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Abstract 

In these lecture notes we present an introduction to non-standard 
analysis especially written for the community of mathematicians, physi­
cists and engineers who do research on J. F. Colombeau’ theory of new 
generalized functions and its applications. The main purpose of our 
non-standard approach to Colombeau’ theory is the improvement of 
the properties of the scalars of the varieties of spaces of generalized 
functions: in our non-standard approach the sets of scalars of the func­
tional spaces always form algebraically closed non-archimedean Can­
tor complete fields. In contrast, the scalars of the functional spaces 
in Colombeau’s theory are rings with zero divisors. The improve­
ment of the scalars leads to other improvements and simplifications 
of Colombeau’s theory such as reducing the number of quantifiers and 
possibilities for an axiomatization of the theory. Some of the algebras 
we construct in these notes have already counterparts in Colombeau’s 
theory, other seems to be without counterpart. We present applica­
tions of the theory to PDE and mathematical physics. Although our 
approach is directed mostly to Colombeau’s community, the readers 
who are already familiar with non-standard methods might also find a 
short and comfortable way to learn about Colombeau’s theory: a new 
branch of functional analysis which naturally generalizes the Schwartz 
theory of distributions with numerous applications to partial differen­
tial equations, differential geometry, relativity theory and other areas 
of mathematics and physics. 

MSC: Functional Analysis (46F30); Generalized Solutions of PDE (35D05). 

1
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ttodorov@calpoly.edu


1 Introduction 

This lecture notes are an extended version of the several lectures I gave at 
the University of Vienna during my visit in the Spring of 2006. My audience 
consisted mostly of colleagues, graduate and undergraduate students who do 
research on J.F. Colombeau’s non-linear theory of generalized functions (J.F. 
Colombeau’s ([10]-[15]) and its applications to ordinary and partial differ­
ential equations, differential geometry, relativity theory and mathematical 
physics. With very few exceptions the colleagues attended my talks were not 
familiar with nonstandard analysis. This fact strongly influenced the nature 
of my lectures and these lecture notes. I do not assume that the reader of 
these notes is necessarily familiar neither with A. Robonson’s non-standard 
analysis (A. Robonson [73]) nor with A. Robonson’s non-standard asymp­
totic analysis (A. Robinson [74] and A. Robonson and A.H. Lightstone [56]). 
I have tried to downplay the role of mathematical logic as much as possible. 
With examples from Colombeau’s theory I tried to convince my colleagues 
that the involvement of the non-standard methods in Colombeau theory has 
at least the following three advantages: 

1. The scalars of the non-standard version of Colombeau’s theory are 
algebraically closed Cantor complete fields. Recall that in Colmbeau’s 
theory the scalars of the functional spaces are rings with zero divisors. 

2. The involvement of non-standard analysis in Colombeau’s theory leads 
to simplification of the theory by reducing the number of the quanti­
fiers. This should be not of surprise because non-standard analysis is 
famous with the so called reduction of quantifiers. For comparison, the 
familiar definition of a limit of a function in standard analysis involves 
three (non-commuting) quantifiers. In contrast, its non-standard char­
acterization uses only one quantifier. Another example gives the def­
inition of a compact set in point set topology involves at least two 
quantifiers. In contrast, there is a free of quantifiers non-standard char­
acterization of the compactness in terms of monads. Since Colombeau’ 
theory is relatively heavy of quantifiers, the reduction of the numbers 
of quantifiers makes the theory more attractive to colleagues outside 
the Colombeau’s community and in particular to theoretical physicists. 

3. In my lectures and in these notes I decided to follow mostly the so 
called constructive version of the non-standard analysis where the non­
standard real number a ∈ ∗R is equivalence class of families (ai) in the  
ultrapower RI for some infinite set I. Similarly, every non-standard 
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smooth function f ∈ ∗E(Ω) is defined as equivalence class of fami­
lies (fi) in the  ultrapower  E(Ω)I . Here  E(Ω) is a (short) notation 
for C∞(Ω). The equivalence relation in both RI and E(Ω)I is de­
fined in terms of a free ultrafilter U on I. In our approach the choice 
of the index set I and the choice of the ultrafilter U are borrowed 
from Colombeau’s theory. This approach to non-standard analysis is 
more directly connected with the standard (real) analysis and allow to 
involve the non-standard analysis in research with comparatively lim­
ited knowledge in the non-standard theory. The non-standard analy­
sis however has also axiomatic version based on two axioms known a 
Saturation Principle and Transfer Principle. The involvement of non­
standard analysis, if based on these two principles, opens the opportu­
nities for axiomatization of Colombeau’s theory. I have demonstrated 
this in the notes by presenting a couple of proofs to several theorems: 
one using families (nets), and another using these two axioms. The 
first might be more convincible for beginners to non-standard analysis 
but the second proofs are more elegant and short because it does not 
involve the representatives of the generalized numbers and generalized 
functions. 

Let T stand for the usual topology on Rd . J.F. Colombeau’s non-linear 
theory of generalized functions is based on varieties of families of differential 

def commutative rings G = {G(Ω)}Ω∈T such that: 1) Each G is a sheaf of differ­
ential rings (consequently, each f ∈ G(Ω) has a support which is a closed 
set of Ω). 2) Each G(Ω) is supplied with a chain of sheaf-preserving em­
beddings C∞(Ω) ⊂ D'(Ω) ⊂ G(Ω), where C∞(Ω) is a differential subring 
of G(Ω) and the space of L. Schwartz’s distributions D'(Ω) is a differen­
tial linear subspace of G(Ω). 3) The ring of the scalars CC of the family 
G (defined as the set of the functions in G(Rd) with zero gradient) is a 
non-Archimedean ring with zero devisors containing a copy of the complex 
numbers C. Colombeau theory has numerous applications to ordinary and 
partial differential equations, fluid mechanics, elasticity theory, quantum 
field theory and more recently to general relativity. 
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2 κ-Good Two Valued Measures 

I follow the philosophy that every non-standard real number a ∈ ∗R is, 
roughly speaking, a family (ai) in the  ultrapower  RI for some infinite set I. 
Similarly, every nonstandard smooth function f ∈ ∗E(Ω) is again, roughly 
speaking, a family (fi) in the ultrapower E(Ω)I . Here  E(Ω) is a (short) 
notation for C∞(Ω). 

Definition 2.1 (κ-Good Two Valued Measures) Let I be an infinite 
set of cardinality κ, i.e. card(I) =  κ. A mapping p : P(I) → {0, 1} is a 
κ-good two-valued (probability) measure if 

(i) p is finitely additive, i.e. p(A ∪B) =  p(A)+  p(B) for disjoint A and B. 

(ii) p(I) = 1. 

(iii) p(A) = 0  for finite A. 

(iv) There exists a sequence of sets (In) such that 

(a) I ⊃ I1 ⊃ I2 ⊃ . . .  , 
(b) In \ In−1 = ∅ for all n,  ∞(c) I = ∅,n=1 n 

(d) p(In) = 1  for all n. 

(v) If I is uncountable, we impose one more property: p should be κ-good 
in the sense that for every set Γ ⊆ I, with  card(Γ) ≤ κ, and every 
reversal R : Pω(Γ) → U there exists a strict reversal S : Pω(Γ) → U  
such that S(X) ⊆ R(X) for all X ∈ Pω(Γ). Here Pω(Γ) denotes the 
set of all finite subsets of Γ and U = {A ∈ P(I) | P (A) = 1}. 

Remark 2.1 (Reversals) Let Γ ⊆ I. A function R : Pω(Γ) → U  is called 
a reversal if X ⊆ Y implies R(X) ⊇ R(Y ) for every X, Y ∈ Pω(Γ). A  
function S : Pω(Γ) → U  is called a strict reversal if S(X ∪ Y ) =  S(X) ∩ 
S(Y ) for every X, Y ∈ Pω(Γ). It is clear that every strict reversal is a 
reversal (which justifies the terminology). 

Remark 2.2 (Ignore (v) unless you really need it) The property (v) 
in the definition of p is needed only to prove the Saturation Principle (see 
later) in the full generality, i.e. for family of internal sets (Aγ )γ∈Γ with 
card(Γ) ≤ card(I). In  the  case  when  Γ is countable or I is countable, the 
property (v) is not needed. In particular we do not need property (v) in this 
Lecture Notes and the reader is advised to ignore it. 
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3 Existence of Two Valued κ-Good Measures 

Theorem 3.1 (Existence of Two Valued κ-Good Measures) Let I be 
an infinite set and let (In) be a sequence of sets with the properties (a)-(c) 
(think of Colombeau’s theory). Then there exists a two valued κ-good mea­
sure p : P(I) → {0, 1}, where  κ = card(I), such that p(In) = 1  for all 
n ∈ N. 

Remark 3.1 We should note that for every infinite set I there exists a 
sequence (In) with the properties (a)-(c). 

Proof: Step 1: Define F0 ⊂ P(I) by  

F0 = {A ∈ P(I) | In ⊆ A for some n}. 

It is easy to check that F0 is a free countably incomplete filter on I 
in the sense that F0 has the following properties: 

(i) ∅ / 0.∈ F

(ii) F0 is closed under finite intersections. 

(iii) F0 : A ⊆ B ∈ P(I) implies  B ∈ F0. 

(iv) In ∈ F0 for all n ∈ N. 

Step 2: We extend F0 to a ultrafilter  U on I by Zorn lemma: Let L 
denote the set of all free filter F on I containing In, i.e. 

L = {F ⊂ P(I) | F  satisfies (i)-(iv), where F0 should be replaced by F}. 

We shall order L by inclusion ⊂. Observe that every chain L in L is bounded � � 
from above by A and it is not difficult to show that A ∈ L. Thus  A∈L A∈L 
L has maximal elements U by Zorn lemma. In what follows we shall keep U 
fixed. 

Step 3: We shall prove now that U has the following (free ultrafilter) 
properties: 

(1) ∅ / .∈ U

(2) U is closed under finite intersections. 

(3) U : A ⊆ B ∈ P(I) implies B ∈ U . 

(4) In ∈ U  for all n ∈ N. 
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(5) A ∪B ∈ U  implies either A ∈ U  or B ∈ U . 

Indeed, U satisfies (1)-(4) by the choice of U since U ∈ L. To  show  the  
property (5), suppose (on the contrary) that A ∪ B ∈ U  and A,B /∈ U  for 
some subsets A and B of I. Next, we observe that FA = {X ∈ P(I) |
A∪X ∈ U} is also a free filter on I (i.e. FA satisfies the properties (1)-(4)). 
Next, we observe that FA is a proper extension of U since B ∈ FA \ U  by 
the assumption for B, contradicting the maximality of U . 

Step 4: Define p : P(I) → {0, 1} by p(A) = 1 whenever A ∈ U  and 
p(A) = 0 whenever A /∈ U .  We have to show now  that  p is a κ-good two 
valued measure (Definition 2.1). To check the finite additivity property (i) 
of p, suppose  that  A ∩ B = ∅ for some A,B ∈ P(I). Suppose, first, that 
A ∪B ∈ U , so we have  p(A ∪B) = 1. On the other hand, by properties (1) 
and (5), exactly one of the following two statements is true: either (a) A ∈ U  
and A /∈ U or (b) A /∈ U and A ∈ U . In either case we have p(A)+p(B) = 1,  
as required. Suppose, now, that A∪B /∈ U , so  we  have  p(A∪B) = 0.  In  this  
case we have A /∈ U and B /∈ U by property (3). Thus p(A)+  p(B) = 0. The 
property (ii): p(I) = 1 holds since I ∈ U  by properties (3) and (4) of U . To  
prove the property (iii), suppose (on the contrary) that p(A) = 1  for  some  
finite set A ⊂ I, i.e.  A ∈ U . It follows that there exists i ∈ A such that � {i} ∈ U  by property (5) of U since we have  {i} = A. Thus  {i} ∈ I fori∈A n 

all n ∈ N  by properties (1), (2) and (4) of U . It follows that {i} ∈  Inn∈N 
contradicting property (c) of the sequence (In). The property (iv) holds 
by  the choice of  U since In ∈ F0 ⊂ U  thus p(In) = 1. For the proof of 
the property (v) of the measure p we shall refer to C. C. Chang and H. J. 
Keisler [8] or to T. Lindstrøm [55]. . 

4 A Non-Standard Analysis: The General Theory 

Definition 4.1 (A Non-Standard Extension of a Set) Let S be a set 
Iand I be and infinite set, and S be the corresponding ultrapower. 

(i) We say that (ai) and (bi) are equal almost everywhere in I, in symbol  
ai = bi a.e., if p({i ∈ I  |  ai = bi in S}) = 1, or equivalently, if 
{i ∈ I | ai = bi in S} ∈ U , where  U = {A ∈ P(I) | p(A) = 1}. We  
denote by ∼ the corresponding equivalence relation, i.e. (ai) ∼ (bi) if 
a = b a.e..i i 

(ii) We denote by (ai) the equivalence class determined by (ai). The  set  of  
all equivalence classes ∗S = SI /∼ is called a non-standard exten­
sion of S. 
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∗(iii)	 Let s ∈ S. We define s = (ai), where  ai = s for all i ∈ I. We  
define the canonical embedding σ : S → ∗S by σ(s) =  ∗ s, and denote 

∗by σS = { s | s ∈ S} the range of σ. We shall sometimes treat this 
embedding as an inclusion, S ⊆ ∗S, by letting  s = ∗ s for all s ∈ S. 

(iv) More generally, if X ⊆ S, we define ∗X ⊆ ∗S by 

∗ X = {(xi) ∈  ∗ S | xi ∈ X a.e.}. 

We have X ⊆ ∗X under the embedding x → ∗ x. We say that ∗X is 
the non-standard extension of X. 

Theorem 4.1 (Axiom 1. Extension Principle) Let S be a set. Then 
S ⊆ ∗S and S = ∗S i f f  S is a finite set. 

