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Abstract. A multiscale image registration technique is presented for the reg­

istration of medical images that contain significant levels of noise. An overview 
of the medical image registration problem is presented, and various registration 
techniques are discussed. Experiments using mean squares, normalized corre­

lation, and mutual information optimal linear registration are presented that 
determine the noise levels at which registration using these techniques fails. 
Further experiments in which classical denoising algorithms are applied prior 
to registration are presented, and it is shown that registration fails in this case 
for significantly high levels of noise, as well. The hierarchical multiscale image 
decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and 
accurate registration of noisy images is achieved by obtaining a hierarchical 
multiscale decomposition of the images and registering the resulting compo­

nents. This approach enables successful registration of images that contain 
noise levels well beyond the level at which ordinary optimal linear registration 
fails. Image registration experiments demonstrate the accuracy and efficiency 
of the multiscale registration technique, and for all noise levels, the multi-

scale technique is as accurate as or more accurate than ordinary registration 
techniques. 

1. Introduction. Often in image processing, images must be spatially aligned to 
allow practitioners to perform quantitative analyses of the images. The process 
of aligning images taken, for example, at different times, from different imaging 
devices, or from different perspectives, is called image registration. More precisely, 
image registration is the process of determining the optimal spatial transformation 
that maps one image to another. Typically, two images are taken as input, and 
the registration process is then the optimization problem which determines the 
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geometric mapping that brings one image into spatial alignment with the other 
image. In practice, the particular type of transformation as well as the notion of 
optimal will depend on the specific application. 

Examples of applications in which image registration is particularly important 
include astro- and geophysics, computer vision, remote sensing, and medicine. In 
this paper, we will focus on medical image registration. Image registration plays an 
important role in the analysis of medical images. For example, images taken from 
different sensors often contain complementary information. By bringing the two 
images into alignment so that anatomical features of one modality can be detected 
in the other modality, the information from the different modalities can be com­
bined. In neurosurgery, for example, tumors are typically identified and diagnosed 
using magnetic resonance images (MRI), but stereotaxy technology (the use of sur­
gical instruments to reach specified points) generally uses computed tomography 
(CT) images. Registration of these modalities allows the transfer of coordinates 
of tumors from the MRI images to the CT images. See [14] for a discussion of 
the applications of multimodality imaging to problems in neurosurgery. As an­
other example, medical image data acquired prior to diagnosis can be compared 
with data acquired during or after treatment to determine the effectiveness of the 
treatment. To compare images taken at different times, however, the images must 
first be brought into spatial alignment so that actual differences in the data can be 
distinguished from differences that result from the image acquisition process. 

In the context of medical imaging, the goal of the registration process is to remove 
artificial differences in the images introduced by patient movement, differences in 
imaging devices, etc., but at the same time, to retain real differences due to actual 
variations of the objects. Medical images, however, often contain significant levels 
of noise due to instrumentation imperfections, data acquisition techniques, image 
reconstruction methods, transmission and/or compression errors, and other factors. 
Although numerous successful image registration techniques have been published, 
we will see that ordinary image registration algorithms can fail to produce mean­
ingful results when one or both of the images to be registered contains significant 
levels of noise. 

Since noise is generally present in digital images, image denoising is a funda­
mental problem in image processing. Indeed, many approaches to image denoising 
have been presented. Thus a simple solution to the problem of image registra­
tion in the presence of noise would be to first apply a denoising algorithm to the 
noisy image(s), and then use existing image registration techniques to register the 
denoised images. However, common denoising algorithms, most notably spatial fil­
tering algorithms, have the disadvantage that while they are successful in removing 
noise, they often remove edges as well. Additionally, most denoising procedures 
require a priori knowledge of the noise level, variance, and/or model, information 
not typically known in practice. For these and other reasons, we will demonstrate 
that ordinary image registration of noisy images fails to produce acceptable results 
even when classical denoising algorithms are applied to the noisy images prior to 
registration (for significantly high levels of noise). Moreover, even more advanced 
denoising techniques such as anisotropic diffusion (which was designed to remove 
noise while preserving edges) will be shown to fail to register noisy images. Thus, 
we seek a technique that enables successful image registration when one or both of 
the images to be registered is noisy. 



Generally, we would like to consider an image f consisting of coarse and fine 
scales. The general shape and main features of an image are considered the coarse 
scales, and details and textures, such as noise, are the fine scales of the image. 
Separating the coarse and fine scales of an image, therefore, is an effective tool in 
denoising. Indeed, several denoising algorithms have been proposed using separa­
tion of the coarse and fine scales of an image, most notably [19], [18], [11], and [20]. 
The method presented in [20] presents a multiscale technique in which an image 
f is decomposed in a hierarchical expansion f ∼ Σj uj , where the uj (called the 
components of f relative to the decomposition) resolve edges of f with increasing 
scales. More precisely, for small k, the sum Σk

j uj is a coarse representation of the 
image f , and as k increases, the sum captures more and more detail (and hence, 
noise) of the image. 

In this paper, we present a multiscale image registration technique based on the 
multiscale decomposition of [20] that is particularly effective when one or both of 
the images to be registered contains significant levels of noise. Since the hierarchi­
cal expansion f ∼ Σj uj decomposes the image f into components which contain 
increasingly fine scales, we expect a component-wise registration algorithm to pro­
duce accurate results for noisy images. That is, given a noisy image f , for small 
values of k, the component Σk

j uj retains the general shape of the image f while 
removing the details and noise of the image. Thus, if we wish to register the im­
age f with another image, say g, we expect that registration of the components 
Σk

j uj with g will provide an accurate estimation of the actual transformation that 
brings the two images into spatial alignment with one another, for sufficiently small 
values of k. Similarly, if both f and g are noisy, we expect decomposing both im­
ages and performing component-wise registrations should accurately estimate the 
optimal transformation. We will demonstrate that multiscale image registration 
enables successful image registration for images that contain levels of noise that are 
significantly higher than the levels at which ordinary registration fails. 

