomial and rational functions, but certainly exclude many algebraic and 
transcendental functions. 

As an example, consider the function (shown in Figure 1) 

f(x) = Jxsin(1/x) 
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Figure 1. Graph of the function f(x) = Jxsin(l/x) 

The domain of f(x) does not contain any deleted open neighborhood of 
x = 0. The graph of f(x) certainly suggests that limx-+0 f(x) = 0, so to 
prove limx-+O Jxsin(1/x) = 0 by definition requires that given c: > 0 there 
is a 8 > 0 so that lf(x)l < c: whenever 0 < lxl < 8. Of course, no such 8 
exists, as j(x) is undefined for some values of X arbitrarily close to X = 0. 
One likely response is to conclude that the limit does not exist, but that 
seems wholly unsatisfactory since it goes against our intuition as supported 
by the graph of f(x) . In addition, later in this paper we will see that the 
function f(x) is continuous at x = 0 (if we define f(O) = 0), whereby the 
conclusion that limx-+O f ( x) does not exist becomes absurd. 

When confronted with this particular conundrum, many might respond 
with an exasperated "It's the domain! You forgot to consider the domain," 
and offer another enticing and shrewd definition of limit: 
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LIMIT DEFINITION 2: limx--+a f(x) = L means that given any 
€ > 0, there exists o > 0 so that lf(x) - Ll < € whenever 
0 < lx- al < o and x E domain of f(x). 

Smugly, we conclude that limx--+0 Jxsin(1jx) = 0. 

Finding an elementary text that includes the domain of a function f(x) 
as part of its definition for limit is very difficult. See [1,5,9,16] . To their au
thors' credit, many books [2,3,6,10,11,12,17 ,18,20] do include the caveat that 
limit taking is only to be performed on functions defined on deleted neigh
borhoods of x =a. That, however, leaves our friend f(x) = Jxsin(1/x) 
and its behavior near x = 0 too scurrilous for consideration. The only 
undergraduate texts I have found that can handle limx--+O Jxsin(1/x) are 
[4,7,8,13,14,15]. Only the books [7, 15] are intended as an introduction to 
calculus and [15] is out of print. But, even in the book of Courant and John 
[7], one is faced with a departure from the conventional notion of two-sided 
limit: 

COURANT-JOHN LIMIT DEFINITION [7, Section 1.8]: 
limx--+a f(x) = L means that whenever an arbitrary quantity 
€ is assigned we can mark off an interval lx - al < o so small 
that for any x which belongs both to the domain off and to 
that interval the inequality lf(x)- Ll < e holds. 

Thus, if we let p(x) = 1 for x =I 0 and define p(O) = 2, and try to 
evaluate limx_.0p(x) using the Courant- John definition we would conclude 
that the limit does not exist! This is because, according to their definition, 
the interval to be "marked off'' must always contain the point x = 0. 

Unfortunately, while we bask in the glory of our success, another rogue 
function g(x) = (x4 - x2 ) 312 intrudes. See Figure 2. 

The domain of g(x) is ( -oo, -1] U {0} U [1, oo). Note that in contrast 
to the domain of f(x), x = 0 is an isolated point in the domain of g(x). 
Armed with the power of our modified limit definition, we enter the fray 
and attempt a swift defeat of computing limx--+O g(x ). A reasonable guess is 
that limx--+0 g(x) = 0, but upon brandishing our newly forged definition of 
limit, we find that we cannot even check the validity of the assertion that 
limx--+og(x) = 0 since {xI 0 < lxl < o} n {domain of f(x)} = 0 for 0 small. 
For that matter, we may as well attempt to show that limx--+0 g(x) = 1r. The 
only expedient retreat from this debacle is to further modify the definition 
of limit. 

We need first the definition of an accumulation point. The point a is an 
accumulation point for a setS of real numbers if for each o > 0, there exists 
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Figure 2. Graph of the rogue function g(x) = (x4 - x 2 ) 312 . 

a point s E S with 0 < is-ai < o. A point of S that is not an accumulation 
point of S is called an isolated point of S . 

LIMIT DEFINITION 3: Let a be an accumulation point of the 
domain of a function f(x). limx-+a f(x) = L means that given 
any E > 0, there exists o > 0 so that if(x) - £1 < E whenever 
0 < lx- al < o and x E domain of f(x). 

Since x = 0 is not an accumulation point for the domain of g(x), com
putation of limx-+O g(x) is ill-posed. Thus, we reluctantly admit that eval
uation of limx-+O g(x) is not legitimate. In any case, there is still unrest in 
the streets because an aspiring mathematical acolyte has posted a bill in 
the town square that reads: 

Let g(x) = (x4 
- x2) 312 . Then a simple application of the 

Chain Rule yields g'(x) = ~(x4 - x2 ) 112 (4x3 - 2x) . So g'(O) = 0 
and hence g(x) is differentiable at x = 0. One must then con
clude that g( x) is continuous at x = 0, and thus limx-+0 g( x) = 
g(O) = 0. 