Proof: S ⊆ ∗S holds in the sense of the embedding σ. Suppose, first, that S 
is a finite set and let (ai) ∈ ∗S. We observe that the finite collection of sets � {i ∈ I | ai = s}, s ∈ S, are mutually disjoint and {i ∈ I | ai = s} = I. s∈SI 
Thus s∈S p({i ∈ I | ai = s}) = 1 by the finite additivity of the measure p. 
It follows that there exists a unique s0 ∈ S such that p({i ∈ I | ai = s0}) = 1  
(and p({i ∈ I |  ai = s0}) = 0 for all s ∈ S, s = s0). Thus we have 
(ai) = ∗ s0 ∈ S, as required. Suppose now, that S is an infinite set. We have 
to show that ∗S \S = ∅. Indeed, by axiom of choice, there exists a sequence 
(sn) in  S such that sm = sn whenever m = n. Next, we define (ai) ∈ SI 

by ai = sn, where  n = max{m ∈ N | i ∈ Im−1 \ Im} and we have let also 
I0 = I. Let  s ∈ S.  We have to show that the  set  {i ∈ I |  ai = s} is of 
measure 1. Indeed, if s is not in the range of (sn), then {i ∈ I | ai = s} = I 
and is of measure  1.  If  s is in the range of (sn), then s = sk for exactly one 
k ∈ N. We  observe  that  Ik ⊆ {i ∈ I | ai = s}. Now  the  set  {i ∈ I | ai = s}
is of measure 1 because Ik is of measure one, by property (iv)-(c) of p. The  
proof is complete. Thus (si) ∈ ∗S \ S as required. 

. 
In what follows (Ai) ∈ P(S)I means that Ai ⊆ S for all i ∈ I. 

Definition 4.2 (Internal Sets) Let A ⊆ ∗S. We say that A is an inter­
nal set of ∗S if there exists a family (Ai) ∈ P(S)I of subsets of S such 
that 

A = {(si) ∈  ∗ S | si ∈ Ai a.e. }. 
We say that the family (Ai) generates A and we write A = (Ai). Let, in 
the particular, Ai = A for all i ∈ I  and some A ⊆ S. We say that the 
internal set ∗A = (Ai) is the non-standard extension of A. We denote 

8
 



    
    

 

 
 

 

 

    

by ∗P(S) the set of the internal subsets of ∗S. The  sets  in  ∗P(S) \P(S) are 
call external. 

If X ⊆ S, then  ∗X is internal and ∗X is generated by the constant family 
Xi = X for all i ∈ I. In particular ∗S is an internal set. Let (si) ∈ ∗S \S be 
the element defined in the proof of Theorem 4.1. Then the singleton {(si)}
is an internal set which is not of the form ∗X for some X ⊆ S. This  internal  
set is generated by the singletons {si}, i.e.  {(si)} = ({si}). More generally, 
every finite subset of ∗S is an internal set. We shall give more examples of 
infinite internal sets of ∗R and ∗C in the next section. If A ⊆ S, then  A is 
an external set of ∗S. 

In what follows we use the notation N0 = {0, 1, 2, . . . }. 

Theorem 4.2 (Axiom 2. Sequential Saturation) ∗S is sequentially sat­
urated in the sense that every sequence {An}n∈N0 of internal sets of ∗S with 
the finite intersection property has a non-empty intersection. 

mProof: We have n=0 An = ∅ for all m ∈ N0, by assumption. We have 
∞to show that n=0 An = ∅. The  fact  that  An are internal sets means 

that An = (An,i) for some An,i ⊆ C, where  n ∈ N0, i  ∈ I. We  have  
m m m( An,i) = (An,i) = An = ∅. Thus for every m ∈ N0 we n=0 n=0 n=0 

have 

m(1) Φm = {i ∈ I | ∩n=0 An,i = ∅} ∈ U . 

Without loss of generality we can assume that A0,i = ∅ for all i ∈ I (indeed, 
if Φ0 = I, we can choose another representative of A by A ' = A0,i for0 0,i 
i ∈ Φ0 and by A0

' 
,i = C for i ∈ I \ Φ0). Next, we define the function 

μ : I → N0 ∪ {∞}, by  

mμ(i) = max{m ∈ N0 | ∩n=0 An,i = ∅}. 

Notice that μ is well-defined because the set 

m{m ∈ N0 | ∩n=0 An,i = ∅}, 

is non-empty for all i ∈ I  due to our assumption for A0,i. Thus  we  have  
μ(i) 

An,i = ∅ for all i ∈ I. Hence (by Axiom of Choice) there exists n=0 

(Ai) ∈ CI such that Ai ∈ μ(i) 
An,i for all i ∈ I. We intend to show that n=0 ∞(Ai) ∈  An or equivalently, to show that for every m ∈ N0 we have n=0 

{i ∈ I | Ai ∈ Am,i} ∈ U . We  observe  that  

Φm ⊆ {i ∈ I | Ai ∈ Am,i}. 
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  mIndeed, i ∈ Φm implies An,i = ∅ which implies 0 ≤ m ≤ μ(i) (by  n=0 
the definition of μ(i)) leading to Ai ∈ Am,i, by the choice of (Ai). On the 
other hand, we have Φm ∈ U , by (1) implying {i ∈ I | Ai ∈ Am,i} ∈ U , as  
required, by property (3)  of  U . 

. 
In  the next theorem  we  use for  the first time the  property  (v) of the  

probability measure p (Definition 2.1). Recall that κ = card(I). 

Theorem 4.3 (Saturation Principle in ∗C: The  General  Case)  ∗C is 
κ+-saturated in the sense that every family {Aγ }γ∈Γ of internal sets of ∗C 
with the finite intersection property, and an index set Γ with card(Γ) ≤ κ, 
has a non-empty intersection. 

Proof: We shall refer to the original source C. C. Chang and H. J. Keisler [8] 
(or, for a presentation, to T. Lindstrøm [55]). 

Definition 4.3 (Superstructure) Let S be an infinite set. The super­
structure V (S) on  S is the union 

∞

 
V (S) =  Vn(S), 

n=0 

where the Vn(S) are defined inductively by 

V0(S) =  S, V1(S) =  S ∪ P(S), 
(2) Vn+1(S) =  Vn(S) ∪ P(Vn(S)). 

The members of V (S) are called entities. The  members  of  V (S) \ S are 
called the sets of the superstructure V(S) and the members of S are called 
the individuals of the superstructure V (S). 

Definition 4.4 (The Language L(V (S))) The language L(V (S)) is the 
usual “language of the analysis” with the following restrictions: All quanti­
fiers are bounded by sets in the superstrucure V (S), i.e. quantifiers appear 
in the formulae of the language L(V (S)) only in the form 

(∀x ∈ A)P (x) or (∃x ∈ A)P (x), 

where P (x) is a predicate in one or more variables and A ∈ V (S) \ S. In  
particular, formulae such as 

(∀x)P (x), 
(∃x)P (x), 
(∀x ∈ s)P (x), 
(∃x ∈ s)P (x), 
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where s ∈ S, do not belong the the language L(V (S)). 

In what follow V (∗S) stands for  the supersructure  of  ∗S and L(V (∗S)) 
stands for the language on V (∗S) which are defined exactly as V (S) and  
L(V (S)) after replacing S by ∗S. 

Theorem 4.4 (Axiom 3. Transfer Principle) Let P (x1, x2, . . . xn) be a 
predicate in L(V (S)) and A1, A2, . . . , An ∈ V (S). Then  P (A1, A2, . . . An) is 
true L(V (S)) i f f P (∗A1, ∗A2, . . .  ∗An) is true in L(V (∗S)). 

For examples of application of the Transfer Principle we refer to the first 
proofs of Lemma 5.1 and Lemma 5.2 later in this text. 

5	 A. Robinson’s Non-Standard Numbers 

In this section we apply the non-standard construction in the particular case 
S = C, where  C is the field of the complex numbers. 

Definition 5.1 (Non-Standard Numbers) (i) We define the complex 
non-standard numbers as the factor ring ∗C = CI / ∼, where  (ai) ∼ 
(bi) if  ai = bi a.e., i.e. if 

p ({i ∈ I | ai = bi}) = 1  

(or, equivalently, if {i ∈ I | ai = bi} ∈ U , where  U = {A ∈ P | p(A) =  
1}.) We denote by (ai) ∈ ∗C the equivalence class determined by (ai). 
The algebraic operations and the absolute value in ∗C is inherited from 
C. For example, |(xi)| = (|xi|). 

(ii)	 The set of real non-standard numbers ∗R is (by definition) the 
non-standard extension of R, i.e. 

∗R = {(xi) ∈  ∗C | xi ∈ R a.e. }. 

The order relation if ∗R is defined by (ai) < (bi) if ai < bi in R a.e., 
i.e. if
 

p ({i ∈ I | ai < bi}) = 1.
 

(iii) The mapping r → ∗ r defines an embeddings C ⊂ ∗C and R ⊂ ∗R by 
∗the constant nets, i.e. r = (ai), where  ai = r for all i ∈ I. 

Theorem 5.1 (Basic Properties) (i) ∗C is an algebraically closed non­
archimedean field. 
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(ii) ∗R is a real closed (totally ordered) non-archimedean field. 

Proof: We shall separate the proof of the above theorem in several small 
lemmas and prove some of them. We shall present also two proofs to each of 
the lemmas; one of them based on the Saturation Principle (Theorem 4.4) 
and the other on the properties of the measure p. The content of the next 
lemma is a small (but typical) part of the statement that both ∗C and ∗R 
are fields. 

Lemma 5.1 (No Zero Divisors) ∗C is free of zero divisors. 

Proof 1: The statement 

(∀x, y ∈ C)(xy = 0  ⇒ x = 0  ∨ y = 0), 

is true because C is free of zero divisors. Thus 

(∀x, y ∈ ∗C)(xy = 0  ⇒ x = 0  ∨ y = 0), 

is true (as required) by Transfer Principle (Theorem 4.4). 
. 

Proof 2: Suppose (ai)(bi) = 0  in  ∗C for some (ai), (bi) ∈ ∗C. Thus  (aibi) = 
0 implying p({i ∈ I | aibi = 0}) = 1. On the other hand, 

{i ∈ I | aibi = 0} = {i ∈ I | ai = 0} ∪ {i ∈ I | bi = 0}, 

because C is free of zero divisors. It follows that 

p({i ∈ I | ai = 0}) +  p({i ∈ I | bi = 0}) ≥ 1, 

by the additivity of p. Since the range of p is {0, 1}, it follows that ether 
p({i ∈ I | ai = 0}) = 1  or  p({i ∈ I | bi = 0}) = 1, i.e. either (ai) = 0  or  
(bi) = 0,  as  required.  . 

Lemma 5.2 (Trichotomy) Let a, b ∈ ∗R. Then  ether  a < b  or a = b or 
a > b. 

Proof 1: The statement 

(∀x, y ∈ R)(x = y ⇒ x < y ∨ x > y), 

is true because R is a totally ordered set. Thus 

(∀x, y ∈ ∗R)(x = y ⇒ x < y ∨ x > y), 
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is true (as required) by Transfer Principle (Theorem 4.4). 
. 

Proof 2: Suppose that (ai), (bi) ∈ ∗R. We observe that the sets 

A = {i ∈ I | ai < bi}, B = {i ∈ I | ai = bi}, C = {i ∈ I | ai > bi}, 

are mutually disjoint and A ∪ B ∪ C = I because R is a totally ordered 
set. Thus p(A) +  p(B) +  p(C) = 1 by the additivity of the measure p. It  
follows that exactly one of the following is true: p(A) = 1  or  p(B) = 1  or  
p(C) = 1, since the range of p is {0, 1}. Thus exactly one of the following is 
true: (ai) < (bi), (ai) = (bi), and  (ai) > (bi). 

. 
The rest of the proof of Theorem 5.1 can be done in a similar manner 

and we leave it to to the reader. . 

6	 Infinitesimals, Finite and Infinitely Large Num­
bers 

Definition 6.1 (i) We define the sets of infinitesimal, finite, and  in­
finitely large numbers as follows:  

I(∗C) =  {x ∈ ∗C : |x| < 1/n for all n ∈ N}, 

F(∗C) =  {x ∈ ∗C : |x| < n for some n ∈ N}, 
L(∗C) =  {x ∈ ∗C : |x| > n for all n ∈ N}, 

(ii) Let x, y ∈ ∗C. We  say  x and y are infinitely close, in symbol x ≈ y, 
if x− y ∈ I(∗C). The relation ≈ is called infinitesimal relation on 
∗C. 

(iii) Let x ∈ ∗C and r ∈ C. We  write  x � y if x − r ∈ I(∗C). We shall 
often refer to � an asymptotic expansion of x. 

Proposition 6.1 (Basic Properties) 

(3)	 ∗C = F(∗C) ∪ L(∗C), 
(4)	 F(∗C) ∩ L(∗C) =  ∅, 

(5)	 I(∗C) ⊂ F(∗C), 
(6)	 I(∗C) ∩ C = {0}, 

and similarly for ∗R. 
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Proof: These results follow directly from the definitions of infinitesimal, 
finite and infinitely large numbers and the fact that ∗R is a totally ordered 
field. . 

Example 6.1 (Infinitesimals) Let ν = (ai), where  (ai) ∈ CI , ai = n, 
n = max{m ∈ N | i ∈ Im−1 \ Im}. The non-standard number ν is an in­
finitely large natural number in the sense that ν ∈ ∗N and (∀ε ∈ R+)(ε < ν). 
Indeed, we choose n ∈ N such that ε ≤ n and observe that In ⊂ {i ∈ I | ai > 
n ≥ ε}. Thus  p({i ∈ I | ai > ε}) = 1  since p(In) = 1. Among other things 
this example show that ∗R√ and ∗C are proper extensions of R and C, respec­

ntively.The numbers νn , ν, ln ν, eν are infinitely large numbers in ∗R. In  √
contrast, the numbers 1/νn , 1/ n ν, 1/ ln ν, e−ν are non-zero infinitesimals 
in ∗R. If  r ∈ R, then  r + 1/νn is a finite (but not standard) number in ∗R. 

iνAlso e is a finite number in ∗C and eiν ν2 + i ln ν + 5 + 3i is an infinitely 
large number in ∗C. 

Our next goal is to define and study a ring homomorphism st from 
the ring of finite numbers F(∗C) to  C, called standard part mapping. The  
standard part mapping is, in a sense, a counterpart of the concept of limit 
in the usual (standard) analysis. In contrast to limit, however, the standard 
part mapping is applied to non-standard numbers rather than to sequences 
of standard numbers or functions. 

Definition 6.2 (Standard Part Mapping) (i) The standard part map­
ping st : F(∗R) → R is defined by the formula: 

(7)	 st(x) = sup{r ∈ R | r < x}. 
If x ∈ F(∗R), then st(x) is called the standard part of x. 

The standard part mappings defined in (ii) and (iii) below are exten­
sions of the standard part mapping just defined; we shall keep the 
same notation, st, for all. 

(ii)	 The standard part mapping st : F(∗C) → C is defined by the
 
formula st(x + y i) = st(x) + st(y) i.
 