This paper is organized in the following way. In Section 2, we discuss the image 
registration problem and review standard image registration techniques. In Sec­
tion 3, we present the problem of image registration in the presence of noise, and 
illustrate the failure of current techniques when one or both of the images to be 
registered contains high levels of noise. In Section 4, we briefly discuss classical 
and modern denoising techniques, and illustrate the failure of ordinary image reg­
istration of noisy images even when the images are denoised prior to registration. 
In Section 5, we review the multiscale image decomposition of [20], and illustrate 
the results of the hierarchical multiscale decomposition obtained upon applying the 
algorithm to noisy images. In Section 6, we present image registration techniques 
based upon the multiscale decomposition described in Section 5, and in Section 7, 
we present the results of our multiscale image registration experiments. 

2. The registration problem. Given a fixed and moving image, the registration 
problem is the process of finding an optimal transformation that brings the moving 
image into spatial alignment with the fixed image. While this problem is easy to 
state, it is difficult to solve. The main source of difficulty is that the problem is ill-
posed, which means, for example, that the problem may not have a unique solution. 
Additionally, the notion of optimality may vary for each application: for example, 
some applications may require consideration only of rigid transformations, while 
other applications require non-rigid transformations. Finally, computation time 



and data storage constraints place limitations on the complexity of models that can 
be used for describing the problem. This following discussion of image registration 
follows the presentation in [12]. 

2.1. The mathematical setting. A two-dimensional gray-scale image f is a map­
ping which assigns to every point x ∈ Ω ⊂ R2 a gray value f(x) (called the intensity 
value of the image at the point x). We will consider images as elements of the space 
L2(R2). Color images can be defined, for example, in terms of vector-valued func­
tions f = (f1, f2, f3) representing the RGB-color scales. For the medical imaging 
applications that we are interested in, images are in fact given in terms of discrete 
data, and the function f must be obtained by interpolation. We will not discuss 
this construction here, but we will assume that an interpolation method has been 
chosen. 

Image registration is necessary, for example, for two images of the same object 
that are not spatially aligned. This occurs when the images are taken at different 
times, from different perspectives, or from different imaging devices. The basic 
input data to the registration process are two images: one is defined as the fixed 
image f(x) and the other as the moving image m(x). The goal is then to find a 
transformation φ such that the fixed image f(x) and the deformed moving image 
mφ(x) := m(φ(x)) are similar. To solve this problem in a mathematical way, the 
term similar needs to be defined appropriately. For example, if the images to 
be registered are taken from different devices, there may not be a correspondence 
between the intensities f(x) and mφ(x) for an optimal φ. Additionally, we may 
consider measures of similarity between the images which are not related to the 
intensities. Thus, the registration problem necessarily involves a discussion of the 
distance measures, or metrics, used to compare images. The general problem can 
then be stated as follows. 

Given a distance measure D : (L2(R2))2 → R and two images f(x),m(x) ∈ 
L2(R2), the solution φ of the registration problem is given by the following mini­
mization problem: 

φ = argmin D(f, mψ). (1) 
ψ:R2 →R2 

In many applications, the set of allowable transformations to be considered in 
the minimization problem (1) is restricted to a strict subset of the set of all maps ψ : 
R2 → R2 . For example, we may require the transformation φ to be smooth, or we 
may impose specific parametric requirements, such as requiring the transformation 
to be rigid, affine, polynomial, etc. 

2.2. Landmark-based registration. Landmark-based registration is an image 
registration technique based on a finite set of image features. The problem is to 
determine the transformation such that for a finite set of features, any feature of 
the moving image is mapped onto the corresponding features of the fixed image. 
More precisely, let F (f, j) and F (m, j), j = 1, . . . , m be given features of the fixed 
and moving images, respectively. The solution φ of the registration problem is then 
a map φ : R2 → R2 such that 

F (f, j) = φ(F (m, j)), j = 1, . . . m. (2) 
For a more general notion of landmark-based registration, we define the following 

distance measure: 



m

DLM (φ) := 
� 

||F (f, j) − φ(F (m, j)||2 
l , (3) 

j=1 

where || · ||l denotes a norm on the landmark, or feature, space. For example, if 
the features are locations of points, then || · ||l = || · ||R2 . We can then restate (2) 
as the minimization problem in which the solution φ : R2 → R2 of the registration 
problem is given by: 

DLM (ψ).φ = argmin (4) 
ψ:R2→R2 

To solve this minimization problem, the transformation either is chosen to be an 
element of an n-dimensional space spanned, for example, by polynomials, splines, 
or wavelets, or it is required to be smooth in some sense. In the first case, the 
features to be mapped are the locations of a number of user-supplied landmarks. 
Let χk, k = 1, . . . n be the basis functions of the space. Then the minimization of 

m

DLM (φ) := 
� 

||F (f, j) − φ(F (m, j)||2 
l 

j=1 

can be obtained upon expanding φ = (φ1, φ2) in terms of the basis functions χk 

and solving the resulting least squares problems. 
In the case in which we require the transformation φ to be smooth, we introduce 

a functional which imposes smoothness restrictions on the transformation. That is, 
we look for a transformation φ which interpolates the features F (f, j) and F (m, j), 
and which is smooth in some sense. Such a transformation is called a minimal norm 
solution, and it turns out (see [8]) that the solution can be expressed in terms of 
radial basis functions. 

Landmark-based registration is simple to implement, and the numerical solution 
requires only the solution of a linear system of equations. However, the main draw­
back of the landmark-based approach is that the registration process depends on 
the location of the landmarks. As the detection and mathematical characteriza­
tion of landmarks (for example, anatomical landmarks in medical images) is not 
fully automated, the landmarks must be user-supplied, and this can be a time-
consuming and difficult process, even for a medical expert; see, for example, [17]. 
Additionally, landmark-based registration does not always results in a physically 
meaningful registration. See [12, p. 44], for a simple example of a situation in 
which landmark-based registration fails to produce meaningful results. 

