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PACS. 04.20.Cv – Fundamental problems and general formalism. 
PACS. 03.65.Ud – Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequal

ities, GHZ states, etc.). 
PACS. 03.65.Ta – Foundations of quantum mechanics; measurement theory. 

Abstract. – We would like to solve the following problem: find a mathematical model formu
lating I) quantum entanglement, II) particle-wave duality, III) universal objects (ur-sub-Planck
 
objects): to be defined in terms of direct or inverse limits (defined by universal mapping proper
ties) giving microcosm behaviors of space-time so as to give the smooth macrocosm space-time,
 
and IV) the “curved” space-time associated with particles with mass in microcosm consistent
 
with the notion of a light cone in macrocosm. Problems I) and II) are treated in Kato G.,
 
Europhys. Lett., 68 (2004) 467. In this paper, we will focus on III) and IV). As a candidate
 
for such a model, we have introduced the category of presheaves over a site called a t-topos.
 
During the last several years, the methods of category and sheaf theoretic approaches have
 
been actively employed for the foundations of quantum physics and for quantum gravity. Par
ticles, time, and space are presheafified in the following sense: a fundamental entity is a triple
 
(m, κ, τ) of presheaves so that for an object V in a t-site, a local datum (m(V ), κ(V ), τ(V ))
 
may provide a local state of the particle m = m(V ), i.e., the localization of presheaf m at V ,
 
in the neighborhood (κ(V ), τ(V )) of m. By presheafifying matter, space, and time, t-topos can
 
provide sheaf-theoretic descriptions of ur-entanglement and ur-particle and ur-wave states(1)
 
formulating the EPR-type non-locality and the duality in a double-slit experiment. Recall that
 

specified). For more comments and the precise definitions of ur-entanglement and particle and 
wave ur-states, see the above-mentioned paper. The applications to a double-slit experiment 
and the EPR-type non-locality are described in detail in the forthcoming papers Kato G. and 
Tanaka T., Double slit experiment and t-topos, submitted to Found. Phys. and Kafatos M., 

presheaves m and m ′ are said to be ur-entangled when m and m ′ behave as one presheaf. Also 
recall: a presheaf m is said to be in particle ur-state (or wave ur-state) when the presheaf m is 
evaluated as m(V ) at a specified object V in the t-site (or when an object in the t-site is not 

Kato G., Roy S. and Tanaka T., The EPR-type non-locality and t-topos, to be submitted to 
Int. J. Pure Appl. Math., respectively. By the notion of decompositions of a presheaf and of an 
object of the t-site, ur-sub-Planck objects are defined as direct and inverse limits, respectively, 
in Definitions 2.1 and 2.4 in what will follow. 
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Notion of a site. – As a domain category for t-topos, we consider a site, i.e., a category 
with a Grothendieck topology. This generalization to a site from a topological space is crucial 
for the t-topos theory since we need more than one morphism between two objects. Further, 
the notion of a site is appropriate for the universal mapping characterization for ur-sub-Planck 
objects as limits. For a further description of a site, see [1–3], or [4] for the logic aspect of 
topoi. We shall review the concept of a site: 

Definition 1.1. A category S is said to be a site if for each object U of S, there is a 
collection of families of morphisms of S: 

Cov. U  = {{fi : Ui → U}i∈I } (1) 

satisfying the following axioms: 
h(T.1) For {fi : Ui → U}i∈I ∈ Cov. U  and for V −→ U in S, there exists Ui × V in S, and  

U 
in the commutative diagram 

Ui × VUi U 
(2) 

U V 

proj
we have {Ui × V −−−→ V } ∈  Cov. V . 

U 
(T.2) For a covering of U , i.e., {fi : Ui → U}i∈I ∈ Cov. U  and for a covering of each Ui, 

i.e., {gj : Uij → Ui}j∈Ii ∈ Cov. Ui, the composition {fi ◦ gj : Uij → U}i∈I,j∈Ii ∈ Cov. U . 
(T.3) An isomorphism {V ′ → V } ∈  Cov. U .
 