(iii) The mapping st : ∗R → R∪{±∞} is defined by (i) and by st(x) =  ±∞
 
for x ∈ L(∗R±), respectively.
 

Theorem 6.1 (Standard Part Mapping on Finite Numbers) (i) Ev­
ery finite non-standard number x ∈ F(∗C) has a unique asymptotic 
expansion 

(8)	 x = st(x) +  dx. 
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where dx ∈ I(∗C). Consequently, if x ∈ ∗C, then  x ∈ F(∗C) i f f  
x = c + dx for some c ∈ C and some dx ∈ I(∗C). 

(ii) The standard part mapping is a ring homomorphism from F(∗C) onto 
C, i.e. for every x, y ∈ F(∗C) we have: 

(9)	 st(x ± y) = st(x) ± st(y),
 
st(x y) = st(x) st(y),
 
st(x/y) = st(x)/st(y), whenever st(y) = 0.
 

(iii) C consists exactly of the fixed points of st in ∗C, in symbol, 

(10)	 C = {x ∈ ∗C | st(x) =  x}. 

Consequently, st ◦ st = st, where  ◦ denotes “composition”. 

(iv) x ∈ I(∗R) i f f  st(x) = 0. 

(v) The standard part mapping st is an order preserving ring homomor­
phism from F(∗R) onto R, where “order preserving” means that if 
x, y ∈ F(∗R), then  x < y  implies st(x) ≤ st(y) (hence, x ≤ y implies 
st(x) ≤ st(y)). 

Proof: (i) Suppose, first, that x ∈ F(∗R). We have to show that x − st(x) 
is infinitesimal. Suppose (on the contrary) that 1/n < |x − st(x)| for some 
n. In  the  case  x >  st(x), it follows 1/n < x − st(x), contradicting (7). In 
the case x <  st(x), it follows 1/n < st(x) − x, again contradicting (7). To 
show the uniqueness of (8), suppose that r + dx = s + dy for some r, s ∈ R 
and some dx, dy ∈ I(∗R). It follows that r − s is infinitesimal, hence, r = s, 
since the zero is the only infinitesimal in R. The  result  extends  to  F(∗C) 
directly by the formula in part (ii) of Definition 6.2. 

(ii) follows immediately from (i). 
(iii) follows immediately from (i) by letting dx = 0.  
(iv) follows directly from the definition of st. 
(v) If x ≈ y, then it follows st(x) = st(y) (regardless whether x < y, 

x = y or x > y). Suppose x < y  and x ≈ y. It follows st(x)+dx < st(y)+dy. 
We have to show that st(x) ≤ st(y). Suppose (on the contrary) that st(x) > 
st(y). It follows 0 < st(x) − st(y) < dy  − dx implying st(x) − st(y) ≈ 0, 
hence, st(x) = st(y), a contradiction. . 
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Corollary 6.1 (An Isomorphism) (i) F(∗R)/I(∗R) is  ordered field iso­
morphic to R under the mapping q(x) → st(x), where  q : F(∗R) → F(∗R)/I(∗R) 
is the quotient mapping. 

(ii) F(∗C)/I(∗C) is field isomorphic to C under the mapping Q(x) → 
st(x), where  Q : F(∗C) → F(∗C)/I(∗C) is the quotient mapping. 

(iii) The isomorphism described in (ii) is an extension of the isomor­
phism described in (i). 

We leave the proof to the reader. 

Example 6.2 Let c ∈ C and let dx ∈ I(∗C) be a non-zero infinitesimal. 
Then we have: 

st(c + dxn) =  c, 

st(dx/|dx|) =  ±1,   
cdx + 7dx2 + dx3 

st = st(c + 7dx + dx2) =  c,
dx  −3 + 4dx 

st = st(1/dx) × st(−3 + 4dx) = (±∞) × (−3) = ∓∞,
dx

where the choice of the sign ± depends on whether dx is positive or negative, 
respectively. 

Definition 6.3 (Standard Part of a Set) If A ⊆ ∗C, we define the stan­
dard part of A by 

(11) st[A] =  {st(x) | x ∈ A ∩ F(∗C)}. 

Lemma 6.1 If A ⊆  ∗C, then  A ∩ C ⊆ st[A]. (A proper inclusion might 
occur; see the example below.). In particular, we have st[∗R] =  R and 
st[∗C] =  C. 

Proof: The inclusion A ∩ C ⊆ st[A] follows directly from part (iii) of The­
orem 6.1. 

Example 6.3 Consider the set A = {x ∈ ∗R | 0 < x <  1}. We have 
A ∩ C = {x ∈ R | 0 < x <  1}. On the other hand, st[A] =  {x ∈ R | 0 ≤ 
x ≤ 1}. Indeed,  if  E is a positive infinitesimal in ∗R, then  E, 1 − E ∈ A and 
st(E) = 0, and  st(1 − E) = 1. 
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7 NSA and the Usual Topology on Rd 

In what follows we let ∗Rd = ∗R × ∗R × · · · ×  ∗R (d times). If x ∈ ∗Rd, then  
x ≈ 0 means  that  ||x|| is infinitesimal. 

Definition 7.1 (Monads) If X ⊆ Rd, then  

μ(X) =  {r + dx | r ∈ X, dx  ∈ ∗Rd , ||dx|| ≈ 0}. 

is called the monad of X in ∗Rd. If  r ∈ Rd, we shall write simply μ(r) 
instead of the more precise μ({r}), i.e. 

μ(r) =  {r + dx | dx ∈ I(Rd)}. 
� 

We observe that μ(X) =  μ(r).r∈X 
In what follows T stands for the usual topology on Rd . 

Theorem 7.1 (Boolean Properties) The mapping μ : T → P(∗Rd) is a 
Boolean homomorphism. Also μ preserves the arbitrary unions in the sense n� o � 
that μ Ωλ = μ(Ωλ) for any set Λ and any family of open sets λ∈Λ λ∈Λ 
{Ωλ}λ∈Λ. 

Theorem 7.2 (The Usual Topology on Rd) Let X ⊆ Rd. Then:  

(i) A set  X is open in Rd i f f  μ(X) ⊆ ∗X. 

(ii) X is compact in Rd i f f  ∗X ⊆ μ(X). 
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8 Non-Standard Smooth Functions 

Definition 8.1 (Non-Standard Smooth Functions) Let Ω is an open 
set of Rd . Then: 

(i) The ring (algebra) of the non-standard smooth functions is defined 
the factor ring 

∗ E(Ω) = E(Ω)I / ∼, 

where (fi) ∼ (gi) if  fi = gi in E(Ω) for almost all i in the sense that 

p ({i | fi = gi}) = 1. 

We denote by (fi) ∈ ∗E(Ω) the equivalence class determined by (fi). 

(ii) The algebraic operations and partial differentiation in ∗E(Ω) is inher­
ited from ∗E(Ω). For example, ∂α(fi) = (∂αfi). 

(iii) The mapping f → ∗f defines an embedding E(Ω) '→ ∗E(Ω) by the 
constant families, i.e. fi = f for all i ∈ I. We  say  that  ∗f is the 
non-standard extension of f . 

(iv) Every (fi) ∈ ∗E(Ω) is a pointwise mapping of the form (fi) : ∗Ω → 
∗C, where  (fi)((xi)) =  (fi(xi)) and 

∗Ω =  {(xi) ∈  ∗Rd | xi ∈ Ω a.e. }, 

is the non-standard extension of Ω. 

(v) Let X ⊆ E . The non-standard extension ∗X of X is defined by 

∗ X = {(fi) ∈  ∗ E(Ω) | fi ∈ X a.e. }. 

In particular, 

∗ D(Ω) = {(fi) ∈  ∗ E(Ω) | fi ∈ D(Ω) a.e. }. 

Proposition 8.1 ∗E(Ω) is a differential algebra over the field ∗C. 

Definition 8.2 (Sup and Support) Let (fi) ∈  ∗E(Ω) and let K ⊂⊂ Ω. 
Then 

(i) supx∈∗K |(fi)(x)| = (supx∈K |fi(x)|). 
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(ii) supp(fi) = (supp(fi)). 
We shall refer to these as internal sup and internal support of (fi), 
respectively.
 

Proposition 8.2 Let f ∈ ∗E(Ω). Then: 
  

(i) (∀K ⊂⊂ Ω)(supx∈∗K f(x) ∈ ∗R). 

(ii) supp(f) is  a closed set  of  ∗R in the interval topology of ∗R. 

Lemma 8.1 (Characterizations) Let f ∈ ∗E(Ω) and supp(f) denote the 
(internal) support of f in ∗Ω. Then  the following are equivalent: 

(i) supp(f) ⊂ μ(Ω). 

(ii) ∃K ⊂⊂ Ω such that supp(f) ⊆ ∗K. 

(iii) There exists an open relatively compact subset O of Ω such that f ∈ 
∗D(O) (The latter implies f(x) = 0  for all x ∈ ∗(Ω \ O).) 

Definition 8.3 (Compact Support) Let X ⊆ ∗E(Ω). We denote 

Xc = {f ∈ X  | supp(f) ⊂ μ(Ω)}. 

In particular, we have: 

∗ D(12) c(Ω) = {f ∈ ∗ D(Ω) | supp(f) ⊂ μ(Ω)}, 
(13) Xc = ∗ Dc(Ω) ∩ X , 

∗ D(14) c(Ω) = ∗ Ec(Ω) = {f ∈ ∗ E(Ω) | supp(f) ⊂ μ(Ω)}. 

Lemma 8.2 (Characterizations) Let f ∈ ∗E(Ω). Then the following are 
equivalent: 

(i) (∀x ∈ μ(Ω)) [f(x) ∈Mρ(∗C)]. 

(ii) (∀K ⊂⊂ Ω)(∃n ∈ N)(supx∈∗K |f(x)| ≤ ρ−n). 

(iii) (∀K ⊂⊂ Ω)(∀n ∈ ∗N \ N)(supx∈∗K |f(x)| ≤ ρ−n). 

Lemma 8.3 (Characterizations) Let f ∈ ∗E(Ω). Then the following are 
equivalent: 

(i) (∀x ∈ μ(Ω)) [f(x) ∈ Nρ(∗C)]. 

(ii) (∀K ⊂⊂ Ω)(∀n ∈ N)(supx∈∗K |f(x)| ≤ ρn). 

(iii) (∀K ⊂⊂ Ω)(∃n ∈ ∗N \ N)(supx∈∗K |f(x)| ≤ ρn). 
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∗9 Local Properties of E(Ω) 

In what follows T stands for the usual topology on Rd and ∗T stands for 
order topology of ∗Rd (more precisely, ∗T stands for the product topology 
on ∗Rd generated by the order topology on ∗R). 

Theorem 9.1 (A Non-Standard Sheaf) The collection {∗E(Ω)}Ω∈∗T is 
a sheaf of differential rings on ∗Rd in the sense that f ∈ ∗E(Ω) and O ⊆ Ω 
implies f |O ∈ ∗E(O) for every Ω,O ∈ ∗T . 

Proof: From the (standard) functional analysis we know that the collection 
{E(Ω)}Ω∈T is a sheaf of differential rings on Rd in the sense that f ∈ E(Ω) 
and O ⊆ Ω implies f |O ∈ E(O) for  every Ω,O ∈ T . Thus  our  result  follows  
directly from the Transfer Principle (Theorem 4.4). . 

Corollary 9.1 (Non-Standard Support) Let f ∈ ∗E(Ω) and supp(f) be 
the support of f (Definition 8.2). Then supp(f) is  a closed set  of  ∗Ω in the 
topology ∗T on ∗Rd . 

Proof: The result follows (also) by Transfer Principle (or directly from the 
above theorem). . 

Remark 9.1 (A Counter Example) The next example shows that the 
collection {∗E(Ω)}Ω∈T is not a sheaf of differential rings on Rd under 
the restriction f I O = f |∗O. Indeed, let Ω =  R+ and Ωn = (0, n) for 
n ∈ N. Let  ϕ ∈ D(R+), ϕ  = 0, and  let  ν be an infinitely large number in 
∗R+ (see Example 6.1). We define f(x) =  ∗ϕ(x− ν) for all x ∈ ∗R+. It  is  � 
clear that (0, n) =  R+ and f I (0, n) =  f |∗(0, n) = 0  for all n. Yet, n∈N

f I R+ = f |∗R+ = f = 0. 

Our conclusion is that in order to convert the non-standard smooth 
functions ∗E(Ω) into an algebra of generalized functions, we have to per­
form a factorization of the space ∗E(Ω). A general method for such 
factorization will be presented in the next section. 
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10 F-Asymptotic Numbers 

In this section we describe a variety of algebraically closed fields Fi in terms 
of a given convex subring F of ∗C. We call these fields F-asymptotic 
hulls and their elements F-asymptotic numbers. The  fields  Fi are non­
archimedean fields whenever F is a non-archimedean ring. We construct an 
embedding Fi ' st : F → ∗C which we call → ∗C and a ring homomorphism i
a quasi-standard part mapping. The quasi-standard part mapping reduces 
to the familiar standard part mapping st : F(∗C) → ∗C in particular case 
when F is the ring F(∗C) of finite  numbers in  ∗C. Our  asymptotic hull 
construction can be viewed as a generalization of A. Robinson’s theory of 
asymptotic numbers (A. H. Lightstone and A. Robinson [56]). We also 
generalize some more recent results in (T. Todorov and R. Wolf [95]) on 
the A. Robinson field ρR. Non-archimedean fields isomorphic to the fields 
of the form Fi are studied in model theory (D. Marker, M. Messmer, A. 
Pillay [61]) although the fields in model theory are rarely constructed in the 
framework of ∗R or ∗C as here (see the discussion below). A construction 
similar to the presented here appears in the H. Vernaeve Ph.D. Thesis [98] 
(for a comparison see the equivalence relation ∼ defined on p. 87, Sec. 3.6, 
altered by the additional condition used in Lemma 3.32 on p. 89). 

We believe that every algebraically closed non-archimedean field in math­
ematics is either isomorphic to some asymptotic hull Fi (for a suitable choice 
of ∗C and F), or it is isomorphic to a subfield of some Fi. For example, the 
field C(t) of Levi-Civita power series with complex coefficients is isomorphic 
to a subfield of A. Robinson’s field ρC of asymptotic numbers (A. H. Light-
stone and A. Robinson [56]). On the other hand, we show that ρC is of 
the form Fi (Example 10.2). For that reason we hope that our asymptotic 
hull construction might facilitate the communication between the mathe­
maticians working in non-standard analysis and its applications on one side 
and those working in model theory of fields on the other (A. Macintyre, Lou 
van den Dries and [?]). Our immediate purpose however is to support the 
theory of F-asymptotic functions EiF (Ω) presented in the next section: 
each EiF (Ω) is an algebra of generalized functions of Colombeau type with a 
field of scalars Fi. 

