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From the enumerative generating function of an abstract adjacency statistic, we deduce 
the mean and variance of the variation on random permutations, rearrangements, com­
positions, and bounded integer sequences of finite length. 

1. Introduction 

When the finite sequence of integers w = 1,3,2,2,4,3 is sketched as below, 

4 

3 3 

(1.1)w = 

2 2 

1 

its most compelling aspect is its vertical variation, that is, the sum of the vertical distances 
between its adjacent terms. Denoted by varw, the vertical variation of the sequence in 
(1.1) is varw = 2 + 1 + 0 + 2 + 1  = 6. Our purpose here is to compute the mean and vari­
ance of var on four classical sets of combinatorial sequences. 

To formalize matters and place our problem in the context of other work, let [m]n 

denote the set of sequences w = x1x2 ···xn of length n with each xi ∈ {1,2, . . . ,m}. For  
a real-valued function f on [m]2, the  f -adjacency number of w = x1x2 ···xn ∈ [m]n is 
defined to be 

n−1 

adf w = f xkxk+1 . (1.2) 
k=1 

Copyright © 2005 Hindawi Publishing Corporation 
International Journal of Mathematics and Mathematical Sciences 2005:14 (2005) 2277–2285 
DOI: 10.1155/IJMMS.2005.2277 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/S0161171205411308


� 

� 

� 

2278 Variation of random sequences 

Table 1.1 

Sequences Expected value of var Variance of var 

n2 − 1 
Sn 3 

(n− 1)(m2 − 1)
[m]n 

3m 
2 

Rn(�i) (y− x)ixiy
n 1≤x<y≤m 

�m/2�
2(n− 1)

Cn(m) (m− 2x)n−1 

(m− 1)n−1 
x=1 

(n− 2)(n+ 1)(4n− 7) 
90
 

(m2 − 1)(6m2n+ 6n− 7m2 − 2)
 
90m2
 

See (3.10)
 

See (3.18) 

Some specializations of the f -adjacency number have been considered elsewhere. For in­
stance, if f (xy) is 1 when  x < y  and 0 otherwise, then adf w is known as the rise number of 
w [1, 3, 4]. For the selection f (xy) = |y− x|, adf  w = varw. In a sorting problem of com­
puter science, Levcopoulos and Petersson [5] introduced the related notion of oscillation 
(varw − n + 1) as a measure of the presortedness of a sequence of n distinct numbers. 
In [6], compositions were enumerated by their ascent variation, the  f -adjacency statis­
tic induced by f (xy) = y − x if x < y  and 0 otherwise. For the case f (xy) = h(|y − x|) 
where h is a linear, convex, or concave increasing real-valued function, Chao and Liang 
[2] described the arrangements of n distinct integers for which adf achieves its extreme 
values. 

Besides considering the distribution of var on the set [m]n, we also consider it on 
the set of rearrangements Rn(i1, i2, . . . , im) consisting of sequences of length n = i1 + i2 + 
···+ im which contain l exactly il times, on the set of permutations Sn = Rn(1,1, . . . ,1)  
of {1,2, . . . ,n}, and on the set of compositions of m into n parts Cn(m) = {x1x2 ···xn ∈ 
[m]n : x1 + x2 + ··· + xn = m}. For  m,n ≥ 2, Table 1.1 displays the mean and variance 

kof var on these four sets. The kth falling factorial of n is n = n(n− 1)···(n− k + 1),  
�i = (i1, i2, . . . , im), and, for r a real number,  �r� denotes the greatest integer less than or 
equal to r. The  results in  Table 1.1 are new. David and Barton [3, Chapter 10] present 
the distributions of several statistics (some f -adjacency numbers, some not) primarily 
on permutations. We also note that Tiefenbruck [7] derived a generating function for 
compositions with bounded parts by a close relative of var. We leave open questions con­
cerning the asymptotic behavior of var. 