Then, {fi : Ui → U}i∈I is said to be a covering family of U .
 
A subcategory of a site is said to be a subsite if each object of the subcategory has covering
 

families satisfying the above (T.1), (T.2), and (T.3). 
Definition 1.2. Let Ŝ be the category of presheaves from a site S to a product category 

of categories indexed by a set Γ: 

�Sopp 

Ŝ = Cα . (3) 
α∈Γ 

Then category Ŝ is said to be a t-topos (or temporal topos), where C1, and  C2, 1, 2  ∈ Γ, 
are the microcosm (in the quantum-mechanical level) and macrocosm (in the classical level) 
discrete categories, respectively. 

Hypotheses on κ and τ . i) Presheaves of space and time κ and τ are sheaves. That is, the 
following is exact: for a covering family {fi : Ui → U}i∈I 

κ(ρ1) � 
κ(fi) κ(Ui × Uk)κ(Ui)κ(U) κ(ρ2) (4) 

i 

(and the same for presheaf τ .) 
ii) κ and τ are ur-entangled over a subsite. 
Remark 1.3. Let m and m be objects of Ŝ. First assume that m and m are not ur

entangled. Let m(V ) and  m′(V ′) be the corresponding particle ur-states of m and m over 
generalized time periods V and V ′ of S, respectively. Consider also the corresponding space-
time neighborhoods (κ(V ), τ(V )) and (κ(V ′), τ(V ′)) of m(V ) and  m′(V ′), respectively. One 

i,k 
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can take V and V ′ “small enough” in S by decomposing (the definition is given later) the 
generalized time periods V and V ′ so that (κ(V ), τ(V )) and (κ(V ′), τ(V ′)) are non-intersecting 
local neighborhoods of m(V ) and  m′(V ′). Next consider the case where m and m are ur
entangled. That is, we now can let V = V ′ in the above. Then the non-intersecting local 
space-time neighborhoods become both (κ(V ), τ(V )). In order to avoid this contradiction, 
we can assume that space and time presheaves κ and τ depend upon a particle. Namely, 
presheaves κ and τ cannot be considered unless a particle (presheaf) is chosen first. 

Definition 1.4. We will consider some t-topos theoretic consequences of presheafified par
ticles, space, and time in this section. First, we recall the following axiom in [5] on the direction 
of a morphism in the site S for two observed states. When τ(V ) precedes τ(U), there exists 
a morphism from V to U in S. Note that not every morphism from V to U indicates the 
corresponding τ(V ) preceding τ(U). This is another reason why the general notion of a site 
is better suited than the induced category from a topological space where only one morphism 
(inclusion) exists between two objects. Let the linear physical time τ(V ) precede τ(U) and let 
g be the corresponding morphism from V to U in the site S. We will characterize the wave 
ur-state between τ(V ) and  τ(U) by all the possible factorizations of morphism g as follows. 

Recall also from [5] that under the assumption in the above paragraph, we can define 

g α β 
V −→ U = (α,W, β)| g = β ◦ α, where V −→ W and W −→ U . (5) 

In the forthcoming paper [6] on a double-slit experiment, Definition 2.1 of the factorization 
of g plays an important role indicating the Feynman diagram and the wave ur-state between 
the particle ur-states determined by V and U . Now we begin: let m and P be presheaves 
manifested at V and V ′, respectively. Next, we will give a general notion of a relativistic ob
servation as a morphism in a category where the image of the morphism should be regarded as 
the information obtained by the observation. (For the notion of a non-relativistic observation, 
see [5].) A t-topos theoretic relativistic observation (measurement) of object m ∈ Ob(Ŝ) over  
V ′ ∈ Ob(S) by another object P ∈ Ob(Ŝ) over  V ∈ Ob(S) in a non-discrete category is defined 