In what follows ∗C stands for a non-standard extension of the field of 
the complex numbers C.  Here is the  summary of our basic definitions (the 
justification and the detail follow later in this section): 

1. Let F be a convex subring in ∗C, i.e.  F is a subring of ∗C such that 

(15) (∀z ∈ ∗C)(∀ζ ∈ F)(|z| ≤ |ζ| ⇒ z ∈ F). 
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We denote by F0 the set of all non-invertible elements of F , i.e. 

(16) F0 = {z ∈ F | z = 0 or 1/z /∈ F}. 

We also define the real part  (F) of  F by

 (F) =  {±|z| : z ∈ F}. 

We also denote by F+ the set of the positive elements of F , i.e. 

(17)	 F+ = {|z| : z ∈ F , z  = 0}. 

2. The F-asymptotic hull is the factor ring Fi = F/F0. The elements of 
Fi are the complex F-asymptotic numbers (or simply asymptotic 
numbers if no confusion could arise). Let q : F → Fi stand for the 
corresponding quotient mapping. If  z ∈ F , we  shall  often  write  zi
instead of q(z) when no confusion could arise. Similarly, if S ⊆ ∗C, 
we let Si = q[S ∩F ]. In the particular case S ⊆ C we shall often write 
simply S instead of the more precise Si. We also define the real part
 (Fi) of  Fi by 

(18)	  ( i z| : z ∈ i ,F) =  {±| F}

and observe that  ̂(F) =  (Fi). The elements of  (Fi) are  the  real 
F-asymptotic numbers (or simply real asymptotic numbers if no 
confusion could arise). Also, Fi+ stands for the set of the positive 
elements of Fi, i.e. 

i(19)	 F+ = {|z| : z ∈ Fi, z  = 0}. 

3. We define the embeddings C '→ Fi and R '→  (Fi) by the mapping 
z → zi. We shall often identify z with its image ziwriting simply C ⊂ Fi
and R ⊂  (Fi), respectively. 

4. We denote by	 I(Fi), F(Fi) and  L(Fi) the sets of the infinitesimal, 
finite and infinitely large elements of Fi, respectively. We write x ≈ 0 
whenever x ∈ I(Fi). 

5. Let us denote 

Fd = F × F × · · · F , 

Fd = F0 ×F0 × · · · F0,0 iFid = F ×  i F .F × · · ·  i
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(d times). We denote by || · || the usual Euclidean norm in either Fd or 
Fid. If  z = (z1, z2, · · ·  , zd) ∈ F , we  shall  write  zi= (zi1, zi2, · · ·  , zid) ∈ Fi. 
Let z ∈ Cd. We  observe  that  z ∈ Fd i f f  ||z|| ∈ F . Also  z ∈ Fd 

0 ii f f  ||z|| ∈ F0. Notice that Fid is a vector space over the field F . 

6. Similarly, let	 (F) be the real part of F and (Fi) be the real part of 
of Fi. We define the real parts of Fd and Fi by 

(Fd) =  (F) × (F) × · · ·  (F) (d times), 

(Fid) =  (Fi) × (Fi) × · · ·  (Fi) (d times), 

respectively. Notice that (Fid) is a  vector space over the field 
(Fi). 

7. We define the embeddings Cd '→ Fid and Rd '→ (Fid) by the mapping 
z → zi. We shall often identify z with its image zi writing simply 
Cd ⊂ Fid and Rd ⊂ (Fid), respectively. 

8. If X ⊆ Rd, then the  F-monad of X is the set μF (X) ⊂ (Fid), 

(20) μF (X) =  {r + dx | r ∈ X, dx ∈ (Fid), ||dx|| ≈ 0}. 

We certainly have X ⊂ μF (X). Notice that xi ∈ μF (X) i f f  
x ∈ μ(X), where μ(X) is the usual monad of X in ∗Rd (Section 7). 

It is not immediately clear that the set F0 defined above is an ideal in F 
(let alone a convex maximal ideal). To show this we need some preparation. 

Theorem 10.1 (Convex Rings) Let F be a convex subring of ∗C. Then  
F contains a copy of the ring F(∗C) of the finite elements of ∗C. Conse­
quently, F contains a copy C. We summarize these as C ⊂ F(∗C) ⊆ F ⊆  
∗C. 

Proof: Suppose z ∈ F(∗C). We have |z| < n  for some n ∈ Z by the 
definition of F(∗C). To show that z ∈ F , it is sufficient to show that Z ⊂ F . 
Indeed, we observe that {±|z| : z ∈ F}  is a subring of F . This  follows  
from the fact that z ∈ F  implies ±|z| ∈ F  by the convexity of F (since, 
obviously, | ± |z|| ≤ |z|) and also the inequalities ||z| ± |ζ|| ≤ max{|2z|, |2ζ|}
and |z||ζ| ≤ max{|z2|, |ζ2|} combined, again, with the convexity of F . Thus  
{±|z| : z ∈ F}  is a totally ordered ring as a subring of ∗R. This  proves  that  
{±|z| : z ∈ F}  contains a copy of Z which implies that F contains a copy 
of Z. Now,  |x| < n  and n ∈ F  implies x ∈ F  (as required) by the convexity 
of F . . 
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Definition 10.1 (Maximal Fields) Let F be (as before) a convex subring 
in ∗C. A subfield M of ∗C is called maximal in F if M is a subring of F 
and there is no a subfield F of ∗C such that: (a) F is also a subring of F ; 
(b) F is a proper field extension of M. We denote by Max(F) the  set of 
all maximal fields in F . 

Lemma 10.1 (Some Properties of Max(F)) Let F be (as before) a con­
vex subring in ∗C. Then:  

(i) Max(F) = ∅. 

(ii) If M ∈Max(F), then  M ∩ F0 = {0}. 

(iii) Let F be  a field which  is  a subring  of  F . Then  F can be extended to a  
maximal field, i.e. there exists M ∈Max(F) such that F ⊆ M. 

(iv) Every M ∈Max(F) is an algebraically closed field. 

(v) If M ∈Max(F), then  (M) is a real closed field. 

(Md) 
def

(vi) Let M ∈ Max(F). Then  Md is a vector space over M and = 
(M)d is a vector space over (M). 

Proof: (i) Let L denote the set of all subfields L of ∗C which are subrings 
of F and we order L by inclusion. We have L = ∅, since  C ∈ L by Theo­
rem 10.1. Also, we observe that if S is a totally ordered subset of L under� 
the inclusion ⊂ , then  L ∈ L. Thus  L has maximal elements M, as  

L∈S 
required, by Zorn’s lemma. 

(ii) Suppose (on the contrary) that there exists z ∈ M ∩ F0 such that 
x = 0. It follows that 1/x ∈ M ∩ (∗C \ F) contradicting M ⊂ F . 

(iii) follows with almost the same arguments as in (i): The set L should 
be replaced by the set LF of all subfields L of ∗C such that F ⊆ L ⊂ F . 

(iv) Let cl(M) denote the algebraically closure of M in ∗C. Since  ∗C is 
an algebraically closed field, it suffices to show that M = cl(M). We show 
first that cl(M) ⊂ F . For suppose γ ∈ cl(M). Notice that γ is algebraic 
over M which means that γ is a solution of some polynomial equation: 
γn + a1 γ

n−1 + · · ·+ an = 0 with coefficients ak in M. Thus the estimation 
|γ| ≤ 1 +  |a1| + · · · + |an| implies that γ ∈ F , as desired, by the convexity 
of F . Now,  M = cl(M) follows from the maximality of M (D. Marker, M. 
Messmer, A. Pillay [61]). 

(v) follows directly from (iv) (see again D. Marker, M. Messmer, A. 
Pillay [61]). 
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(vi) follows directly from (iv) and (v). 
. 
The next result shows, among other things, that F and F0 are exactly 

the sets of the finite and infinitesimal numbers in ∗C, respectively, relative 
to a given maximal field M. In what follows, M+ stands for the set of the 
positive elements of M, i.e. 

(21)	 M+ = {|z| : z ∈ M, z  = 0}. 

Theorem 10.2 (Characterization) Let F be (as before) a convex subring 
in ∗C. 

(i) If M ∈Max(F) (Definition 10.1), then 

(22) F = {z ∈ ∗C | (∃ε ∈ M+)(|z| ≤ ε}, 
(23) F0 = {z ∈ ∗C | (∀ε ∈ M+)(|z| < ε}. 

(ii) The sets F0, F \ F0 and ∗C \ F  are disconnected in the sense that 

(∀z1 ∈ F0)(∀z2 ∈ F \ F0)(∀z3 ∈ ∗C \ F)(|z1| < |z2| < |z3|). 

(iii) F0 consists of infinitesimals only, i.e. F0 ⊆ F(∗C). 

(iv)	 F0 is a convex maximal ideal in F . Consequently, the factor ring 
Fi = F/F0 is a field. 

(v) Fi is an archimedean field i f f  F = F(∗C). 

Proof: (i) Let γ ∈ F  and suppose (on the contrary) that (∀ε ∈ M+)(|γ| > 
ε). We observe that γ is transcendental over M since M is an algebraically 
closed field by part (iii) of Lemma 10.1. Thus M(γ) is a proper field extension 
of M within F , contradicting the maximality of M. This proves the formula 
(22) about F . Let  γ ∈ F0. If  γ = 0, there is nothing to prove. If γ = 0,  
we have 1/γ /∈ F  by the definition of F0. Next, suppose (on the contrary) 
that |γ| ≥ ε for some ε ∈ M+. It follows that |1/γ| ≤ 1/ε implying 1/γ ∈ F  
by formula (22), a contradiction. Conversely, suppose that |γ| < ε  for all 
ε ∈ M+ and some γ ∈ ∗C. It follows that 1/ε < |1/γ| for all ε ∈ M+ 

implying 1/γ /∈ F  by the formula (22). Thus γ ∈ F0 which proves the 
formula (23). 

(ii) follows immediately from (i). 
(iii) The inclusion F0 ⊆ F(∗C) follows from the formula (23) and the 

fact that Q ⊂ M. 
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(iv) The proof that F0 is a convex maximal ideal in F is almost identical 
to the proof that the set of infinitesimals I(∗C) is a convex maximal ideal 
in the ring of the finite numbers F(∗C) of  ∗C and we leave  the detail to the  
reader. 

(v) Suppose that Fi is an archimedean field. In view of the inclusion 
F(∗C) ⊆ F  (Theorem 10.1) it suffices to show that F ⊆ F(∗C). Indeed, 
z ∈ F implies that zi is finite (since Fi is archimedean by assumption) thus z 
is finite. Conversely, F = F(∗C) implies  that  Fi is archimedean as a factor 
ring of an archimedean ring. 

. 
Our next goal is to study the factor ring Fi. 

Lemma 10.2 (Isomorphic Fields) Let F be  a field which  is  a subring of  
F and Fi = q[F]. Then the fields F and Fi are isomorphic under the mapping 
q |F from F to Fi (or, alternatively, under the mapping (q |F)−1 from Fi to iF). In particular, M and M are isomorphic fields for every M ∈ Max(F) 
(Definition 10.1). 

Proof: We have F ⊆ F by assumption. Notice that there exists a maximal 
field M in F such that F ⊆ M by part (ii) of Lemma 10.1. It follows that 
F ∩ F0 = {0} by Lemma 10.2. Thus F and Fi are isomorphic. 

. 
Our next goal is to prove that Fi is an algebraically closed field by showing i ithat F and M are, actually, the same (that is to say that M is a field of 

representatives for Fi). 

Lemma 10.3 (Remote Points) Let F be (as before) a convex subring in 
∗C and let M ∈ Max(F) (Definition 10.1). Let γ ∈ F  be a point such 
that γ − r /∈ F0 ∈ F0for all r ∈ M. Then  P (γ) / for all polynomials P ∈ 
M[x], P  = 0. 

Proof: Suppose (on the contrary) that P (γ) ∈ F0 for some P ∈ M[x], P  = 0.  

It follows that P (γ) = 0 implying Pi(γi) = 0  in  Fi, where  Pi denotes the ipolynomial in M[x], obtained from P by replacing the coefficients ak in P 
by aik. iObserve, now, that M is an algebraically closed field, by part (iii) 
of Lemma 10.1, as a field isomorphic to M (Lemma 10.2). Hence, it follows 
γi ∈ i 0 for some r ∈ M, a contradiction.  M meaning γ − r ∈ F . 

Theorem 10.3 (Embeddings) Let F be (as before) a convex subring in 
∗C and M ∈Max(F) (Definition 10.1). Then: 
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(i) We have F = M⊕F0 in the sense that every z ∈ F has a unique asymp­
totic expansion z = r + dz, where  r ∈ M and dz ∈ F0. Consequently, i	 i iM is a field of representatives for F in the sense that F = M. 

(ii) The fields M and Fi are isomorphic under the mapping q |M from M ito F (or, alternatively, under the mapping (q |M)−1 from Fi to M). 
Consequently: 

(a) The field Fi (of the complex F-asymptotic numbers) is an alge­
braically closed field. 

(b)	 The field (Fi) (of the real F-asymptotic numbers) is a real 
closed field. 

i(iii) The mapping σM : F →  ∗C, defined by σM = (q |M)−1, is  a  field 
embedding 

(24)	 Fi '→ ∗C, 

of Fi into ∗C.  The  situation just described  can be summarized in the  
following commutative diagram: 

q iF −−−−→ F � ⏐ ⏐ ⏐ 
id⏐ �id 

q|M 
M	 − → i−−− M. 

(iv) The mapping stM : F →  ∗C, defined by stM(r + dz) =  r, is a ring 
homomorphism with range stM [F ] =  M. Also  stM is an extension of 
the standard part mapping st : F(∗C) → C, i.e.  stM | F(∗C) = st. We  
say that stM is a M-standard part mapping (see the remark below). 
Consequently, for every z ∈ F  we have 

z = stM(z) +  dz, 

where dz ∈ F0. 

(v) The mapping σ : C → Fi, defined by σ(z) =  zi, is a  field embedding iof C into F and we have the formula σM | F(∗C) =  σ ◦ st. 