2.3. Principal-axes-based registration. Principal-axes image registration is based 
on the idea of landmark-based registration, but it uses features that can be automat­
ically detected. These features are constructed as follows. For an image f : R2 → R, 
and a function g : R2 → R, we define the expectation value of g with respect to f 
by 

�
R2 g(x)f(x) dx 

Ef (g) := . (5)�
R2 g(x) dx 

If u : R2 → Rm×n, we set Ef (u) := Ef [uj,k] ∈ Rm×n . The center of an image f is 
defined by 

Cf := Ef [x] ∈ R2 , (6) 



and the covariance by 

Covf := Ef [(x − Cf )(x − Cf )T ] ∈ R2×2 . (7) 

Given fixed and moving images, f(x) and m(x), the centers cf and cm and 
eigendecompositions of the covariance matrices Covf and Covm are used as the 
features Fi, and the registration problem is to compute φ : R2 → R2 such that 
Fi(m(φ)) = Fi(f) for the features Fi. 

This method is described in detail in [1]. The principal-axes method of image 
registration has the advantages that it is computationally fast and simple and re­
quires few registration parameters, but has the disadvantages that it is not suitable 
for images of multiple modalities and that the solutions may be ambiguous. In par­
ticular, the principal-axes-based method cannot distinguish between images with 
the same center and covariance, even though images with very different structure 
and orientation may have the same center and/or covariance. 

2.4. Optimal parametric registration. An alternative approach to registration 
is to use methods that are based on the minimization (or maximization) of some 
distance measure, or metric, D. The transformation φ is restricted to some param­
eterized space, and the registration can be obtained by minimizing (or maximizing) 
the distance D over the parameterized space. In particular, we will discuss metrics 
based on intensity, correlation, and mutual information. Given a metric D, a fixed 
image f , and a moving image m, optimal parametric registration is the problem of 
finding a transformation φ in some pre-specified parameterizable space such that 
D(f, m(φ)) is minimized (or maximized in certain cases). Examples of commonly 
used parameterizable spaces in image registration are polynomial and spline spaces. 
We will primarily be interested in rigid and affine linear transformations. An affine 
linear map is a map of the form φ(x) = Ax + b, A ∈ R2×2, det A > 0, b ∈ R2 . 
Such a map allows rotations, translations, scales, and shears of the coordinates. A 
translation (or rigid) transformation is a special case of an affine transformation 
which allows only rotations and translations of the coordinates, and in this case, 
the matrix A is required to be orthogonal with determinant 1. Optimal parametric 
registration is probably the most commonly used image registration technique. 

To minimize D(f, m(φ)), we must choose an optimization technique. That is, an 
optimal parametric registration technique is described by a metric to be minimized 
(or maximized) and an optimizer which controls the minimization (or maximiza­
tion). The implementation of the registration algorithm works in the following 
way: at each iteration, the distance D between the two images is computed. An 
affine transformation is then applied to the moving image, and the distance between 
the images is recomputed. In theory, this process continues until the distance is 
minimized (or maximized), though in practice there is some stopping criterion. 

At each stage, the optimizer determines the parameters of the transformation 
that will be applied to the moving image. Examples of commonly used optimiz­
ers include gradient descent and regular step gradient descent. Gradient descent 
optimization advances the parameters of the transformation in the direction of the 
gradient, where the step size is governed by a user-specified learning rate. Regular 
step gradient descent optimization advances the parameters of the transformation 
in the direction of the gradient where a bipartition scheme is used to compute the 
step size. 



� 

� 

� � 

2.4.1. The mean squares metric. The mean squares metric computes the mean-
squared pixel-wise difference in intensity between two images f and m: 

N

N 
i=1 

1 
MS(f, m) := (fi − mi)2 , (8) 

where N is the total number of pixels considered, fi is the ith pixel of image f , and 
mi is the ith pixel of image m. Note that the optimum value of the mean squares 
metric is 0, and poor matches between the images f and m result in large values of 
MS(f, m). This metric has the advantage that it is computationally simple. It is 
based on the assumption that pixels in one image should have the same intensity 
as (spatially) corresponding pixels in the second image. Thus, the mean squares 
metric is restricted in practice to images of the same modality. 

2.4.2. The normalized correlation metric. The normalized correlation metric com­
putes pixel-wise cross-correlation and normalizes it by the square root of the auto-
correlation function: 

N


i=1
NC(f, m) := − , (9)� 
N N

(fi · mi) 

f2 
i · m2 

i 
i=1 i=1 

where N , fi, and mi are as defined for the mean squares metric. The negative 
sign in (9) causes the optimum value of the metric to occur when the minimum is 
reached. Thus the optimal value of the normalized correlation metric is -1. As with 
the mean squares metric, the normalized correlation metric is restricted to images 
of the same modality. 

2.4.3. The mutual information metric. Mutual information is an information-theoretic 
approach to image registration that was proposed independently by Viola and Wells 
[22] and Collignon et al. [4] in 1995. The idea is that mutual information computes 
the amount of information that one random variable (here, image intensity) gives 
about another random variable (here, intensity values of another image). More 
precisely, given a fixed image f(x) and a moving image m(x), we wish to compute 
the transformation φ which maximizes the mutual information; i.e., 

φ = arg max I(f(x),m(φ(x))). (10) 
ψ 

Maximization of the mutual information criterion assumes that the statistical de­
pendence between corresponding image intensity values is maximized when the 
images are geometrically aligned. 

The mutual information I(f(x),m(φ(x)) is defined in terms of entropy, where 
we consider x as a random variable over coordinate locations in the coordinate 
system of the fixed image. Let h(·) denote the entropy of a random variable: 
h(x) := − 

� 
p(x) ln p(x) dx, where p(x) is the probability density function of the 

random variable x. Note that it is not clear how to construct p(x); we will discuss 
methods for estimating the probability densities. The joint entropy of two random 
variables x and y is given by h(x, y) = − 

� 
p(x, y) ln p(x, y) dx dx, where p(x, y) is 

the joint probability density function of the random variables x and y. Entropy can 
be considered as a measure of the uncertainty or complexity of a random variable. 



If x and y are independent, then p(x, y) = p(x)p(y), so h(x, y) = h(x) + h(y). 
However, if there is any dependency (as would be the case if x and y are intensity 
values of images of the same object), then h(x, y) < h(x) + h(y). The difference is 
defined to be mutual information: 

I(f(x),m(φ(x))) = h(f(x)) + h(m(φ(x)) − h(f(x),m(φ(x))). (11) 

The terms in (11) can be interpreted in the following way. The first term, 
h(f(x)), is the entropy of the fixed image and is independent of the transformation 
φ. The second term, h(m(φ(x))), is the entropy of m(φ(x)), so maximization of 
mutual information encourages transformations φ for which m(φ(x) has a high level 
of complexity or uncertainty. The third term −h(f(x),m(φ(x))) is the negative joint 
entropy of f(x) and m(φ(x)), so maximization of mutual information is related to 
minimization of the joint entropy of f(x) and m(φ(x)). A detailed overview of 
mutual information based registration can be found in [16]. 