ϕ
as follows: there exists a decomposition (or a factorization) of a morphism V −→ V ′ as 

V = V0 −→ V1 −→ . . .  −→ VN = V ′ 

satisfying the following i) and ii): 
i) each τ(Vj ) precedes τ(Vj+1) for  j = 0,  1,  . . ., N − 1 ,  
ii) there is a morphism sV � 

: m(V ′) → P (V ).V 
Definition 1.5. When such a decomposition in Definition 1.4 exists, the states m(V ′) and  

P (V ) are said to be mutually in a light cone. 
Note 1.6. A maximal number of objects and morphisms giving such a decomposition 

ϕ ϕjof V −→ V ′ is the notion of a microdecomposition. That is, each Vj −→ Vj+1 of the above 
ϕjdecomposition is a micromorphism. Namely, Vj −→ Vj+1 cannot be further factored as 

αj βj
Vj −→ Wj −→ Vj+1 so that the objects Vj , Wj , Vj+1 in the t-site may give the linear time 
relationship among three corresponding ur-states as satisfying βj ◦ αj = ϕj . The concept of a 
micromorphism is defined in [5]. 

Remarks 1.7. 1) The above exactness (4) in i) means that space and time appear to 
be a continuum at the “macro level” when the global object κ(U) is obtained by pasting 
“micro level pieces” κ(Ui). Let S̃ be the full subcategory of sheaves. As for ii), for an object 
U of a subsite S′, (κ(U), τ(U)) is the usual space-time in C2 or in C1. Let us observe the 
following: a morphism from Ui to U , where Ui is an object in a covering family of U , induces 



the “restriction” morphisms from κ(U) to  κ(Ui) and from  τ(U) to  τ(Ui) of space and time. 
That is, intuitively speaking, the smaller Ui is, the smaller the space κ(Ui) becomes, and the 
smaller Ui is, the shorter the time τ(Ui) becomes. 

2) By the definition of a light cone, we have the following consequence for a micromorphism. 
ϕj αj βjThat is, for a micromorphism Vj −→ Vj+1, if a factorization Vj −→ Wj −→ Vj+1 satisfying 

βj ◦ αj = ϕj exists, then by the definition of a micromorphism, τ(Wj ) cannot be in the light 
cone where τ(Vj ) and  τ(Vj+1) belong. Note also that time sheaf τ can be replaced by a 
“particle” presheaf with which τ is associated. 

3) In [7], a full fledged relativistic t-topos is to be developed where, for example, the notion 
of a light cone can be defined also in terms of the presheaf γ associated with a photon. 

Limits and universal objects. – We will focus on space and time presheaves κ and τ which 
are observable in the classical macro level over an object V of the t-site S, over  which, for  
the sake of simplicity, κ and τ are ur-entangled. The ur-entangled pair (κ(V ), τ(V )) could be 
considered for our study in what will follow; however, first we will consider κ and τ separately. 
Compare our approach with [8] on very similar topics. For the generalizations of inverse and 
direct limits of functors defined over a category, see the forthcoming treatise, see [2], or consult 
with [3]. 

Let us consider a decomposition of an object U of S in terms of a covering family as in 
Definition 1.1. One of the reasons why we consider a covering family { fi : Ui → U} i∈I of 
U rather than just a sequence . . .  → W ′ → W → U is that by the sheaf property, κ(U) 
is obtained by “pasting” local data { κ(Ui)} . That is, we need local data to get the global 
κ(U) by (4). Then consider a covering family { fij : Uij → Ui} j∈Ii of each Ui. And similarly, 
consider a covering family { fijk : Uijk → Uij } k∈Ij of Uij . By (T.2) of Definition 1.1, we have 
the following inverse system of the covering families of U by composing covering morphisms 
fi, fij , . . .: 