Proof: (i) Suppose (on the contrary) that γ ∈ F  and γ − r /∈ F0 for all 
r ∈ M (see Lemma 10.3). We have M(γ) ⊂ F , contradicting the maximality 
of M, since  M(γ) is a proper field extension of M. 
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(ii) The isomorphism between M and Fi follows directly from the asymp­
totic expansion z = r + dz. Consequently, Fi is an algebraically closed field 
since M is an algebraically closed field and (Fi) is a real closed field since 

(M) is a real closed field by Lemma 10.1. 
(iii) follows directly from (ii) because M and iM are isomorphic by  

Lemma 10.2, and because i iF = M by what was just proved in part (i). 
(iv) follows directly from (i). 
(v) We have F(∗C) ⊆ F  by Theorem 10.1 and F0 ⊆ I(∗C) by Theo­

rem 10.2. The latter implies the formula σM|F(∗C) =  σ ◦ st and the state­
ment about σ follows from (iii). . 

Remark 10.1 (Quasi-Standard Part Mapping) According to the above 
theorem, every maximal field M determines a unique field embedding σM 

(24). Conversely, every field embedding σM of Fi into ∗C determines a max­
imal field M ⊂ F  by σM[ Fi ] =  M. On the ground of the isomorphism 
between M and Fi we shall sometimes identify M with Fi by simply letting 
M = Fi. That means nothing but to “pick up and fix” a particular maximal 
field M within F , to replace the embedding Fi '→ ∗C (24) by the simple in-iclusion F ⊂ ∗C. In this environment stM reduces to the quotient mapping 
q : F → Fi We shall write simply i. st : F → ∗C instead of the more pre­
cise stM : F → M and call sti a quasi-standard part mapping associated 
with the asymptotic hull Fi and its particular embedding Fi '→ ∗C (24). We 
summarize all these as: 

i F ⊆  ∗C,st : F →  iist(z) =  q(z) for all z ∈ F . 

“Quasi” stands to distinguish sti from the “genuine standard part mapping 
st : F(∗C) → ∗C with range st[F(∗C)] = C. Recall that sti is an extension of 
st, i.e. st | F(∗C) = st.i
Example 10.1 (Archimedean Hull) Let F = F(∗C). In this case we 
have F0 = I(∗C) and Fi = C (see part (iv) of Theorem 10.2). Also ist(z) = st(z) for all z ∈ F(∗C). In this particular case the spilling principles 
presented earlier in Theorem 11.1 reduce the the familiar spilling principles 
in non-standard analysis. 

Here are several example of non-archimedean asymptotic hulls, i.e. 
examples of non-archimedean algebraically closed fields of the form Fi. 
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Example 10.2 (A. Robinson’s Asymptotic Numbers) Let ρ be a pos­
itive infinitesimal in ∗R and let F = Mρ(∗C), where  

(25) Mρ(∗C) =  {z ∈ ∗C : |z| ≤ ρ−n for some n ∈ N}, 

is the ring of the ρ-moderate numbers in ∗C. In this case F0 = Nρ(∗C), 
where 

(26) Nρ(∗C) =  {z ∈ ∗C : |z| ≤ ρn for all n ∈ N}, 

is the ideal of the ρ-negligible numbers in ∗C. The elements of the 
def

non-standard hull Fi = Mρ(∗C)/Nρ(∗C) = ρC are called complex ρ­
asymptotic numbers. The field of the real ρ-asymptotic numbers 
ρR = (ρC) =  Mρ(∗R)/Nρ(∗R) is introduced by A. Robinson [74] and is 
intimately connected with the asymptotic expansions of standard functions 
(A.H. Lightstone and A. Robinson [56]). The field ρC is also known as A. 
Robinson’s valuation field because it is endowed with a non-archimedean 
valuation v : ρC → R ∪ {∞} defined by 

z 
v(z) = sup{r ∈ Q | ≈ 0}, z  = 0, 

q(ρr) 

and v(0) = ∞. We also have the following formula for the valuation: 

v(q(z)) = st(logρ |z|), z ∈Mρ(∗C) \ Nρ(∗C), 

and v(q(z)) = ∞ for z ∈ Nρ(∗C). The valuation metric dv : ρC × ρC → R 
−∞is defined by dv(z, ζ) =  e−v(z−ζ) under the convention that e = 0. We  

should note that the valuation topology and the order topology on ρC are 
the same. For more recent results on ρR we refer to (T. Todorov and R. 
Wolf [95]). 

Example 10.3 (ρ-Finite Constants) Let ρ be (as before) a positive in­
finitesimal in ∗R and let F = Fρ(∗C), where  

√
(27) Fρ(∗C) =  {z ∈ ∗C : |z| < 1/ n ρ for all n ∈ N}, 

is the set of the ρ-finite numbers in ∗C. In  this  case  F0 = Iρ(∗C), where  

√
(28) Iρ(∗C) =  {z ∈ ∗C : |z| ≤  n ρ for some n ∈ N}, 

is the set of the ρ-infinitesimal numbers in ∗C. We denote Fi = Fρ(∗C)/Iρ(∗C) 
def 
= C and the elements of C will be often called ρ-finite constants. 
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Example 10.4 (Logarithmic Field) Let ρ be (as before) a positive in­
finitesimal in ∗R and let 

F = {z ∈ ∗C : |z| < ln(ρ) for all n ∈ N}, 
def

where l1(ρ) =  | ln ρ| = |∗ ln ρ| is the non-standard extension of the usual 
logarithmic function ln x evaluated at ρ, l2(ρ) = ln (| ln ρ|),  . . . ,  ln+1(ρ) =  
ln (ln(ρ)) for n = 1, 2, . . . . Notice that (ln(ρ)) is a strictly decreasing se­
quence of infinitely large positive numbers in ∗R. In this case we have 

F0 = {z ∈ ∗C : |z| ≤ 1/ln(ρ) for some n ∈ N}, 

The corresponding non-standard hull Fi = F/F0 is a non-archimedean field. 

Example 10.5 (Exponential Field) Let ρ be (as before) a positive in­
finitesimal in ∗R and let 

F = {z ∈ ∗C : |z| ≤ exp (ρ) for some n ∈ N},n

where exp1(ρ) = exp(ρ) =  ∗ e ρ is the non-standard extension of the usual real 
xexponential function e evaluated at ρ, exp2(ρ) = exp(exp(ρ)), exp (ρ) =n+1

exp(exp (ρ)). Notice that (exp (ρ)) is a increasing sequence of infinitely n n

large positive numbers in ∗R. In this case we have 

F0 = {z ∈ ∗C : |z| < 1/ exp (ρ) for all n ∈ N}.n

def
We shall call Fi = F/F0 = E exponential field and the elements of E will 

ρbe sometimes called exponential constants since both e and e1/ρ are in 
F \ F0. 

Example 10.6 (The Case F = ∗C) Let F = ∗C. In  this  case  F0 = {0}
and Fi = ∗C. In this case sti reduces the the identity function in ∗C, i.e.  i This asymptotic hull, although somewhat triv­st(x) =  x for all x ∈ ∗C.
 
ial, plays part of the construction of one particular algebra of generalized
 
functions (see Section ?? of Chapter ??)
 

Remark 10.2 (Real Asymptotic Hulls) We presented the complex ver­
sion of the asymptotic hull construction because it better fits to our imme­
diate needs in the next section. Some readers however might prefer a real 
version of the same construction. They should consider a convex subring F 
of ∗R (not of ∗C) instead, i.e. F is a subring of ∗R such that 

(29) (∀x ∈ ∗R)(∀y ∈ F)(|x| ≤ |y| ⇒ x ∈ F). 
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All results presented in this section remain valid if the phrase “algebraically 
closed field” is replaced everywhere by “real closed field”. In particular, i ithe fields of the form F (and the fields M and M) will be real closed (not  
algebraically closed) fields. We shall summarize this by simply saying that 
Fi is a real asymptotic hull. For example, if F is a convex subring of 
∗C, then  (F) is a convex subring of ∗R. Consequently, (Fi) is a real 
asymptotic hull because (Fi) =  (F). Here is another example of a convex 
subring of ∗R (compare with Example 10.2): 

(30) Mρ(∗R) =  {x ∈ ∗R : |x| ≤ ρ−n for some n ∈ N}. 

The corresponding real asymptotic hull coincides with A. Robinson’s field of 
real asymptotic numbers ρR. We shall leave the detail of the “real case” to 
the reader. 
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11 Spilling Principles 

In this section we present several spilling principles in terms of a given 
convex subring F of ∗C (Section 10). These principles play role in our theory 
similar, say, to the Cantor principle in real analysis or to the Hahn-Banach 
theorem in functional analysis. We should note that the spilling principles 
presented below are more general than the more familiar underflow and 
overflow principles in non-standard analysis. Actually the latter follow 
as a particular case for F = F(∗C). We are unaware of any counterparts of 
the spilling principles presented here in J.F. Colombeau’s theory. 

Theorem 11.1 (Spilling Principles) Let F be a convex subring of ∗C 
(Section 10) and A ⊆ ∗C be an internal set (Definition 4.2). Then: 

(i) Overflow of F : If A contains arbitrarily large numbers in F , then  
A contains arbitrarily small numbers in ∗C \ F . Consequently, 

F \ F0 ⊂ A ⇒ A∩ (∗C \ F) = ∅. 

(ii) Underflow of F \ F0 : If A contains arbitrarily small numbers in 
F\F0, then  A contains arbitrarily large numbers in F0. Consequently, 

F \ F0 ⊂ A ⇒ A∩ F0 = ∅. 

(iii) Overflow of F0 : If A contains arbitrarily large numbers in 
F0, then  A contains arbitrarily small numbers in F\F0. Consequently, 

F0 ⊂ A ⇒ A∩ (F \ F0) = ∅. 

(iv) Underflow of ∗C \ F  : If A contains arbitrarily small numbers in 
∗C \F , then  A contains arbitrarily large numbers in F . Consequently, 

∗C \ F ⊂ A ⇒ A∩ (F \ F0) = ∅. 

Proof: (i) If A is unbounded in ∗C, there is nothing to prove. If A is 
bounded in ∗C, then  sup(|A|) =  x exists in ∗R, where  |A| = {|z| : z ∈ A}. 
Notice that x /∈ F . To show this, suppose (on the contrary) that x ∈ F  
and let M be a maximal field within F (Definition 10.1). We have x ≤ ε for 
some ε ∈ M+ by Theorem 10.2, contradicting the assumptions for A since 
M+ ⊂ F . Next, there exists z ∈ A such that x/2 < |z| < x by  the choice of  
x and we have z /∈ F  since x/2 / .∈ F We just proved that A∩ (∗C \F) = ∅. 
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It remains to show that A∩ (∗C \ F) does not have a lower upper bound in 
∗C\F . Suppose (on the contrary) that that there exists λ ∈ ∗C \ F such that 
λ ≤ |z| for all z ∈ A ∩ (∗C \ F). The set Aλ = {z ∈ A : |z| < λ} is internal 
and we have A∩F ⊆ Aλ by  the choice of  λ. It follows that Aλ has (just like 
A) arbitrarily large elements in F and we conclude that Aλ ∩ (∗C \ F) = ∅ 
by what was proved above. Thus there exists z ∈ A ∩ (∗C \ F) such that 
|z| < λ, a contradiction.  

(ii) follows immediately from (i) and the fact that z ∈ F \ F0 implies 
1/z ∈ F \ F0 and also that z ∈ ∗C \ F  implies 1/z ∈ F0. 

The proof of (iii) is similar to the proof of (i) and we leave it to the 
reader. 

(iv) follows immediately from (iii) and the fact that z ∈ F0 \ {0} implies 
1/z ∈ ∗C \ F  and also that z ∈ F \ F0 implies 1/z ∈ F \ F0. 

. 
Recall that F(∗C), I(∗C) and  L(∗C) denote the sets of the finite, in­

finitesimal and infinitely large numbers in ∗C, respectively, and L(∗C) =  
F(∗C) \I(∗C) (Section 6). Here is the more familiar spilling (underflow and 
overflow) principles about F(∗C), I(∗C) and  L(∗C). 

Corollary 11.1 (The Usual Spilling Principles) Let A ⊆ ∗C be an in­
ternal set. Then: 

(i) Overflow of F(∗C): If A contains arbitrarily large finite numbers, then 
A contains arbitrarily small infinitely large numbers. Consequently, 

F(∗C) \ I(∗C) ⊂ A ⇒ A∩ L(∗C) = ∅. 

(ii) Underflow	 of F(∗C) \ I(∗C): If A contains arbitrarily small fi­
nite non-infinitesimals, then A contains arbitrarily large infinitesi­
mals. Consequently, 

F(∗C) \ I(∗C) ⊂ A ⇒ A∩ I(∗C) = ∅. 

(iii) Overflow of I(∗C): If A contains arbitrarily large infinitesimals, then 
A contains arbitrarily small finite non-infinitesimals. Consequently, 

I(∗C) ⊂ A ⇒ A∩ (F(∗C) \ I(∗C)) = ∅. 

(iv) Underflow of L(∗C): If A contains arbitrarily small infinnitely large 
numbers, then A contains arbitrarily large finite numbers. Conse­
quently, 

L(∗C) ⊂ A ⇒ A∩ (F(∗C) \ I(∗C)) = ∅. 
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Proof: The result follows directly from the previous theorem in the partic­
ular case of F = F(∗C) taking into account that in this case F0 = I(∗C) 
and F \ F0 = L(∗C) (Example 10.1). . 
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12 F-Asymptotic Functions 

In this section we describe a variety of differential rings EiF (Ω) of general­
ized functions on an open set Ω in terms of a given convex subring F of 
∗C (Section 10). The elements of EiF (Ω) are named F-asymptotic func­
tions because their values are in the field Fi of the F-asymptotic num­
bers and because, more importantly, each EiF (Ω) is an algebra over the 
field Fi (Section 10). We intend to convert some of EiF (Ω) into algebras 
of Colombeau’s type by supplying EiF (Ω) with a copy of the space of 
Schwartz distributions D '(Ω) in one of the next sections. In this section we 
generalize some of the results in (Oberguggenberger and T. Todorov [66]), 
where the algebra of ρ-asymptotic functions ρE(Ω) is introduced; within our 
more general theory the algebra ρE(Ω) appears as a particular example (Ex­
ample 12.2). Similar to some of our results appear in the H. Vernaeve Ph.D. 
Thesis [98] (for comparison see the definition of EM (Ω) on p. 90, Sec. 3.6). 