Mutual information has the following properties. Let u(x) and v(x) denote two 
images. 

1.	 I(u(x), v(x)) = I(v(x), u(x)). Mutual information is symmetric. 
2.	 I(u(x), u(x)) = h(u(x)). The information an image contains about itself is 

equal to the entropy of the image. 
3.	 I(u(x), v(x)) ≤ h(u(x)) and I(u(x), v(x)) ≤ h(v(x)). The information that 

the images contain about each other can not be greater than the information 
contained in the individual images. 

4.	 I(u(x), v(x)) ≥ 0. 
5.	 I(u(x), v(x)) = 0 if and only if u(x) and v(x) are independent. If the images 

u(x) and v(x) are independent, no information about one image is gained 
when the other image is known. 

The entropies in equation (11) are defined in terms of integrals over the prob­
ability densities associated with the images f(x) and m(x). However, in a typical 
medical image registration problem, the probability densities are not directly ac­
cessible, and thus must be estimated from the image data. Parzen windowing, 
described in [5] and used in [22], is a common technique for density estimation. In 
this method, continuous density functions are constructed by a super-position of 
kernel functions K(·) centered at the elements of a sample of intensities taken from 
the image. The estimation of the probability density p(z) is thus given by 

1 
p(x) ∼= P �(z) = 

� 
K(z − zj ),	 (12)

NS 
zj ∈S 

where NS is the number of spatial samples in S and K is an appropriately chosen 
kernel function. The kernel function K must be smooth, symmetric, have zero 
mean, and unit mass. Examples of suitable candidates for K include the Gaussian 
density and the Cauchy density. In [22], Viola and Wells use a Gaussian density 
function with standard deviation σ to estimate the probability density functions. 
The optimal value of σ depends on the particular images to be registered. 

Upon estimating the probability densities using the Parzen windowing technique, 
the entropy integral h(z) = − 

� 
p(z) ln(p(z)) dz must be evaluated, for example, by 

using a sample mean: 



1 
h(z) ∼= − 

� 
ln(P �(zj )), (13)

NR 
zj ∈R 

where R is a second sample of intensities taken from the image. That is, two 
separate intensity samples S and R are taken from the image. The first is used to 
estimate the probability density, and the second is used to approximate the entropy. 

The main advantage of the mutual information measure is that was shown to be 
generally applicable for multi-modality registration, whereas intensity-based mea­
sures are typically not applicable for multimodality registration. Mutual informa­
tion registration has been successfully used for a number of complex applications. 
Most notably, mutual information has been shown to be highly accurate for MRI­
CT registration; see, for example, [9], [15], and [21]. 

2.5. Non-parametric image registration. All of the image registration tech­
niques that we have discussed so far have been based on certain parameters. For 
example, either the transformation φ can be expanded in terms of basis functions 
that span a specified finite-dimensional space, or the registration is controlled by 
a specified set of external features. Non-parametric techniques do not restrict the 
transformation to a parameterizable set. Given two images, a fixed image f(x) and 
a moving image m(x), we seek a transformation φ such that m(φ(x)) is similar to 
f(x) in a certain sense. Upon defining a suitable distance measure D, the registra­
tion problem is then to minimize the distance between m(φ(x)) and f(x). However, 
a direct minimization is often not possible in the non-parametric case. The prob­
lem is ill-posed: small changes in the input data may lead to large changes in the 
output. Additionally, the solution is not unique. Given these constraints, a stable 
numerical implementation is often impossible. To circumvent these problems, a 
regularizing, or smoothing, term S is introduced, and the registration problem be­
comes the minimization of the distance between m(φ(x)) and f(x) plus a smoothing 
term S(φ). That is, the registration is based on a regularized minimization of the 
distance between the images. 

In the discussion of non-parametric image registration, the transformation φ : 
R2 → R2 is split into the trivial identity part and the deformation or displacement 
part u; i.e., 

φ(x) = x − u(x). (14) 

Upon decomposing φ in this way, we have m(φ(x)) = m(x − u(x)) := mu(x). 
Given a distance D and a smoother S, the elastic registration problem is then the 
minimization of D(f(x),mu(x)) + αS(u), where α ∈ R is a positive regularizing 
parameter. 

The choice of smoother S typically depends on the particular application. Ex­
amples of non-parametric image registration techniques include elastic registration 
[3], fluid registration [2], and diffusion registration [6]. Elastic registration uses 
linear elasticity theory to model the deformation of an elastic body. In this case, 
the regularizing term S(u) is the linearized elastic potential of the displacement u. 
In fluid registration, the regularization is based on the linearized elastic potential 
of the time derivative of u. Finally, diffusion registration uses a regularization that 
is based on spatial derivatives of the displacement. 

Remark. In this section, we presented a brief overview of the major image 
registration techniques currently used in image registration. In practice, the best 



Image I: Brain Proton Density Slice Translated Image T

registration method for a given set of images will depend on the particular features 
of the images themselves. However, numerous studies comparing the accuracy and 
performance of different image registration techniques for various applications have 
been presented. The most extensive of these is [24], which originally consisted of a 
comparison of 16 methods but has since been substantially expanded. 

3. Registration in the presence of noise. In this section, we study the effect of 
noise on image registration, and we determine the approximate noise level at which 
registration fails. This study is conducted on the brain proton density slice images 
shown in Figure 1 below. The image on the right is the result of translating the 
image on the left by 13 mm to the right in the X-direction and 17 mm downward 
in the Y -direction. Let I denote the original image, and let T denote the translated 
image. 

Figure 1. Original image I and translated image T . 