{ fi : Ui → U} ←− {  fi ◦ fij : Uij → U} ←− {  fi ◦ fij ◦ fijk : Uijk → U} ←−  . . .  .  (6) 

fi◦fij ◦fijk...
Definition 2.1. One can consider the inverse limit lim{ Uijk −−−−−−−−→ U} of the above ←− 

inverse system (6). For all i ∈ I, j ∈ Ii, k ∈ Ii,j , . . ., consider 

lim{ Uijk ...} (7)←− 

and the corresponding direct limits 

{ lim κ(Uijk ...)} and { lim τ(Uijk ...)} . (8)−→ −→ 

Then we can define the following “smallest possible objects” in the sense of universal mapping 
properties of limits. The inverse limit (6) is said to be an ur-sub-Planck decomposition of U , 
and the direct limits in (8) are said to be a ur-sub-Planck decomposition for κ(U) and an  
ur-sub-Planck decomposition for τ(U), respectively. Those individual direct limit objects 
lim κ(Uijk ...) and lim τ(Uijk ...) are said to be an ur-sub-Planck space and an ur-sub-Planck−→ −→ 
time with respect to κ(U) and  τ(U). 

←− Remark 2.2. For a given U in S, by considering an ur-sub-Planck decomposition lim{ Uijk...} of 
U , we get not only the shortest generalized time period but also the virtually initial stage of 
U in the following sense. The morphism, for example, from each Ui of the covering family 
{ fi : Ui → U} i∈I to U need not imply that τ(Ui) precedes τ(U) as we noted in Defini
tion 1.4. Yet, there exists a morphism from the inverse limit lim{ Uijk...} to every { Uijk...}←− 
as if lim{ Uijk...} were the earliest generalized time for U . Namely, mini-bang-like objects ←− 
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associated with particles to space-time presheaves exist which can last only the periods of 
ur-sub-Planck time lim τ(Uijk...) as defined in Definition 2.1. −→ 

Remark 2.3. In order to formulate a t-topos theoretic ultra early universe, we need to 
pose three technical hypotheses. We will come back to this topic in a later paper. 

Definition 2.4. We can consider a decomposition of a particle m = m(U) into micro 
objects { mα} in terms of presheaves as done in Definition 2.1. First, rewrite the presheaf 
m ∈ Ob(Ŝ) as a direct sum α mα of subpresheaves and next, rewrite each mα as β mαβ , 
and similarly for mαβ as γ mαβγ . For these decompositions, define morphisms as 

m ←− mα ←− mαβ ←− mαβγ ←− . . .  .  (9) 
α α β α β γ 

Then consider 
lim . . .  mαβγ ... and lim mαβγ ... . (10)←− ←− 

α β γ 

Then lim α β γ . . .  mαβγ ... in (10) is said to be an ur-sub-Planck decomposition of m,←− 
and lim mαβγ ... is said to be an ur-sub-Planck subobject of Ŝ for m.←− 

∗On the t.g. principles of relativistic t-topos. – Let m and m be presheaves associated 
with particles and let (κ, τ) and (κ∗, τ∗) be the space-time presheaves associated with m and 
m ∗, respectively. We define the space-time presheaf (κ̃, τ̃) determined by (κ, τ) and (κ∗, τ∗) 

∗by the product of (κ, τ) and (κ∗, τ∗) in the category S̃ of sheaves. Namely, we have κ̃ = κ× κ
and τ̃ = τ × τ∗ . Note that a measurement (an observation), in the sense of Definition 1.4 
in [5], of κ̃ by P in Ŝ over an object V in S does not give any information on κ. That is, one 

∗cannot compose a morphism from κ̃ to P with the projection from κ̃ = κ × κ to κ. On  the  
∗contrary, if both κ and κ are measured by  P , then the compositions of projections and the 