Here is the summary of the basic definitions. The justification of the 
definitions will be presented later in this section and some of the results will 
be worked out in detail in some of the next sections. 

1. In what follows ∗C stands for a non-standard extension of the field 
of the complex numbers C. Let  F be a convex subring in ∗C, F0 be ithe ideal  of  the non-invertible elements of  F . Let  F be the field of 
F-asymptotic numbers. Recall Fi is an algebraically closed (possibly 
non-archimedean) field (Section 10). Let Ω be an open set of Rd . 
In what follows μF (Ω) denotes the F-monad of Ω (34). Also ∗E(Ω) 
stands for the ring of internal non-standard smooth functions of the 
form f : ∗Ω → ∗C (Section 8). 

2. We define the set of F-moderate functions MF (Ω) and the set of 
the F-negligible functions in ∗E(Ω) by 

MF (Ω) = {f ∈ ∗ E(Ω) | (∀α ∈ Nd)(∀x ∈ μ(Ω)(∂αf(x) ∈ F)},0

NF (Ω) = {f ∈ ∗ E(Ω) | (∀α ∈ Nd)(∀x ∈ μ(Ω)(∂αf(x) ∈ F0)},0

respectively. Let EiF (Ω) = MF (Ω)/NF (Ω) be the corresponding factor 
ring. We say that EiF (Ω) is generated by F . The elements of EiF (Ω) 
are named F-asymptotic functions on Ω. We denote by QΩ : 
MF (Ω) → EiF (Ω) the corresponding quotient mapping. However we 
shall often fi instead of QΩ(f) for the equivalence class of f ∈MF (Ω). 

3. We define the embedding 

(31) E(Ω) '→ E F (Ω), 
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by f → ∗f , where  ∗f is the non-standard extension of f . 

4. Let fi ∈ EF (Ω) and xi ∈ μF (Ω) (34). We define the value of fi at xi
by the formula i x) =  f if(i f(x). We shall use the same notation, f , for  
the corresponding graph fi : μF (Ω) → Fi. 

5. Let Ω,O be two open sets of Rd such that O ⊆ Ω. Let fi∈ EiF (Ω). We 
define the restriction fi I O of fi on O by the formula 

fi I O = f |∗O, 

where ∗O is the non-standard extension of O and f |∗O is the usual 
(pointwise) restriction of f on ∗O. 

6.	 Simpler Notation: We shall sometimes drop F , as  a  lower-index, 
in MF (Ω), NF (Ω), EiF (Ω), μF (Ω), etc. and write simply 

M(Ω), N (Ω), Ei(Ω), μ(Ω), . . . ,  

instead when no confusion could arise. The elements of Ei(Ω) will be 
called simply asymptotic functions on Ω (meaning F-asymptotic 
functions for the given specific F). 

Theorem 12.1 (Some Basic Results) Let F be (as before) a convex sub-
ring of ∗C. Then:  

(i) MF (Ω) is a differential subring of ∗E(Ω) and NF (Ω) is a differential 
ideal in MF (Ω). Consequently, EiF (Ω) is a differential ring. 

(ii) E(Ω) is a differential subalgebra of EiF (Ω) over C under the embedding 
f → ∗f . We shall often write this as an inclusion 

E(Ω) ⊂ EiF (Ω), 

instead of (31). 

def
(iii)	 Let Td stand for the usual topology on Rd . The collection EiF = 

{EiF (Ω)}Ω∈Td is a sheaf of differential  rings  on the topological space 
(Rd , Td) under the restriction I. Consequently, every function fi ∈ 
EF (Ω) has a support supp(fi) which is a closed set of Ω. 
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(iv) Each EiF (Ω) ∈ EiF is a differential ring with ring of scalars Fi in the 
sense that   i(32) Fi = f ∈ EiF (Rd) | ∇fi= 0 , 

where ∇fi= ∇f is the gradient fi in EF (Rd) and 0 in ∇fi= 0  is the 
zero of the ring EF (Rd). Consequently, each EiF (Ω) is a differential 
algebra over the field Fi under the ring operations in EiF (Ω). 

(v) The embedding EiF (Ω) '→ FiμF (Ω), defined by the pointwise values of 
fi∈ EF (Ω), preserves the addition, multiplication and partial differen­
tiation in EiF (Ω). 

Proof: The properties (i), (ii) and (iv) follow easily from the definition of 
EF (Ω) and we shall leave to the reader to check the detail. The proof of (iii) 
and (v) is more complicated. We shall proof (iii) in Section ?? and we shall 
prove (v) in Section ??. 

. 
Here are several examples algebras of asymptotic functions. 

Example 12.1 (Nothing New) Let F = F(∗C). In this case we have 
F0 = I(∗C) and Fi = C (Example 10.1). For the F-moderate and F-
negligible functions we have MF (Ω) = F(∗E(Ω)) and NF (Ω) = I(∗E(Ω)), 
respectively, where 

F(∗ E(Ω)) 
def {f ∈ ∗ E(Rd) | (∀α ∈ Nd x ∈ μ(Ω)(∂αf(x) ∈ F(∗C)),= )(∀0

I(∗ E(Ω)) 
def {f ∈ ∗ E(Rd) | (∀α ∈ Nd)(∀x ∈ μ(Ω)(∂αf(x) ∈ I(∗C))},= 0

The F-asymptotic functions are the familiar smooth functions, i.e. 

EiF (Ω) = E(Ω). 

Example 12.2 (ρ-Asymptotic Functions) Let ρ be a positive infinitesi­
mal in ∗R and let 

F = Mρ(∗C) =  {x ∈ ∗C : |x| ≤ ρ−n for some n ∈ N}, 

is the ring of the ρ-moderate numbers in ∗C. In this case we have: 

F0 = Nρ(∗C) =  {x ∈ ∗C : |x| ≤ ρn for all n ∈ N}, 

ρ(∗C) 
def

(33) Fi = Mρ(∗C)/N = ρC, 
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(Example 10.2). For the F-moderate and F-negligible functions we have 
MF (Ω) = Mρ(∗E(Ω)) and NF (Ω) = Nρ(∗E(Ω)), respectively, where 

Mρ(∗ E(Ω)) 
def 

f ∈ ∗ E(Ω) | (∀α ∈ Nd)(∀x ∈ μ(Ω)) [∂αf(x) ∈Mρ(∗C)]= ,0

Nρ(∗ E(Ω)) 
def 

f ∈ ∗ E(Ω) | (∀α ∈ Nd)(∀x ∈ μ(Ω)) [∂αf(x) ∈ N .= ρ(∗C)]0

The corresponding factor ring 

ρE(Ω) = Mρ(∗ E(Ω))/Nρ(∗ E(Ω)), 

is an algebra over the field of A. Robinson’s asymptotic numbers ρC (Exam­
ple ??). The algebra ρE(Ω) is introduced in (M. Oberguggenberger and T. 
Todorov[66]) under the name ρ-asymptotic functions. We shall follow 
this terminology. The reader will find a more detail about ρE(Ω) in Chap­
ter ??. The algebra ρE(Ω) is, in a sense, a non-standard counterpart of a 
special Colombeau’s algebra (J. F. Colombeau [12]) with the important 
improvement of the properties of the scalars: The ring of the scalars 
ρC of ρE(Ω) constitutes an algebraically closed Cantor-complete field. In 
contrast, the ring of the scalars CC of Colombeau simple algebra Gs(Ω) is a 
ring with zero divisors. 

Example 12.3 (Logarithmic Hull) Let ρ be (as before) a positive in­
finitesimal in ∗R and let 

√ F = Fρ(∗C) =  {x ∈ ∗C : |x| < 1/ n ρ for all n ∈ N}, 

is the set of the ρ-finite numbers in ∗C. In this case we have: 
√ F0 = Iρ(∗C) =  {x ∈ ∗C : |x| ≤  n ρ for some n ∈ N}, 

ρ(∗C) 
def Fi = Fρ(∗C)/I = C, 

(Example 10.4). For the F-moderate and F-negligible functions we have 
MF (Ω) = Fρ(∗E(Ω)) and NF (Ω) = Iρ(∗E(Ω)), respectively, where 

Fρ(∗ E(Ω)) 
def 

f ∈ ∗ E(Ω) | (∀α ∈ Nd)(∀x ∈ μ(Ω)) [∂αf(x) ∈ Fρ(∗C)]= ,0

Iρ(∗ E(Ω)) 
def 

f ∈ ∗ E(Ω) | (∀α ∈ Nd)(∀x ∈ μ(Ω)) [∂αf(x) ∈ Iρ(∗C)]= .0

The corresponding ring of F-asymptotic functions 

EiF (Ω) = Fρ(∗ E(Ω))/Iρ(∗ E(Ω)), 

is an algebra over the field of logarithmic constants C (Example 10.4). 
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Example 12.4 (Exponential Asymptotic Functions) Let ρ be (as be­
fore) a positive infinitesimal in ∗R and let 

F = {x ∈ ∗C : |x| ≤ exp (ρ) for some n ∈ N}.n

In this case we have F0 = {x ∈ ∗C : |x| < 1/ exp (ρ) for all n ∈ N} andn
def Fi = F/F0 = E.  The  corresponding ring of asymptotic functions  EF (Ω) is 

an algebra over the exponential field E (Example 10.5). 

Example 12.5 (The case F = ∗C) Let F = ∗C. In this case F0 = {0}
and Fi = ∗C (Example 12.5). For the F-moderate and F-negligible functions 
we have 

MF (Ω) = ∗ E(Ω),
 

NF (Ω) = {f ∈ ∗ E(Rd) | (∀α ∈ Nd)(∀x ∈ μ(Ω)(∂αf(x) = 0)},
0

respectively. The ring of F-asymptotic functions 

F (Ω) 
def iEF (Ω) = ∗ E(Ω)/N = E(Ω). 

is an algebra over the field ∗C. The algebra Ei(Ω) is, in a sense, a non­
standard counterpart of Egorov algebra (Yu. V. Egorov [20]-[21]) 
with the important improvement of the properties of the scalars: The ring 
of the scalars ∗C of Ei(Ω) constitutes an algebraically closed saturated field. 
In contrast, the the scalars of Egorov’s algebra are a ring with zero divisors. 
The algebra Ei(Ω) will be studied in detail in Chapter ??. 
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13 F-Moderate and F-Negligible Functions 

In this section we present several characterizations of the F-moderate 
and F-negligible functions (Section 12). 

Through out this section F stands for a convex subring of ∗C (Section 10) 
and M ∈Max(F) stands for a maximal field within F (Definition 10.1). 

Theorem 13.1 Let f ∈ ∗E(Ω). Then the following are equivalent: 

(i) (∀x ∈ μ(Ω))(f(x) ∈ F). 

(ii) (∀x ∈ μ(Ω))(∃M ∈ M+)(|f(x)| ≤ M). 

(iii) (∀K ⊂⊂ Ω)(∃M ∈ M+)(supx∈∗K |f(x)| ≤ M). 

(iv) (∀x ∈ μ(Ω))(∃A ∈ F \ F0)(|f(x)| ≤ A). 

(v) (∀K ⊂⊂ Ω)(∃A ∈ F \ F0)(supx∈∗K |f(x)| ≤ A). 

(vi) (∀x ∈ μ(Ω))(∀B ∈ ∗R+ \ F)(|f(x)| < B). 

(vii) (∀K ⊂⊂ Ω)(∀B ∈ ∗R+ \ F)(supx∈∗K |f(x)| < B). 

Remark 13.1 We should note that the above theorem remains true even 
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains 
arbitrarily large numbers. 

Proof: (i)⇔(ii) follows immediately by part (i) of Theorem 10.2. 
(ii)⇒(iii): Let K ⊂⊂ Ω and recall that ∗K ⊂ μ(Ω) by Theorem 7.2. We 

observe that supξ∈∗K |f(ξ)| ∈ F . Indeed, suppose (on the contrary) that 
γ =: supξ∈∗K |f(ξ)| / ∈ F . There  exists  y ∈ ∗K∈ F  which implies also γ/2 /
such that γ/2 < |f(y)| < γ  by  the choice of  γ. It  follows  f(y) /∈ F  which 
contradicts to (i) (hence it contradicts to (ii)) since y ∈ μ(Ω). On the other 
hand, supξ∈∗K |f(ξ)| ∈ F  implies that the internal set 

A = {a ∈ ∗R+ : sup  |f(ξ)| ≤ a}, 
ξ∈∗K 

contains ∗R+\F by by part (ii) of Theorem 10.2. Thus A contains arbitrarily 
small numbers in ∗C \F . It follows that A∩ (F \F0) = ∅ by the Underflow 
of ∗C \ F  (Theorem 11.1). Thus supx∈∗K |f(x)| ≤  A holds for any A ∈ 
A∩ (F \ F0). Also there exists M1 ∈ M such that A −M1 ∈ F0 by part (i) 
of Theorem 10.3. Let H ∈ M+. Then (iii) holds for M = M1 + H. 
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(iii)⇒(iv): Suppose that x ∈ μ(Ω) and  observe that st(x) ∈ Ω by the  
definition of μ(Ω). Since Ω is an open set, there exists ε ∈ R+ such that 
K ⊂⊂ Ω, where K = {r ∈ Ω :  |r − st(x)| ≤ ε}. There  exists  M ∈ M+ such 
that supξ∈∗K |f(ξ)| ≤ M by assumption which implies (iv) for A = M since 
x ∈ ∗K and M ∈ M+ ⊂ F \ F0. 

The proof of (iv)⇒(v) is almost identical to the proof of (ii)⇒(iii) and 
we leave it to the reader. 

(v)⇒(vi) follows immediately by part (ii) of Theorem 10.2. 
(vi)⇒(vii): Suppose (on the contrary) that γ =: supξ∈∗K |f(ξ)| ≥ B for 

some K ⊂⊂ Ω and  some  B ∈ ∗R+ \ F . We  have  B/2 ≤ |f(y)| < γ  for 
some y ∈ ∗K by  the choice of  γ. This contradicts (vi) since y ∈ μ(Ω) and 
B/2 ∈ ∗R+ \ F . 

(vii)⇒(i): Suppose that x ∈ μ(Ω) and observe that st(x) ∈ Ω by the  
definition of μ(Ω). As before there exists K ⊂⊂ Ω such that x ∈ ∗K. As  
before the internal set A contains ∗R+ \F . Thus (as before) A∩(F\F0) = ∅ 
by the Underflow for ∗C \ F  (Theorem 11.1). Thus supξ∈∗K |f(ξ)| < A for 
any A ∈ A∩ (F \F0). It follows that |f(x)| < A since x ∈ ∗K by the choice 
of K. Thus  f(x) ∈ F  (as required) by the convexity of F . 