2. Enumerative factorial moments for f -adjacencies 

Before working specifically with var, we discuss the enumerative generating function for 
adf on sequences as developed by F´ denote the set of edou and Rawlings [4]. Let [m]∗ 

sequences of 1, 2, . . . , m of finite length (including the empty sequence of length 0). For 
w = x1x2 ···xn ∈ [m]∗, we define  Zw = zx1 zx2 ···zxn . The enumerative generating func­

adf wZwtion for adf over [m]∗ is then defined to be G(p) = w∈[m]∗ p . 
By manipulating G(p), we will obtain all of the information in Table 1.1 (and more). 

k i1 i2 imAs a brief outline of our approach, note that the coefficient of p z1 z2 ···zm in G(p) is  
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just the number of rearrangements w in Rn(�i) with adf  w = k. Thus, by dividing the coeffi­
i1 i2 imcient of z1 z2 ···zm in G�(1) by the cardinality of Rn(�i), we will obtain the mean of adf . So, 

in general, we compute the dth enumerative factorial moment G(d)(1) = w∈[m]∗ (adf w)d 

Zw . 
From the work of Fédou and Rawlings [4], it follows that 

1 
G(p) = ,	 (2.1) 

D(p) 

where 

n−1 

Zx1···xn f (xkxk+1) − 1D(p) = 1 −	 p . (2.2) 
n≥1 x1···xn∈[m]n k=1 

Examples are presented in [4, 6] for which D has a closed form. We do not know a closed 
form for D when adf = var (that is, when f (x, y) = |y − x|). Nevertheless, (2.1) is still  
useful in computing the mean and variance of var. 

Although the formula for taking the d-fold derivative with respect to p of a function 
of the form in (2.1) is known, we provide  a short  derivation. To avoid  the quotient and  
chain rules, rewrite (2.1) as  GD = 1. Differentiating the latter d times, d ≥ 1, and dividing 
by d! gives  

d �	 G(d− j) D( j) 
= 0. (2.3)

(d − j)! j!
j=0 

To solve for G(d), consider the system 

G(d) D(0) G(d−1) D(1) G(d−2) D(2) G(0) D(d) 
+ + + ···+ = 0,

d! 0! (d − 1)! 1! (d − 2)! 2! 0! d! 

G(d−1) D(0) G(d−2) D(1) G(0) D(d−1) 
+ + ···+ = 0,

(d − 1)! 0! (d − 2)! 1! 0! (d − 1)! 

. .	 (2.4). 

G(1) D(0) G(0) D(1) 
+ = 0,

1! 0! 0!	 1! 

G(0) D(0) 
= 1,

0! 0! 

where the top d equations arise from repeated application of (2.3). Cramer’s rule applied 
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to the above system yields 

D(1) D(2) D(3) D(d) 
···  � 1! 2! 3! d! � 

D(0) D(1) D(2) D(d−1) 

� 0! 1! 2! (d− 1)!� 
G(d) � �(−1)d � D(0) D(1) D(d−2) � 

Dd+1 � 0 �d! � 0! 1! (d− 2)!� � . . � . . . . 
� D(0) D(1) � � 0 ···  0 � 

0! 1! 

which, when expanded, implies that 

d (−1)ν d 
G(d) D( j1)= ···D( jν). 

Dν+1 j1 ···  jνν=1 j1+···+ jν =d 
jk≥1 

To determine the enumerative factorial moment G(d)(1), we see from (2.2) that  

j+1 

D( j)(1) =−  Dr 
( j)

, 
r=2 

where 

( j) 
Zx1···xr j r−1 �lkDr = f xkxk+1 . 

l1 ··· lr−1 x1···xr∈[m]r l1+···+lr−1= j k=1 
lk≥1 

For instance, 

D� D�� 2 = f (xy)zxzy , = f (xy)2zxzy ,2 
xy∈[m]2 xy∈[m]2 

D�� = 2 f (vx) f (xy)zvzxzy.3
 
vxy∈[m]3
 

Further setting �j = ( j1, . . . , jν), s(�j) = j1 + ···+ jν, 

d d (�j) � ( j1) ( jν )= ,  and  Dµ = Dr1 ···Drν ,�j j1 ···  jν r1+···+rν =µ 
rk≥2 

it follows from (2.6) and  (2.7) that  

d d+ν � � d �1 (�j)
G(d)(1) = Dµ . 