∗observation morphisms give a measurement of the product κ̃ = κ × κ . 
Next for a given space-time sheaves (κ, τ), which is associated with a presheaf m, represent

ing a particle m, as described in the above paragraph, we will consider a morphism between 
two observers P and Q of m in Ŝ. By using the above interference of space-time presheaves 
and the relativistic observation in Definition 1.4, one can give the macro-global relativistic 
definition of the morphism from P to Q. However, we will give a micro-local version of the 
morphism P to Q in this paper. Namely, such a morphism is defined over a single object of 
the t-site S. (See also [7] for a full treatment.) Recall first that space and time sheaves κ and 
τ are entangled over a t-subsite. Fundamental relativistic commutative diagrams (micro-local 
case) over a morphism from V to V ′ of S can be given as 

connected with functorially induced morphisms from the right square diagram over V ′ to 
the left commutative diagram over V . Then the natural transformation E-L over V and V ′ 

is said to be an Einstein-Lorentz natural transformation for observer presheaves P and Q. 
Notice that for the micro-local case, the above space-time presheaves (κ, τ) are determined by 
presheaves P , Q and m. Namely, (κ, τ) are the product of space-time sheaves associated with 
P , Q, and  m in the above sense. A detailed study of (F.D.) will appear in [7]. 

(κ(V ), τ(V )) = (κ(V ), τ(V )) 

P (V ) 
E-L(V ) 

Q(V ) 
and 

(κ(V ′), τ(V ′)) = (κ(V ′), τ(V ′)) 

P (V ′) 
E-L(V �) 

Q(V ′) 

(F.D.) 



Final remarks. – i) The principle of general covariance and the principle of equivalence 
are interpreted as the commutativity of diagram (F.D.). Compare with [9] for the morphisms 
in (F.D.), i.e., natural transformations evaluated at objects of the t-site. 

ii) Note also that one of the reasons for the presheafification of matter, space, and time is to 
avoid the undesired Cantor-Dedekind-Euclidean–type notion of point singularities. Namely, 
even the t-topos theoretic smallest possible objects, defined in terms of limits (i.e., by  the  
universal mapping properties of limits), are still objects, possibly having many set-theoretic 
elements in those objects. That is, singularities need not be points in the Cantor-Dedekind-
Euclidean sense. For careful analysis in terms of Abstract Differential Geometry of such 
singularities of the classical theory, see [10–12]. 

iii) Summarizing, the theory of t-topos is a theory where an entanglement (the EPR-type 
non-locality), wave-particle duality (the principle of complementarity), the notion of a light 
cone and fundamental relativistic concepts (as the above commutative diagram (F.D.)) are 
defined in terms of presheaves (and sheaves) over a category with a Grothendieck topology. 
The next step in our theory might be to introduce a formulation of scaling. For example, 
following Butterfield and Isham [13], their fundamental composition principle becomes the 
commutative diagram in [5] by replacing the Hilbert space with our product category. (Note 
also that our formulation of Kochen-Specker Theorem is given in [5].) More importantly, in 
addition to space and time presheaves, we must introduce new presheaves to induce dynamic 
notions in t-topos theory. 

× κ′′iv) The gravitational dynamics might be interpreted as the product κ̃ = κ′ × . . .  κ′′′ 

of sheaves associated with particles with mass, i.e., determined by “geometry of space”. On 
the other hand, as in i) above, there exist objects V and V ′ in the t-site S which determine 
the states of m, P , and  Q so that the vertical morphisms in (F.D.) are associated with an 
equivalent acceleration to κ̃ = κ′ ×κ′′ × . . . κ′′′ . For arbitrary V and V ′ in S, the lower square 
commutativity of (F.D.) corresponds to the differential equations of Einstein which is associ
ated with the principle of general covariance. For further analysis, see the forthcoming [7]. 

v) As for singularities, as we mentioned in ii) above, the theory of t-topos is a pointless 
and background space-timeless theory as the theory developed in [12]. Namely, there is no 
infinity, i.e., no singularity in our topos theoretic (categorical, cohomological algebraic) ap
proach, where the usual general relativity based on a background manifold induces all those 
pathologies. 

∗ ∗ ∗  
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