. 
Here is a list of characterizations of the F-moderate functions. 

Corollary 13.1 (F-Moderate Functions) Let f ∈ ∗E(Ω). Then  the  fol­
lowing are equivalent: 

(i) f ∈MF (Ω). 

(ii) (∀α ∈ Nd)(∀x ∈ μ(Ω))(∃M ∈ M+)(|∂αf(x)| ≤ M).0

(iii) (∀α ∈ Nd)(∀K ⊂⊂ Ω)(∃M ∈ M+)(supx∈∗K |∂αf(x)| ≤ M).0

(iv) (∀α ∈ Nd)(∀x ∈ μ(Ω))(∃A ∈ F \ F0)(|∂αf(x)| ≤ A).0

(v) (∀α ∈ Nd)(∀K ⊂⊂ Ω)(∃A ∈ F \ F0)(supx∈∗K |∂αf(x)| ≤ A).0

(vi) (∀α ∈ Nd)(∀x ∈ μ(Ω))(∀B ∈ ∗R+ \ F)(|∂αf(x)| < B).0

(vii) (∀α ∈ Nd)(∀K ⊂⊂ Ω)(∀B ∈ ∗R+ \ F)(supx∈∗K |∂αf(x)| < B).0

Remark 13.2 We should note that the above corollary remains true even 
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains 
arbitrarily large numbers. 
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Proof: An immediate after replacing f by ∂αf in Theorem 13.1. 
. 
We turn to the F-negligible functions. 

Theorem 13.2 Let f ∈ ∗E(Ω). Then the following are equivalent: 

(i) (∀x ∈ μ(Ω))(f(x) ∈ F0). 

(ii) (∀x ∈ μ(Ω))(∀M ∈ M+)(|f(x)| < M). 

(iii) (∀K ⊂⊂ Ω)(∀M ∈ M+)(supx∈∗K |f(x)| < M). 

(iv) (∀x ∈ μ(Ω))(∃A ∈ F0)(|f(x)| ≤ A). 

(v) (∀K ⊂⊂ Ω)(∃A ∈ F0)(supx∈∗K |f(x)| ≤ A). 

(vi) (∀x ∈ μ(Ω))(∀B ∈ F \ F0)(|f(x)| < |B|). 

(vii) (∀K ⊂⊂ Ω)(∀B ∈ F \ F0)(supx∈∗K |f(x)| < |B|). 

Remark 13.3 We should note that the above theorem remains true even 
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains 
arbitrarily small numbers. 

Proof: We shall prove the equivalence of (i) and (v) only and leave the rest 
of the proof to the reader (who might decide to adapt the arguments used 
in the proof of the previous lemma). 

(i)⇒(v) Suppose that K is a compact subset of Ω and recall that ∗K ⊂ 
μ(Ω) by Theorem 7.2. Notice that supx∈∗K |f(x)| ∈ F0. Indeed, suppose 
(on the contrary) that γ =: supx∈∗K |f(x)| / 0 which implies γ/2 / 0.∈ F ∈ F
Also there exists y ∈ ∗K such that γ/2 < |f(y)| < γ  by  the choice of  γ. 
Thus |f(y)| / 0∈ F contradicting to our  assumption  (i) since  y ∈ μ(Ω). On 
the other hand, supx∈∗K |f(x)| ∈ F0 implies that the internal set 

A = {c ∈ ∗C : sup  |f(x)| ≤ |c| }, 
x∈∗K 

contains F \F0 by by part (ii) of Theorem 10.2. It follows that A∩F0 = ∅ 
by the Underflow of F \F0 (Theorem 11.1). Thus supx∈∗K |f(x)| ≤ A holds 
(as required) for any c ∈ A ∩ F0 and A = |c|. 

(i)⇐(v): Suppose that x ∈ μ(Ω). As in the previous lemma, there exists 
ε ∈ R+ such that K = {r ∈ Ω :  |r − st(x)| ≤ ε} ⊂⊂ Ω. Observe that there 
exists A ∈ F0 such that supξ∈∗K |f(ξ)| ≤ A by assumption. Thus f(ξ) ∈ F0 

for all ξ ∈ ∗K (as required) by the convexity of F0. 
. 
Here is a list of characterizations of the F-negligible functions. 
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Corollary 13.2 (F-Negligible Functions) Let f ∈ ∗E(Ω). Then the fol­
lowing are equivalent: 

(i) f ∈ NF (Ω). 

(ii) (∀α ∈ Nd)(∀x ∈ μ(Ω))(∀M ∈ M+)(|f(x)| < M).0

(iii) (∀α ∈ Nd)(∀K ⊂⊂ Ω)(∀M ∈ M+)(supx∈∗K |f(x)| < M).0

(iv) (∀α ∈ Nd)(∀x ∈ μ(Ω))(∃A ∈ F0)(|f(x)| ≤ A).0

(v) (∀α ∈ Nd)(∀K ⊂⊂ Ω)(∃A ∈ F0)(supx∈∗K |f(x)| ≤ A).0

(vi) (∀α ∈ Nd)(∀x ∈ μ(Ω))(∀B ∈ F \ F0)(|f(x)| < |B|).0

(vii) (∀α ∈ Nd)(∀K ⊂⊂ Ω)(∀B ∈ F \ F0)(supx∈∗K |f(x)| < |B|).0

Remark 13.4 We should note that the above corollary remains true even 
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains 
arbitrarily small numbers. 

Proof: An immediate after replacing f by ∂αf in Theorem 13.2. 
. 
In the next theorem we present several more characterizations of the F-

negligible functions (in addition to the presented above), where the quantifier 
∀α ∈ Nd is replaced simply by α = 0.  0 

Theorem 13.3 (A Simplification) Let f ∈ MF (Ω). Then  f ∈ NF (Ω) 
i f f  f(x) ∈ F0 for all x ∈ μ(Ω). Consequently, we have the following several 
formulas for NF (Ω): 

NF (Ω) = {f ∈MF (Ω) | (∀x ∈ μ(Ω)(f(x) ∈ F0)}, 
NF (Ω) = {f ∈MF (Ω) | (∀x ∈ μ(Ω))(∀M ∈ M+)(|f(x)| < M)}, 
NF (Ω) = {f ∈MF (Ω) | (∀K ⊂⊂ Ω)(∀M ∈ M+)( sup |f(x)| < M)}, 

x∈∗K 

NF (Ω) = {f ∈MF (Ω) | (∀x ∈ μ(Ω))(∃A ∈ F0)(|f(x)| ≤ A)}, 
NF (Ω) = {f ∈MF (Ω) | (∀K ⊂⊂ Ω)(∃A ∈ F0)( sup |f(x)| ≤ A)}, 

x∈∗K 

NF (Ω) = {f ∈MF (Ω) | (∀x ∈ μ(Ω))(∀B ∈ F \ F0)(|f(x)| < |B|)}, 
NF (Ω) = {f ∈MF (Ω) | (∀K ⊂⊂ Ω)(∀B ∈ F \ F0)( sup |f(x)| < |B|)}. 

x∈∗K 
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Proof: (⇒) follows immediately after letting α = 0.  
(⇐) Suppose  that  x ∈ μ(Ω). We have to show that ∂αf(x) ∈ F0 for 

all multi-indexes α ∈ Nd 
0, |α| ≥  1. We start with |α| = 1.  If  ∇f(x) = 0,  

there is nothing to prove. Suppose that ∇f(x) = 0  and  let  ε ∈ M+. It  
suffices to show that ||∇f(x ooan open set, there exists an open relatively compact set O of Ω such that o < δ  for some 

oIo
)|| < ε  in view of Theorem 10.2. 

st(x) ∈ O  ⊂⊂  Ω. Now f ∈ MF (Ω) implies αf(ξ) 

Since Ω is
 

o
 |α|=2 ∂

δ ∈ M+ and all ξ ∈ ∗O by Corollary 13.1 since ∗O ⊂  μ(Ω). Let h ∈ I(Md) be  
an infinitesimal vector with the direction of ∇f(x) and of length ||h|| < ε/δ. 
Notice that ||h|| ∈ M+ thus ||h|| ∈ F \ F0 which is important for what 
follows. We have |f(x + h) − f(x)| < δ||h||2/2 by part (vi) of Theorem 10.2 
since f(x+h)−f(x) ∈ F0 by assumption and x+h ∈ μ(Ω). Next we observe 
that the Taylor formula: 

1
  

∇f(x) · h = f(x + h) − f(x) −
 ∂
 ααf(x + θh) h .


2
|α|=2 

holds for some θ ∈ ∗R, 0 < θ <  1, by Transfer Principle (Theorem 4.4). 
Thus x + θh ≈ x ≈ st(x) implying x + θh ∈ ∗O. We  have  

|∇f(x) · h| < δ||h||2/2 +  δ||h||2/2 < δ||h||2 . 

Also we have |∇f(x) · h| = ||∇f(x)|| ||h|| by  the choice of the  direction of  
h. It follows ||∇f(x)|| = δ||h|| < ε  as required. We generalize this result 
for |α| = 2, 3, . . .  by induction. The different formulas for NF (Ω) follow 
immediately by Theorem 13.2. . 
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14 Pointwise Values and Fundamental Theorem in 
EF(Ω) 

In this section we show that every asymptotic function fi ∈ EF (Ω) can 
be characterized with its pointwise values in the field Fi (Section 10). We 
also prove a fundamental theorem of calculus in EF (Ω) (Section 12). In 
this section we generalize some of the results in Todor Todorov [93] which 
deals with the particular case F = Mρ(∗C) (Example 10.2) only. The 
closest counterpart in J.F. Colombeau’s theory of generalized functions can 
be found in M. Kunzinger and M. Oberguggenberger’s article [45], where a 
characterization of Colombeau’s generalized functions in G(Ω) in the ring of 
generalized scalars CC is established. 

Recall that every non-standard smooth function f ∈ ∗E(Ω) is a pointwise 
function of the form f : ∗Ω → ∗C, i.e. ∗E(Ω) ⊂ ∗C 

∗Ω (Section 8). We shall 
use the notation introduced in the first several pages in (Section 10) and 
(Section 12). In particular, let F be a convex subring of ∗C and Ω ⊆ Rd be 
an open set of Rd. Then  

μF (Ω) = {r + dx | r ∈ Ω, dx  ∈ (Fid), ||dx|| ≈ 0}, 

is the F-monad of Ω. Here (Fid) stands for the real part of the vector 
space Fid (Section 10, # 8). We denote by Fi μF (Ω) the ring of the functions 
F of the form F : μF (Ω) → Fi. For convenience of the reader we shall recall 
the definition pointwise values presented in (Section 10). 

Definition 14.1 (Pointwise Values) Let fi ∈ EF (Ω) be a F-asymptotic 
function (Section 12) and xi ∈ μF (Ω) be a F-asymptotic point. We define 
the value of fi at xi by the formula 

fi(xi) =  ff(x). 

We shall use the same notation, fi, for the asymptotic function fi∈ EF (Ω) 
and its graph fi∈ FiμF (Ω) given by the mapping fi : μF (Ω) → Fi. 

The correctness of the above definition is justified by the following result. 

Lemma 14.1 (Correctness) Let x, y ∈ μ(Ω) and f, g ∈ MF (Ω). Then  
x − y ∈ F0 and f − g ∈ NF (Ω) implies f(x) − g(y) ∈ F0. 

Proof: We have f(x) − f(y) =  ∇f(t) · (x − y) by Transfer Principle (Theo­
rem 4.4) for some t ∈ ∗Rd between x and y (in the sense that t = x+θ(y −x) 
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for some θ ∈ ∗R, 0 < θ <  1). Also 

|f(x) − g(y)| =|f(x) − f(y) +  f(y) − g(y)| ≤ |f(x) − f(y)|+ |f(y) − g(y)| ≤  

≤ ||∇f(t)|| ||x − y||+ |f(y) − g(y)|. 

Observe that x − y ∈ F0 implies x − y ≈ 0 by part (iii) of Theorem 10.2) 
implying st(x) = st(y) = st(t). It follows t ∈ μ(Ω) since x, y ∈ μ(Ω) by 
assumption. Thus f ∈ MF (Ω) implies ||∇f(t)|| ∈ F . For the first term we 
have ||∇f(t)|| ||x − y|| ∈ F0 since ||x − y|| ∈ F0 by assumption and F0 is an 
ideal in F . Also  f − g ∈ NF (Ω) implies |f(y) − g(y)| ∈ F0 since y ∈ μ(Ω) 
by assumption. Thus |f(x) − g(y)| ∈ F0 as required. 

. 
Recall that we have the embedding E(Ω) '→ Ei(Ω) under the mapping 

f → ∗f (Section 12). The next result shows that the evaluation in EF (Ω) 
reduces to the usual evaluation in E(Ω). Recall that 

Proposition 14.1 (The Usual Evaluation) Let f ∈ E(Ω). Then  ∗f is 
an extension of f , i.e. ∗f |Ω =  f . 

Proof: ∗f(xi) =  ̂∗f(x) =  ff(x) =  f(x) since  ∗f is an extension of f . We  also  
have x = xi for all x ∈ Ω by the identification Ω with its image in (Fd) 
(# 14, Section 10). Thus ∗f(x) =  f(x) as required.  . 

Theorem 14.1 (Ring Homomorphism) The mapping 

F μF (Ω)EF (Ω) : fi→ fi∈ i , 

from EF (Ω) into Fi μF (Ω) is a ring homorphism. 

Proof: To show that the mapping is injective, observe that fi(xi) = 0 for all 
xi ∈ μF (Ω) is equivalent to f(x) ∈ F0 for all ∀x ∈ μ(Ω). The latter implies 
f ∈ NF (Ω)) by Theorem 13.3. Thus fi = 0 as required. The mapping 

preserves the addition because ( fi+ i x) =  i x) +  gi(xi) =  f(x) +  g(x) and  g)(i f(i ̂ 

similarly for the multiplcation. .. 

Theorem 14.2 (Fundamental Theorem) Let Ω be an arcwise connected 
open set of Rd and let f ∈MF (Ω). Then the followinng are equivalent: 

(i) (∃ ci∈ Fi)(∀xi ∈ μF (Ω))(fi(xi) =  ic). 
(ii) (∃ c ∈ F)(∀x ∈ μ(Ω))(f(x) − c ∈ F0). 
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(iii) (∀ x ∈ μ(Ω))(||∇f(x)|| ∈ F0). 