To quell the unrest, we, the wise town elders, convene to draft our re
sponse to these questionable writings. Our strategy will be to denounce the 
validity of this particular application of the Chain Rule. First, we consult 
one of many revered tomes for the definition of differentiability. We find 
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that a function f(x) is differentiable at x = c if the familiar limit of the 
difference quotient exists: 

r f(c+ h)- f(c) 
h~ h 

In the case when this limit exists, we denote it by f'(c). Unfortunately, 
if we apply limit definition 3 to compute the limit of the difference quotient 
we will soon find ourselves in unwelcome collusion with the acolyte, for we 
can validate his logic: 

The Chain Rule states that h(x) = (h o h)(x) is differen
tiable at x = c if h ( x) is differentiable at x = c and h ( x) is 
differentiable at h (c). In this case, h' (c) = f{ (h (c))· f~( c). If we 
let fl(x) = x312 and h(x) = x4 -x2 , then g(x) = (x4 -x2 ) 312 = 
(!1 o h)(x). h(x) certainly poses no differentiability problems, 
so what of the differentiability of fl(x) at /2(0) = 0? The limit 

of the difference quotient yields limh-+O h~
2 

= 0 by our enlight
ened limit definition 3. We are forced to now lie in agreement 
with the acolyte that g'(O) = 0, and since differentiability im
plies continuity, we must also agree with his questionable claim 
that limx-+0 g(x) = g(O) = 0. 

We have now shown that our modified definition of limit can lead to a 
contradiction of itself! On one hand, limit definition 3 implies limx-+0 g( x) 
is illegitimate, and on the other hand limit definition 3 implies existence of 
g'(O), and thus the existence of limx-+0 g(x). We have surely come upon 
dark days! Decisive measures will be taken to rebuff the acolyte and his 
impious logic! In fact, we have shown that if we use limit definition 3, the 
composition of differentiable functions may not be differentiable! Careful 
analysis of the proof of the Chain Rule exposes the necessity that in order 
for h(x) to be differentiable at x = c, the following additional technical 
condition must hold: 

CONDITION (t) If A.;= {xI 0 < lx-cl < o and x E domain of h(x)} 
then h(Ac5) n {domain of fl(x)} -#0 for all 0 > 0. 

To see the necessity of condition (t), let's review the proof of the Chain 
Rule: 

Suppose h is differentiable at u = h(c) and that h is differentiable at 
c. Define the function 

{ 

/l(u+k)-/l(u) _ J'(u) 
<I>(k) = k 1 

0 
fork-:j:;O, u+kE domainoffi(x) 
fork= 0 
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By definition of derivative, limk-+O <I>(k) = ff(u)- ff(u) = 0 = <I>(O). 
Thus, <I>(k) is continuous at k = 0. Now, it is always true that h (u + k)
h(u) = [ff(u) + <I>(k)] k. Let u = h(c) and k = h(c+h)- h(c). Thus, for 
u+k E domain of h(x), which is the same as h(c+h) E domain of h(x), 
we have 

(*) h(h(c +h))- h(h(c)) = [/~(h(c)) + <I>(k)] [h(c +h)- h(c)] 

Hence 

(h o h)'(c) I. h(h(c+h))-h(h(c)) 
1m--~~--~--~~~ 

h-tO h 

lim[/~ (h(c)) + <P(k)] h(c + hh)- h(c) 
h-+0 

[/~(h(c)) + 0]/~(c) = f{(h(c))f~(c) 

The last line follows since limh-+0 <P(k) = limk-+O <I>(k) = 0, since h is 
continuous at c because it is differentiable there. One can now easily see 
the necessity of condition (t), by considering under what circumstances (*) 
is a meaningful expression. 

In the acolyte's example, h(A0 ) n {domain of h(x) = x312 } = 0 for 
o < 1, so the Chain Rule does not apply. In fact, direct application of the 
definition of derivative to g(x) at x = 0 yields: 

lim (h4 - h2)3/2 

h-tO h 

which is not a legitimate limit since the there are no small values of 
h =f. 0 for which the quotient is defined. We conclude with finality that 
g(x) = (x4 - x2 ) 312 is not differentiable at x = 0. 