Dν+1(1) �jν=1 µ=2ν s(�j)=d 
jk≥1 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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As D(1) = 1 − (z1 + ···+ zm), extracting the contributions made by all w ∈ [m]n from 
both sides of (2.11) gives the dth enumerative factorial moment of adf over [m]n as 

� � � �� �n−µd d+ν m � � � d � �n+ ν −µ (�j)
(adf w)dZw = zi Dµ (2.12)�j ν 

w∈[m]n ν=1 µ=2ν i=1s(�j)=d 
jk≥1 

valid for d ≥ 1. When d = 1,2, (2.9) and  (2.12) imply  that  

� m �n−2 

adf wZw = (n− 1) zi f (xy)zxzy (2.13) 
w∈[m]n i=1 xy∈[m]2 

and that 

� m �n−2 
2

(adf w)2Zw = (n− 1) zi f (xy) zxzy
 
w∈[m]n i=1 xy∈[m]2
 � m �n−3 

+ 2(n− 2) zi f (vx) f (xy)zvzxzy (2.14) 
i=1 vxy∈[m]3 � �n−4� �2m 

+ (n− 2)(n− 3) zi f (xy)zxzy . 
i=1 xy∈[m]2 

3. Discussion of Table 1.1 

The entries in Table 1.1 are consequences of (2.13) and  (2.14) with  f (xy) = |y − x| and 
with appropriate substitutions for Z. For the mean and variance of var on the set of 
bounded sequences [m]n, put  zi = 1 for  1  ≤ i≤ m. Noting that 

m+ 1  |y− x| =  2(y− x) = 2 , (3.1) 
3 

xy∈[m]2 1≤x<y≤m 

it follows from (2.13) that the mean of var on [m]n is 

� n−21 2(n− 1)m m+ 1  (n− 1) m2 − 1 
varw = = . (3.2) 

mn mn 3 3m 
w∈[m]n 

As 

m+ 1  |y− x|2 = 4 (3.3)
4 

xy∈[m]2 
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and as 

|x − v||y − x| =  2(x − v)(y − x) 
vxy∈[m]n 1≤v<x<y≤m 

+ 4(v − x)(y − x) − 2(y − x)2 
(3.4)

1≤x<y≤v≤m 1≤x<y≤m 

7m2 − 8 m + 1  = ,
10 3 

(2.14) implies that 

1 � 4(n− 1) m + 1  (n − 2) 7m2 − 8 m + 1  
(varw)2 = + 

mn m2 4 5m3 3 
w∈[m]n
 � �2
 

(3.5) 
4(n − 2)(n − 3) m + 1  

+ . 
m4 3 

Then, subbing the last result into 

� �21 � (n − 1) m2 − 1 (n− 1) m2 − 1 
(varw)2 + − (3.6) 

mn 3m 3m 
w∈[m]n 

and simplifying gives the variance of var as recorded in Table 1.1. 
i1 i2 imFor Rn(�i), extracting the coefficient of z1 z2 ,··· ,zm from (2.13) leads  to  

n − 2 
varw = 2(n − 1) (y − x) . (3.7)

i1 ··· ix − 1··· iy − 1··· im 
(� 1≤x<y≤m w∈Rn i) 

As the cardinality of Rn(�i) is  

n n = , (3.8) 
i1i2 ··· im �i 

it follows that the mean of var on Rn(�i) is  

� �−1 
n � 2 � 

varw = (y − x)ixiy. (3.9)
i n 

w∈Rn(� 1≤x<y≤mi) 

Let �i\r = (i1, . . . , ir − 1, . . . , in). For example, (3,2,1,4)\3\2\3 = (3,1,−1,4). The variance on 
Rn(�i) is then  

� �−1 � �2 
n 2 2 

varw2 + (y − x)ixiy − (y − x)ixiy , (3.10) 
i n 1≤x<y≤m n 1≤x<y≤m w∈Rn(�i) 



� � 

�
� � 

�
� � 

�

� � 
� � 

� � 

� 

� 

� � � � 

� 

Rudolfo Angeles et al. 2283 

i1 i2 imwhere, upon extraction of the coefficient of z1 z2 , . . . ,zm from (2.14), we have 

� � n− 2 
(varw)2 = (n− 1) |y− x|2 

i\x\y1≤x, y≤mw∈Rn(�i) 