(iv) (∀ xi ∈ μF (Ω))(∇fi(xi) = 0). 

(v) ∇fi= 0  in EF (Ω). 

Proof: (i)⇔(ii), (iii)⇔(iv) and (iv)⇔(v) follow directly from Theorem 14.1. 
(ii)⇒(iii): Suppose that x ∈ μ(Ω). If ∇f(x) = 0, there is nothing to 

prove. Suppose that ∇f(x) = 0  and  let  h ∈ I(Md) be an infinitesimal 
vector in the direction of ∇f(x). By the Mean Value Theorem applied by 
Transfer Principle (Theorem 4.4), we have 

1 ∇f(x) · h = f(x + h) − f(x) − ∂αf(x + θh) hα ,
2 

|α|=2 

∗R, 0 < θ <  1. We have
 
ooo
 ∂αf(x + θh) 

ooo
 ≤ δ for
 
I
 

for some θ ∈
 1 
2 |α|=2 

by Theorem 10.2 since x + θh ∈ μ(Ω) and f ∈ MF (Ω) by some δ ∈ M+ 

assumption. Also |∇f(x) · h| = ||∇f(x)|| ||h|| by the choice of the direction 
of h. Thus  

f(x + h) − f(x)||∇f(x)|| ≤ + δ ||h||,||h||2 

Observe that f(x + h) − f(x) ∈ F0 by assumption since x + h ∈ μ(Ω). Thus 
f (x+h)−f (x) + δ ∈ M+. Consequently, there exists M ∈ M+ such that the ||h||2 

internal set  
  
∇f(x) h ||h|| : h ∈ ∗Rd , = , ||∇f(x)|| ≤ M ||h||||∇f(x)|| ||h||A =
 ,
 

contains I(M+). Thus A contains arbitrarily small numbers in F \F0 since 
M+ ⊂ F \ F0. It follows that A contains arbitrarily large numbers F0 by 
the Underflow of F \ F0 (Theorem 11.1). Thus there exists h ∈ ∗Rd such 
that ||∇f(x)|| ≤ M ||h|| and ||h|| ∈ F0. It follows that ||∇f(x)|| ∈ F0 (as 
required) since F0 is an ideal in F . 

(ii)⇐(iii): Suppose that x, y ∈ μ(Ω). Since Ω is arcwise connected by 
assumption, it follows that ∗Ω is  ∗-arcwise connected by Transfer Principle 
(Theorem 4.4). Thus there exists a ∗-continuous curve L ⊂ μ(Ω) which 
connects x and y. We  have   


f(x) − f(y) = ∇f(t) · dl, 
L 
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(again, by Transfer Principle). It follows that 

f(x) − f(y) =  ∇f(t) · (x − y), 

for some t ∈ L by the Mean Value Theorem (and Transfer Principle). Thus 
|f(x) − f(y)| ≤ ||∇f(t)|| ||x − y|| ∈ F0, since (as before) F0 is an ideal in 
F and we have ||∇f(t)|| ∈ F0 by assumption and ||x − y|| ∈ F(∗R) ⊂ F . 
Let c = f(y) for some (any) y ∈ μ(Ω). The result is f(x) − c ∈ F0 for all 
x ∈ μ(Ω) as required. . 

51
 



empty
 

52 



 

  

15 Convolution in Non-Standard Setting 

Definition 15.1 (Convolution) (i) Let T ∈ D  '(Ω) and let T : D(Ω) → 
C be the corresponding mapping. We define the non-standard ex­
tension ∗T : ∗D(Ω) → ∗C of T by the formula 

( ∗ T , (ϕi)) = ((T, ϕi)) , 

where (ϕi) ∈ ∗D(Ω). 

(ii) Let T ∈ E  '(Ω) and (Di) ∈ ∗D(Rd). We define the convolution between 
∗T and (Di) by the formula 

∗ T � (Di) = (T � Di), 

where T � Di is the usual convolution between T and Di in the sense 
of distribution theory (i.e. (T (ξ), Di(x−ξ)) for every x ∈ Ω and every 
i ∈ I). 

Lemma 15.1 For every T ∈ E  '(Ω) and every D ∈ ∗D(Rd) we have ∗T �D  ∈ 
∗E(Ω). 

16 Schwartz Distributions in ρE(Ω) 

1If f ∈ L (Ω), we denote by Tf ∈ D  '(Ω) the Schwartz distribution with loc

kernel f , i.e. 

(Tf , ϕ) = f(x)ϕ(x) dx, 
Ω 

for all ϕ ∈ D(Ω). Recall that E(Ω) is a differential subring of ρE(Ω) under 
the embedding 

E(Ω) '→ ρE(Ω), 

defined by the mapping f → ∗f , where  ∗f is the non-standard extension of 
f (i.e. ∗f = (fi), fi = f for all i ∈ I) and  ∗f stands for the corresponding 
equivalence class (see the beginning of Section ??). 

Theorem 16.1 (Existence of an Embedding) There exists an embed­
ding ΣΩ : D '(Ω) → ρE(Ω) which preserves the sheaf-properties and the 
linear operations in D '(Ω) (including partial differentiation) and such that 
ΣΩ(Tf ) = ΣΩ(∗f) for every f ∈ E(Ω). Consequently, the multiplication in 
ρE(Ω) reduces to the usual pointwise multiplication on E(Ω). We  summarize  
this in: 

E(Ω) '→ D  '(Ω) '→ ρE(Ω) 
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Proof: We shall separate the proof in numerous definitions and lemmas: 

Definition 16.1 (ρ-Delta Function) D ∈ ∗E(Rd) is called a ρ-delta func­
tion if: 

1. ||x|| ≈ 0 implies	 D(x) = 0. (Lemma: There exists a positive in­
finitesimal, say  ρ, such that ||x|| ≤ ρ implies D(x) = 0).
 

The next conditions on D depend on the choice of ρ:
  
2. D(x) dx − 1 ∈ Nρ(∗C).||x||≤ρ  
3. ||x||≤ρ D(x) xα dx ∈ Nρ(∗C) for all |α| = 0. 

4.	 D ∈Mρ(∗E(Rd)), i.e.
 

(∀α ∈ Nd)(∀x ∈ μ(Rd)) (∂αD(x) ∈Mρ(∗C)) .
0

Theorem 16.2 There exists a ρ-delta function D. 

Proof: : For the original proof we refer to (M. Oberguggenberger and T. 
Todorov [66]). Here is a summary of this result: 

Step 1) For every n ∈ N, we define the set of test-functions: 

(34)	 Bn = {ϕ ∈ D(Rd) :  

ϕ(x) dx = 1, 
Rd 

x αϕ(x) dx = 0  for  all  α ∈ N0
d , 1 ≤ |α| ≤ n, 

Rd 

||x|| ≥ 1/n ⇒ ϕ(x) = 0, 

1
1 ≤ |ϕ(x)| dx < 1 +  }. 

Rd	 n 

Lemma 16.1 (Properties of Bn) (B1) Bn = ∅ for all n. 
(B2) D(Rd) =  B0 ⊃ B1 ⊃ B2 ⊃ B3 ⊃ . . .  . (Thus  Bn ∩ Bn = Bmax (m,n)). 
(B3) ∩n Bn = ∅. 

Step 2) Find the non-standard extension of Bn: 
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∗ B(35) n = {ϕ ∈ ∗ D(Rd) :  

ϕ(x) dx = 1, 
∗Rd 

x αϕ(x) dx = 0  for  all  α ∈ N0
d , 1 ≤ |α| ≤ n, 

∗Rd 

||x|| ≥ 1/n ⇒ ϕ(x) = 0, 

1
1 ≤ |ϕ(x)| dx < 1 +  }. 

∗Rd n 

Step 3) Let M be an infinitely large positive number in Fρ(∗R). For 
example, M = | ln ρ| will do. Define the internal sets: 

M∗ An = {ϕ ∈ ∗ Bn : sup||x||≤1/n|∂αϕ(x)| < for all |α| ≤ n}, 
n 

We observe that (trivially) ∗D(Rd) ⊃ A1 ⊃ A2 ⊃ . . .  . Also,  An = ∅ for all 
n. Indeed, ϕ ∈ Bn implies ∗ϕ ∈ An since 

M∗ sup||x||≤1/n|∂α(∗ ϕ(x))| = sup||x||≤1/n|∂αϕ(x)| < , 
n 

and sup||x||≤1/n|∂αϕ(x)| is a real number and M/n is an infinitely large 
positive number for any n ∈ N. Thus there exists 

∞
Θ ∈ An = ∅, 

n=1 

by Saturation Principle (Theorem 4.2). Notice that Θ satisfies all prop­
erties (1)-(4) of the definition of ρ-delta function except (possibly) the 
property (5). 

Step 3) The non-standard function D ∈ ∗D(Rd), defined by the formula 

D(x) =  ρ−dΘ(x/ρ), 

is the ρ-delta function we are looking for. 

Definition 16.2 The mapping T → QΩ (∗T � D) from E '(Ω) to ρE(Ω) is 
the embedding of the space of distributions with compact support in Ω. 

Step 4) 
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Definition 16.3 (ρ-Cut-Off Function) ΠΩ ∈ ∗D(Ω) is called a ρ-cut-off 
function for the open set Ω ⊆ Rd if 

(a) ΠΩ(x) = 0  for all x ∈ μ(Ω). 

(b) supp(ΠΩ) ⊆ {x ∈ ∗Ω | ∗d(x, ∂Ω) ≥ ρ} 

Lemma 16.2 There exists a ρ-cut-off-function. 

Proof: Let Ωρ = {x ∈ ∗Ω | ∗d(x, ∂Ω) ≥ 2ρ, ||x|| < 1/ρ } and let χ be the 
characteristic function of Ωρ. The function ΠΩ = χ � D  is the ρ-cut-off 
function we are looking for. . 

Definition 16.4 The mapping T → QΩ (∗T ΠΩ) � D) from D '(Ω) to ρE(Ω) 
is the embedding the existence of which was stated in Theorem 16.1. 

The proof of Theorem 16.1 is complete. . 

56
 



empty
 

57 



References 

[1] J.	 Arigona and H. A. Biagioni, Intrinsic Definition of the Colombeau 
Algebra of Generalized Functions, Analysis Mathematica, 17 (1991), 
p. 75–132. 

[2] N.	 Aronszajn, Traces of analytic solutions of the heat equation, Colloq. 
Internat. Astérique 2 et 3, C.N.R.S., Soc. Math. France, 1973, p. 35–68 
(§7, Chapter VI). 

[3] B. Banaschewski, On Proving the Existence of Complete Ordered Fields, 
Math. Monthly, Vol. 105, No. 6, 1998, p. 548-551. 

[4] M. S.	 Baouendi, Solvability of partial differential equations in the traces 
of analytic solutions of the heat equation, Amer. J. Math. 97, 1975, 
p. 983-1005 (§7, Chapter VI). 

[5] Hebe A. Biagioni, A Nonlinear Theory of Generalized Functions, Lec­
ture Notes in Mathematics, Springer Verlag, Vol. 1421, XII, 1990. 

[6] N. Bourbaki, Algebra II, Springer-Verlag, Berlin-Heidelberg-New York, 
1990. 

[7] H. Bremermann, Distributions, Complex Variables, and Fourier Trans­
forms, Addison-Wesley Publ. Co., Inc., Palo Alto, 1965. 

[8] C. C. Chang and H. Jerome Keisler,	 Model Theory, Studies in Logic 
and the Foundations of Mathematics, Vol. 73, Elsevier, Amsterdam, 
1998. 

[9]  Chr. Ya. 	  Christov,  T. D. Todorov,  Asymptotic Numbers: Algebraic 
Operations with Them, In Serdica, Bulgaricae Mathematicae Publica­
tiones, Vol.2, 1974, p. 87–102. 

[10] J. F. Colombeau, New Generalized Functions and Multiplication of Dis­
tributions, North-Holland Math. Studies 84, 1984. 

[11] J. F. Colombeau, New General Existence Result for Partial Differential 
Equations in the C∞ - Case, Preprint, Universite de Bordeaux, 1984. 

[12] J. F. Colombeau, Elementary Introduction to New Generalized Func­
tions, North-Holland, Math. Sdudies 113, Amsterdam, 1985. 

[13] J. F. Colombeau,	 Multiplication of Distributions, Bull.A.M.S. 23, 2, 
1990, p. 251–268. 

58
 



[14] J. F. Colombeau, Multiplication of Distributions; A Tool in Mathemat­
ics, Numerical Engineering and Theoretical Physics, Lecture Notes in 
Mathematics, 1532, Springer- Verlag, Berlin, 1992. 

[15] J. F. Colombeau, A. Heibig, M. Oberguggenberger, Generalized solu­
tions to partial differential equations of evolution type, Preprint  of  Ecole  
Normale Superieure de Lyon, France, 1991. 

[16] H. Garth Dales and W. Hugh Woodin, Super-Real Fields: Totally Or­
dered Fields with Additional Structure, Oxford Science Publications, 
London Mathematical Monographs-New Series 14, Clarendon Press, 
Oxford, 1996. 

[17] Martin Davis, Applied Nonstandard Analsysis, Dover Publications, Inc., 
Mineola, New York, 2005. 

[18] B. Diarra, Ultraproduits ultramétriques de corpsvalués, Ann. Sci. Univ. 
Clermont II, Sér. Math., Fasc.  22 (1984), pp. 1-37. 

[19] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General The­
ory, Interscience Publishers, Inc. New York, 1958. 

[20] Yu.	 V. Egorov, A contribution to the theory of generalized functions 
(Russian). Uspekhi Mat Nauk (Moskva) 45, No 5 (1990), 3 - 40. English 
transl. in Russian Math. Surveys 45 (1990), p. 1–40. 

[21] Yu. V. Egorov,	 On generalized functions and linear differential equa­
tions Vestnik Moskov. Univ. Ser. I, (1990), No 2, p. 92–95. (Russian) 

[22] L. Ehrenpreis,	 Solutions of some problems of division III, Amer.  J.  
Math., 78 (1956), p. 685. 

[23] P. Erdös, L. Gillman and M. Henriksen, An Isomorphism Theorem for 
Real-Closed Fields, Annals of Mathematics, Vol. 61, No. 3, May 1955, 
p. 542–560. 

[24] R. Estrada and R. P. Kanwal, Asymptotic Analysis: A Distributional 
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