Initially, we will consider the registration problem in which one of the images 
(here, the fixed image) is noisy. We will add increasing levels of noise to the image 
I and register the non-noisy translated image T with the noisy images. Our goal 
is to determine the approximate noise levels at which various image registration 
techniques fail, and to develop an algorithm that will enable registration beyond 
these levels. Since we know the exact transformation that brings T into spatial 
alignment with I, we can effectively evaluate and compare the accuracy of vari­
ous registration techniques. We will demonstrate that our multiscale registration 
technique enables accurate registration of the translated image T with images that 
contain significant levels of noise. Eventually, we will also apply our techniques to 
the case in which both the fixed and the moving images contain high levels of noise. 
Before we present these results, we discuss the notion of noise in some detail. 

Remark. In this paper we present the results only for registration experiments 
using the images I and T shown in Figure 1. We have performed numerous ex­
periments using other images, and we obtained results similar to those presented in 
this paper. For the sake of brevity, we limit the results presented in this paper to 
the experiments using the images in Figure 1. 

3.1. Noise. Digital images are often degraded by random noise. In imaging, the 
term noise refers to random fluctuations in intensity values that occur during image 
capture, transmission, or processing, and that may distort the information given by 



Additive 
 Gaussian noise

Multiplicative
speckle noise Impulse noise

the image. Image noise is not part of the ideal signal and may be caused by a wide 
range of sources, such as detector sensitivity, environmental radiation, transmission 
errors, discretization effects, etc. Noise is generally classified as either independent 
noise or noise which is dependent on the image data. 

Independent noise can often be described by an additive noise model, in which 
the observed image f(x) is the sum of the true image s(x) and the noise n(x): 

f(x) = s(x) + n(x). (15) 

Within this framework of additive noise, the noise n(x) is commonly modeled by 
Gaussian noise of mean m and variance v. A multiplicative noise model describes 
noise that is dependent on the image data. This is often referred to as speckle noise: 

f(x) = s(x) + s(x)n(x) = s(x)(1 + n(x)). (16) 

In this case, n(x) is uniformly distributed random noise with mean m and variance 
v. Impulse noise, or salt-and-pepper noise, is noise that resembles salt and pepper 
granules randomly distributed over the image. Impulse noise is typically defined 
by the following model. We let s(x) denote the actual image, and f(x) denote the 
observed image. Then 

�
s(x), with probability 1 − δ, 

f(x) = (17)
η(x), with probability δ, 

where η(x) is an identically distributed, independent random process. With this 
model, an arbitrary pixel x ∈ Ω ⊂ R2 is affected by noise with probability δ, 
and not affected with probability 1 − δ. We will refer to δ as the impulse noise 
density, as adding impulse noise of density δ to an image f(x) affects approximately 
δ · size(f) pixels. The random process η(x) is typically such that the corrupted 
pixels are either set to the maximum value, have single bits flipped over, or are set 
alternatively to zero or to the maximum value. This last case results in a salt-and­
pepper appearance. Note that unaffected pixels always remain unchanged. 

In Figure 2, we add additive Gaussian noise of mean 0 and variance 0.2, multi­
plicative speckle noise of mean 0 and variance 0.2, and impulse noise of density 0.2 
to the brain proton density slice image I. 

Figure 2. An illustration of the addition of various types of noise 
to the image I. 
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In this paper, we will study the problem of image registration in the presence of 
high levels of impulse noise. We will determine the impulse noise density level at 
which ordinary registration methods fail, and we will present a multiscale registra­
tion algorithm that enables accurate registration for noise levels higher than those 
at which ordinary methods fail. To study the effect of varying noise densities on 
the registration process, we add impulse noise of increasing densities δ to the brain 
proton density slice image I, and register the (non-noisy) translated image T with 
the noisy images. Let Iδ denote the image I with added impulse noise of density δ. 
In Figure 3, we illustrate the noisy images Iδ for increasing values of δ. 

Figure 3. An illustration of adding impulse noise of increasing 
densities δ to the image I. 

Remark. Although in this paper we present the results of image registration ex­
periments using only impulse noise, we have also conducted numerous experiments 
using other types of noise, including additive Gaussian noise and speckle noise. The 
results obtained with all other types of noise are similar. 

3.2. Registration results. For increasing noise densities δ, we register T with 
Iδ using various registration methods. Recall that the image T is the result of 
translating the original image I 13 units in X and 17 units in Y , and that Iδ is 
the result of adding uniform impulse noise of density δ to the image I. Since T 
is a rigid transformation of I, we will restrict the registration process to linear 
transformations; i.e., we will consider optimal linear registrations. The optimal 
transformation φ produced by the optimal linear registration process will consist of 
two parameters, namely X- and Y -translation values. We will let φX and φY denote 
the X- and Y -translation parameters, respectively, of the optimal transformation 
φ. For comparison purposes, we will perform the optimal linear registration using 
the mean squares, normalized correlation, and mutual information metrics. 

We use the following parameters for the registration algorithms. For the mean 
squares and normalized correlation registration algorithms, we use the regular step 
gradient descent optimizer. Due to the stochastic nature of the metric computation 
in the mutual information algorithm, the regular step gradient descent optimizer 
does not work well in the case of mutual information. Instead, we use the gradient 
descent optimizer with a user-specified learning rate of 20.0. See [7] for a detailed 



Table 1. The results obtained upon registering the translated im­
age T with the noisy image Iδ, where δ is the impulse noise density; 
φX and φY denote the X- and Y -translation values of the optimal 
transformation φ produced by the registration algorithm, and n is 
the number of iterations until convergence. The actual translation 
values are 13 units in X and 17 units in Y . 

Mean Normalized Mutual 
Squares Correlation Information 

δ φX φY n φX φY n φX φY n 
0.00 12.99 17.00 18 13.01 17.00 18 12.75 17.03 200 
0.10 12.99 17.01 28 12.99 17.01 20 12.83 16.88 200 
0.20 13.03 16.98 17 13.04 16.98 19 12.98 16.64 200 
0.30 12.97 17.03 28 13.02 17.02 11 13.02 17.02 200 
0.40 18.89 7.16 15 8.05 1.30 13 11.08 9.72 200 
0.50 2.16 7.06 19 9.09 2.18 8 9.72 7.12 200 
0.60 29.81 3.19 40 4.08 0.24 7 4.57 5.17 200 
0.70 2.08 1.14 13 3.11 2.13 12 3.08 2.86 200 

discussion of these parameters. Finally, we set the maximum number of iterations 
for each algorithm to 200. As we shall see, mean squares and normalized correlation 
registrations typically converge very quickly to the optimal value. Mutual infor­
mation, on the other hand, often does not actually reach the true optimal solution 
but instead oscillates within one or two pixels of the optimal solution (generally 
after 100-150 iterations). By reducing the learning rate, we can increase the likeli­
hood of convergence, but this increases the computation time significantly without 
improving the accuracy of the solution. 