� n− 3 
+ 2(n− 2) |x− v||y− x| (3.11) 

1≤v,x,y≤m i\v\x\y 

� n− 4 
+ (n− 2)(n− 3) |v− u||y− x| . 

i\u\v\x\y1≤u,v,x,y≤m

The permutation entries in Table 1.1 follow from (3.9) and  (3.10). Selecting m= n and 
ik = 1 for  1  ≤ k ≤ n in (3.9) reveals the mean of var on Sn as 

1 2 2 n+ 1  n2 − 1 
varw = (y− x) = = . (3.12) 

n! n n 3 3 
w∈Sn 1≤x<y≤n 

From (3.11), with m= n and ik = 1 for  1  ≤ k ≤ n, 

(varw)2 = (n− 1)! |y− x|2
 

w∈Sn 1≤x, y≤n


+ 2(n− 2)! |x− v||y− x|
1≤v,x,y≤n

(3.13)+ (n− 2)! |v− u||y− x|
1≤u,v,x,y≤m 
{u,v}∩{x,y}=∅ 

4 � � n+ 1  = (n− 2)! 10n2 + 14n− 27 . 
15 4 

So the variance of var on Sn is 

� �21 � n2 − 1 n2 − 1 (n− 2)(n+ 1)(4n− 7)
varw2 + − = . (3.14) 

n! 3 3 90 
w∈Sn 

For w = x1 ···xn ∈ [m]n, let  �w� =  x1 + ···  + xn. For the composition results in 
Table 1.1, set  zk = qk for 1 ≤ k ≤ m. Then (2.13) implies that 

� 1 − qm �n−2 � �w� n−2 x+yvarwq = (n− 1)q |y− x|q (3.15)
1 − q

w∈[m]n 1≤x, y≤m
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and (2.14) leads  to  

� 1 − qm �n−2 � �w� n−2 x+y(varw)2q = (n − 1)q |y − x|2q
1 − q

w∈[m]n 1≤x, y≤m
 � �n−3
m �1 − qn−3 v+x+y+ 2(n − 2)q |x − v||y − x|q
1 − q 1≤v,x,y≤m � �n−4m �1 − qn−4 u+v+x+y+ (n − 2)(n − 3)q |v − u||y − x|q . 

1 − q 1≤u,v,x,y≤m 

(3.16) 

Extracting the coefficient of qm from (3.15) to obtain  

m − 1 − x − y
varw = 2(n − 1) (y − x) 

n − 3 
w∈Cn(m) 1≤x<y≤m � � (3.17) 

m − 2x = 2(n − 1) 
n − 1 

1≤x≤�m/2� 

m−1and then dividing by the cardinality of Cn(m) gives the mean of var as stated in n−1 

Table 1.1. The variance is 

� �−1 
m − 1 2(n − 1)

varw2 + (m − 2x)n−1 
n − 1 (m − 1)n−1 

w∈Cn(m) 1≤x≤�m/2� 
(3.18) � �22(n − 1)− (m − 2x)n−1 ,

(m − 1)n−1 
1≤x≤�m/2� 

where, pulling the coefficient of qm from (3.16), we have 

m − 1 − x − y
(varw)2 = (n − 1) |y − x|2 

n − 3 
w∈Cn(m) 1≤x, y≤m 

m − 1 − v − x − y
+ 2(n − 2) |x − v||y − x| 

n − 4 
1≤v,x,y≤m 

m − 1 − u − v − x − y
+ (n − 2)(n − 3) |v − u||y − x| . 

n − 5 
1≤u,v,x,y≤m 

(3.19) 

The sums in (3.19) are marginally simplified. For instance, 

m − 1 − x − y m − 2x |y − x|2 = 4 . (3.20)
n − 3 n

1≤x, y≤m 1≤x≤�m/2� 
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As a part of the second sum on the right-hand side of (3.19), we note that 

m − 1 − v − x − y
(x − v)(y − x) 

n − 4
1≤v<x<y≤m ��  � � � � ��  (3.21) 

m− 3x + 1  m − 2x + 1  m − 2x =	 − + x . 
n n n − 1 

2≤x≤�(m+1)/2� 

The four-fold sums arising in the last sum in (3.19) reduce to double sums.  
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