We instruct the scribes to incorporate these clarifications in all appro
priate future mathematical volumes and send the town crier out to make 
the clarifying announcement and post a homework exercise to show that 
the function 

f(x) = { ~x3 sin(1/x)]
312 

is differentiable at x = 0. 

for x =f. 0 
for x = 0 

Although publicly humiliated, the acolyte vows that the town elders will 
someday pay for their reckless disregard for careful and accurate definition. 
To this end, he decides to venture out on a quest to consult with a master of 
higher mathematical arcana: a topologist. The topologist explains that it is 
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in fact true that the function g(x) = (x4 - x2 ) 312 is continuous. However, he 
adds that the assertion limx--+O g(x) = g(O) = 0 is illegitimate. The acolyte, 
being uncertain of his ability to remember all of the clever complex twists 
of mathematical machination required to establish the continuity of g(x), 
asks the topologist to prepare a manuscript detailing this formidable logic. 
The manuscript reads: 

Let X and Y be two topological spaces. A function f : X --t 

Y is continuous if the inverse image of every open set is open. 
That is, f is continuous if for every open set U in Y, f- 1 ( U) is an 
open set in X. In the case of g(x), X= ( -oo, -1] U {0} U [1, oo), 
and Y = [0, oo) both with the induced topology from R. It 
suffices to verify the continuity condition for basic open sets U 
in Y. A basic open set in Y is the intersection of some open 
interval of R with Y. Hence there are two types. One type 
looks like U1 = (a, b) with 0 < a < b :::; oo and the other type is 
of the form u2 = [0, b), 0 < b :::; 00. It's easy to see, from the 
graph of g(x), that f- 1(Ut) is the union V1 of two open intervals 
( -{3, -a) U (a, [3), 1 < a < f3 :::; oo. Vt is clearly open in X. 
Similarly, /-1 (U2) is of the form V2 = (-[3,-1] u {0} u [1,{3), 
1 < {3:::; oo. Since V2 = (-[3,[3) n X, V2 is open in X. Thus 
g(x) is continuous. However, since x = 0 is an isolated point in 
the domain of g(x), the limit limx--+og(x) is ill-posed. 

Recall the conventional definition of continuity: 

CONTINUITY DEFINITION 1: A function f(x) is continuous at 
x = Xo if limx--+xo f(x) = f(xa). 

The function g(x) is not continuous at x = 0 by this definition, even 
using limit definition 3. After careful examination of the topologist's man
uscript, we can only conclude that, in addition to our original limit defi
nition 1, our definition of continuity is also inadequate. After meticulous 
discussion we settle on a definition of continuity consistent with the topol
ogist's topological definition: 

CONTINUITY DEFINITION 2: Let f : X C R-+ R. Then f is 
continuous at xo E X if either x 0 is an isolated point of X, or 
limx--+xo f(x) = f(xa). 

Note that this definition of continuity also implies continuity of f(x) = 
Jxsin(1/x) discussed at the beginning of this article if we define /(0) = 0. 
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And thus ends our journey. What a long, strange trip it's been! Of 
course, we would never subject first-year students to such limit and con
tinuity esoterica, but the issues mentioned above can be the basis for an 
interesting discussion in introductory courses on real analysis. After all, 
this whole journey was inspired by the confusion among mathematical pro
fessionals over the correct answer to limx-+O y'x. 

Admittedly, we had to go out our way to come up with examples for 
which the conventional limit definition 1 failed to give satisfactory results 
that matched our graphical intuition. All of our "misbehaving" examples 
were of functions which were not defined on deleted neighborhoods. Why 
don't we avoid these issues entirely and restrict ourselves to functions that 
are only defined on deleted neighborhoods? The reason is that when one 
considers functions of several variables, this "simplification" requires that 
most rational functions must be discarded. As a simple example consider 

2 2 
the function f(x, y) = xx~-~ 1 • Would anyone like to refute that 

x2y2- 1 
lim = lim ( xy + 1) = 2 

(x,y)-+(1,1) xy - 1 (x,y)-+(1 ,1) 

and claim that this limit cannot be taken since f(x, y) is certainly not 
defined on any deleted neighborhood of the point (1, 1), and, as such, is a 
scoundrel of 2-dimensions, just as vulgar, but seemingly not as contrived, 
as its !-dimensional cousins? Can one convincingly deny that 

lim siny = 1 ? 
(x,y)-+(0,0) y 

These two limits are off-limits for the books [5,10,12 ,17] and some of the 
books even have exercises which are invalid given their definition of limit 
[12, Ex. 24,26 Section 12.2] and [5, Ex. 11,15 Section 12.2], for example. 
Curiously, the book [10, Ex. 11 Section 15.1] gives the exercise 

x2 _ y2 
lim 

(x,y)-+(1,1) X - y 

and states in the solutions at the back of the book that this limit does not 
exist : A consistent answer, given its definition of limit! 

So who's limit is it anyway? It should be ours: the professional mathe
maticians and mathematics educators. Even though we will vigorously and 
authoritatively defend our proposed answers to limx-+0 y'x, do we dare risk 
asking whether or not we are defending the correct answer? We certainly 
ask our students to do this. I think the joke is on us! 
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