For each of these three registration algorithms, and for each δ we record the X-
and Y -translation parameters, denoted by φX and φY , respectively, of the optimal 
transformation φ produced by the registration process. We also record the number 
of iterations n until convergence. The results are shown in Table 1. Recall that the 
actual translation values are 13 units in X and 17 units in Y . We also record the 
number of iterations until convergence, which we denote by n. 

The results presented in Table 1 indicate that optimal linear registration in the 
presence of impulse noise fails when the impulse noise density in the fixed image 
reaches approximately 0.40, regardless of the metric used. 

4. Denoising. 

4.1. Denoising techniques. In this section, we discuss various denoising tech­
niques. Image denoising is a fundamental problem in image processing, and there 
has been much research and progress on the subject. As our primary interest is not 
denoising but the problem of image registration of noisy images, we do not focus on 
the general problem of image denoising. Instead, we present a few of the most com­
mon and computationally simple denoising techniques. We will then apply these 
techniques to one of our noisy images and study the effect of denoising on the image 
registration techniques. In particular, in Section 3, we saw that ordinary optimal 
linear registration of noisy images failed when the impulse noise density was greater 
than 0.40. Also in this section, we shall determine whether or not denoising prior 
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to registration enables successful registration of noisy images for which registration 
failed previously. 

Spatial filtering is the traditional approach to removing noise from images. Spa­
tial filters use the assumption that noise occupies the higher regions of the frequency 
spectrum, and thus they attenuate high spatial frequencies. Local spatial filtering 
is a process in which the value of a given pixel in the filtered image is computed 
by applying some algorithm to the pixel values in a neighborhood of the given 
pixel. Typical implementations of spatial filters include mean filtering, median fil­
tering, and Gaussian smoothing. Mean filtering computes the value of each output 
pixel by computing the statistical mean of the neighborhood of the corresponding 
input pixel. Thus, applying a mean filter to a noisy image reduces the amount 
of variation in gray-level intensity between pixels. Although this filter is compu­
tationally easy to implement, it is sensitive to the presence of outliers. Median 
filtering, which computes the value of each output pixel by computing the statis­
tical median of the neighborhood of the corresponding input pixel, is more robust 
to the presence of outliers, and is thus commonly used for removing impulse noise 
from images. Convolution with a Gaussian kernel is another commonly used spatial 
filtering technique. See [23] for an overview of classical spatial filtering techniques. 

In Figure 4, we illustrate the effect of applying a mean, median, and Gaussian 
convolution filter to the noisy image I0.70, the brain proton density slice image with 
impulse noise of density 0.70. As is indicated in Figure 4, spatial filters smooth the 
data to remove noise but also blur edges. 

Figure 4. The results of applying mean, median, and Gaussian 
filters to the brain proton density slice image with impulse noise 
of density 0.70. 

More advanced denoising techniques that remove noise more effectively while 
preserving edges include wavelet-based methods [10], total variation methods [19], 
and PDE-based anisotropic diffusion methods [13], to name a few. Total variation 
denoising reduces the total variation of the image, and thus removes noise, textures, 
and fine-scale details while preserving edges. In Figure 5, we illustrate the effect 
of applying these denoising techniques to the noisy image I0.70, the brain proton 
density slice image with impulse noise of density 0.70. 

4.2. Registration results after denoising. In this section, we register the trans­
lated image T with the denoised images illustrated in Figures 4 and 5. As in Section 
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Figure 5. The results of applying the Osher-Rudin total variation 
and the Perona-Malik anisotropic diffusion denoising algorithms to 
the brain proton density slice image with impulse noise of density 
0.70. 

Table 2. The results obtained upon registering the translated im­
age T with the denoised images obtained upon applying median, 
mean, and Gaussian convolution filters to the noisy image I0.70. 
φX and φY are the X- and Y -translation values of the optimal 
transformation φ produced by the registration algorithm, n is the 
number of iterations until convergence. The actual translation val­
ues are 13 units in X and 17 units in Y . 

Mean Normalized Mutual 
Squares Correlation Information 

Denoising 
φX φY n φX φY n φX φY nTechnique 

Mean 
Filtering 

31.83 1.15 46 16.88 1.11 29 5.39 5.30 200 

Median 
Filtering 

18.87 1.26 31 2.38 6.90 34 4.39 4.06 200 

Gaussian 
Filtering 

18.86 -0.76 31 2.19 0.25 11 7.38 7.37 200 

Total 
Variation 

6.11 4.26 19 5.29 9.15 15 6.30 6.23 15 

Anisotropic 
Diffusion 

2.10 1.13 11 4.09 6.22 10 10.62 14.77 200 

3, we use mean squares, normalized correlation, and mutual information optimal 
linear registration. For each registration method, we let φ denote the optimal trans­
formation produced by the registration algorithm, and we let φX and φY the X-
and Y -translation parameters of the optimal transformation φ. We denote by n the 
number of iterations of each registration algorithm until convergence. We record 
the results in Table 2. The moving image in each case is the translated image T ; 
recall that the actual translation values are 13 in X and 17 in Y . 
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The results presented in Table 2 indicate that the application of some of the 
classical as well as modern denoising techniques prior to registration does not 
enable successful registration of the noisy image I0.70 with the translated image 
T . Although the more advanced denoising techniques such as total variation and 
anisotropic diffusion result in translation values that are closer to the actual values, 
particularly when mutual information registration is used, we conclude from Table 
2 that denoising prior to registration does not produce accurate registration results 
for images that contain high levels of noise. 

5. Multiscale decomposition. In this section, we present the multiscale image 
representation using hierarchical (BV, L2) decompositions of [20]. The multiscale 
decomposition will provide a hierarchical expansion of an image that separates the 
essential features of the image (such as large shapes and edges) from the fine scales of 
the image (such as details and noise). The decomposition is hierarchical in the sense 
that it will produce a series of expansions of the image that resolve increasingly finer 
scales, and hence will include increasing levels of detail. We will eventually apply 
the multiscale decomposition algorithm to the problem of image registration in the 
presence of noise, and will demonstrate the accuracy of the multiscale registration 
technique for noisy images such as those that were considered in Sections 3 and 4. 

We will use the following mathematical spaces in the decomposition algorithm. 
The space of functions of bounded variation, BV , is defined by 

BV = f ||f ||BV := sup |h|−1||f(· + h) − f(·)||L1 < ∞ . 
h �=0 

We will also use the Sobolev space W −1,∞ with norm given by: 
� � 

f(x)g(x) 
�

||f ||W −1,∞ := sup dx , 
g ||g||W 1,1 

where ||g||W 1,1 := ||�g||L1 . 

5.1. The hierarchical decomposition. Define the J-functional J(f, λ) as fol­
lows: 

J(f, λ) := inf λ||v||2 + ||u||BV , (18)L2 
u+v=f 

where λ > 0 is a scaling parameter that separates the L2 and BV terms. This 
functional J(f, λ) was introduced in the context of image processing by Rudin, 
Osher, and Fatemi [19]. They suggested the following. Let [uλ, vλ] denote the 
minimizer of J(f, λ). The BV component, uλ, captures the coarse features of the 
image f , while the L2 component, vλ, captures the finer features of f such as 
noise. This model is effective in denoising images while preserving edges, though it 
requires prior knowledge of the noise scaling λ. 

Tadmor, et al. propose in [20] an alternative point of view in which the mini­
mization of J(f, λ) is interpreted as a decomposition f = uλ +vλ, where uλ extracts 
the edges of f and vλ extracts the textures of f . This interpretation depends on the 
scale λ, since texture at scale λ consists of edges when viewed under a refined scale 
(2λ, for example). We refer to vλ = f − uλ as the residual of the decomposition. 
Upon decomposing f = uλ + vλ, we proceed to decompose vλ as follows: 

vλ = u2λ + v2λ, 



where 

[u2λ, v2λ] = arginf J(vλ, 2λ). 
u+v=vλ 

Thus, we obtain a two-scale representation of f given by f ∼= uλ + u2λ, where now 
v2λ = f − (uλ + u2λ) is the residual. Next we decompose v2λ and continue this 
process, which results in the following hierarchical multiscale decomposition of f . 
Starting with an initial scale λ = λ0, we obtain an initial decomposition of the 
image f : 

f = u0 + v0, [u0, v0] = arginf J(f, λ0). 
u+v=f 

We then refine this decomposition to obtain 

vj = uj+1 + vj+1, [uj+1, vj+1] = arginf J(vj , λ02j+1), j = 0, 1, . . . 
u+v=vj 

After k steps of this process, we have: 

f = u0 + v0 = u0 + u1 + v1 = u0 + u1 + u2 + v2 = . . . = u0 + u1 + . . . + uk + vk, 

which is a multiscale image decomposition f ∼ u0 +u1 + . . .+uk, with a residual vk. 
As k increases, the uk components resolve edges with increasing scales λk = λ02k . 

5.2. Implementation. 

5.2.1. Initialization. As described in [20], the initial scale λ0 should capture the 
smallest oscillatory scale in f , given by 

1 1 ≤ ||f ||W −1,∞ ≤ . (19)
2λ0 λ0 

However, in practice, we may not be able to determine the size of ||f ||W −1,∞ , so we 
determine the initial choice of λ0 experimentally. Following [20], for the applications 
presented in this paper, we will use λ0 = 0.01 and λj = λ02j . 

5.2.2. Numerical discretization. We follow the numerical algorithm of [20] for the 
construction of our hierarchical decomposition. In each step, we use finite-difference 
discretization of the Euler-Lagrange equations associated with the J(vj , λj+1) to 
obtain the next term, uj+1, in the decomposition of the image f . The Euler-
Lagrange equation associated with the minimization of the functional J(f, λ) given 
in equation (18) is 

1 
� �uλ 

� 

uλ − div = f,
2λ |�uλ|

with the Neumann boundary conditions: 

∂uλ = 0, (20)
∂n 

����
∂Ω 

where ∂Ω is the boundary of the domain Ω and n is the unit outward normal. 
k

We thus obtain an expansion f ∼ 
� 

uj , where the uj are constructed as ap­
j=0 

proximate solutions of the recursive relation given by the following elliptic PDE: 



� 

� 

� 

1 
� �uj+1 

� 
1 

� �uj 
� 

uj+1 − div = − div . (21)
2λj+1 |�uj+1| 2λj �|uj | 

Note that J(f, λ) contains a singularity when |�uλ| = 0. To remove this singu­
larity, we replace J(f, λ) by the regularized functional 

J�(f, λ) := inf 
�

λ||v||2 + 
� �

�2 + |�u|2 dx dy

� 

, (22)L2 
u+v=f Ω 

and at each step, we find the minimizer uλ of J� . The Euler-Lagrange equation for 
the regularized J� functional is 

1 
� 

�uλ 

� 

uλ − div = f ∈ Ω,
2λ 

�
�2 + |�uλ|2 

with Neumann boundary conditions. 
To numerically implement the method, we cover the domain Ω with a grid (xi := 

ih, yj := jh), and discretize the elliptic PDE of equation (21) as follows:. 

1 
� 

1 
� 

ui,j = fi,j + D−x D+xui,j2λ 
�

�2 + (D+xui,j )2 + (D0yui,j )2 

1 
� 

1 
� 

+ D−y D+y ui,j2λ 
�

�2 + (D0xui,j )2 + (D+yui,j )2 

1 ui+1,j − ui,j= fi,j + 
2h2 

�
�2 + (D+xui,j )2 + (D0yui,j )2 

ui,j − ui−1,j− �
�2 + (D−xui,j )2 + (D0yui−1,j )2 

1 
� 

ui,j+1 − ui,j+ 
2h2 

�
�2 + (D0xui,j )2 + (D+yui,j )2 

ui,j − ui,j−1− , (23)�
�2 + (D0xui,j−1)2 + (D−yui,j )2 

where D+, D−, and D0 denote the forward, backward, and centered divided dif­
ferences, respectively. To solve the discrete regularized Euler-Lagrange equations 
(24), we use the Gauss-Siedel iterative method to obtain: 



n+1 
i,j = fi,j + 

1 
2h2 

⎡
⎣ 

n n+1− uui+1,j�
�2 + (D+xu

i,j
u 

n n)2 + (D0yu )2 
i,j i,j ⎤

⎦ 
n+1 nu − ui,j i−1,j− 

n n
�

�2 + (D−xu )2 + (D0y u )2 
i,j i−1,j 

1 
2h2 

⎡
⎣ 

n n+1− uui,j+1 �
�2 + (D0xu

i,j+ 
n n)2 + (D+y u )2 
i,j i,j ⎤

⎦ . 
n+1 nu − ui,j i,j−1 �

�2 + (D0xu
(24)− 

n n)2 + (D−y u )2 
i,j−1 i,j 

To satisfy the Neumann boundary conditions (20), we first reflect f outside Ω 
0by adding grid lines on all sides of Ω. As the initial condition, we set ui,j = fi,j . 

n∞We iterate this numerical scheme for n = 0, 1, . . . N until ||u − un∞−1|| is less 
n∞than some preassigned value so that ui,j is an accurate approximation of the fixed 

point steady solution uλ. 
n∞Finally, we denote the final solution uλ := {u }i,j . To obtain the hierarchical i,j 

multiscale decomposition, we reiterate this process, each time updating f and λ in 
the following way: 

fnew ← fcurrent − uλ,
 

λnew ← 2λcurrent. (25)
 

That is, at each step, we apply the J(fcurrent −uλ, 2λ) minimization to the residual 
fcurrent − uλ of the previous step. Taking λj = λ02j , we obtain after k steps a 
hierarchical multiscale decomposition f = uλ0 + uλ1 + . . . + uλk + vλk , where we 
write uλj = uj . We call the uj , j = 1, 2, . . . , k the components of f and the vk the 
residuals. 

Example 1. Decomposition of a noisy image. We apply the hierarchical 
multiscale decomposition of [20] as described in Section 5 to the noisy image I0.70 

in Figure 3, using the following parameters: m = 12 hierarchical steps, λ0 = 0.01, 
λj = λ02j , � = 0.001, n = 10, and h = 1. In Figures 6 and 7, we illustrate 
the components uλj and the residuals vλj for this decomposition. Note that in 
each hierarchical step, an additional amount of texture is seen in the components. 
Further, the noise is not seen in the first few components, while most of the texture 
is kept, and the noise only reappears as the refined scales reach the same scales as 
the noise itself. Our goal is to use this multiscale decomposition to register the noisy 
image I0.70 with the translated image T . 

6. Multiscale registration. Consider again the noisy images Iδ shown in Figure 
3 with impulse noise of increasing densities δ. Recall that in Section 3, we demon­
strated that registration of the the translated image T with the noisy image Iδ 
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Figure 6. Multiscale decomposition of the noisy image I0.70 

shown in Figure 3. 

failed when δ ≥ 0.40, regardless of the metric used in the optimal linear registra­
tion process. Moreover, registration using these classical methods failed even after 
denoising the noisy image using various standard denoising techniques, as demon­
strated in Section 4. In this section, we present new methods for image registration 
that allow for a successful registration of the translated image T with the noisy 
images Iδ for values of the noise density δ significantly greater than the levels at 
which classical registration and registration after denoising fail. These registration 
techniques will be based on the hierarchical multiscale decomposition described in 
Section 5. 

Consider two images A and B, and suppose that we want to register image 
B with image A. Suppose that one or both of the images contains a significant 
amount of noise. If only one of the images is noisy, we assume that it is image 
A. We propose the following multiscale registration method. First, we apply the 
multiscale hierarchical decomposition to both images. Let m denote the number 
of hierarchical steps used for the multiscale decompositions. For ease of notation, 
given an image f , we let 

k

Ck(f) := 
� 

uλk (26) 
i=0 
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Figure 7. The residuals of the multiscale decomposition of the 
noisy image I0.70 shown in Figure 3. 

denote the kth component of the image f , k = 0, 1, . . . ,m − 1, obtained as in 
Section 5. Thus Ck(A) will denote the kth component of the image A, and Ck(B) 
will denote the kth component of image B. 

We will present two algorithms; in the first, we register image B with the com­
ponents of image A, and in the second, we register the components of image B with 
the components of image A. 

6.1. Algorithm I: One-node multiscale registration. In our first multiscale 
registration algorithm, we register image B with the kth component of A, for k = 
0, 1, . . . ,m − 1. This is illustrated by the schematic in Figure 8. 

We refer to this algorithm as a one-node multiscale registration algorithm because 
in each of the m registrations prescribed by the algorithm, the moving image is 
always the image B. We only use the multiscale components of the fixed image A 
for the one-node algorithm. 

Let φk denote the optimal transformation produced by the registration algorithm 
upon registering B with Ck(A), k = 0, 1, . . . , m−1. Recall that C0(A) contains only 
the coarsest scales of the image A, and as k increases, Ck(A) contains increasing 
levels of detail (and hence, noise) of the image A. Thus, we expect that registration 
of image B with Ck(A) should give an improvement compared to ordinary registra­
tion for the first few values of k. As k increases, however, we expect that eventually 
the component Ck(A) will become too noisy to give successful registration. 

Upon determining the transformations φk with a suitable registration algorithm 
(e.g., an optimal linear registration), we have several options for defining the optimal 
transformation Φ that should bring the image B into spatial alignment with the 
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Figure 8. This schematic represents a one-node multiscale image 
registration algorithm in which we register the moving image B 
with the kth component of the fixed image A, for k = 0, 1, . . . , m−1, 
where m is the number of hierarchical steps used for the multiscale 
decompositions. 

image A. The first option would be to take into account the registration parameters 
corresponding to the coarse scales only, i.e., the first few values of k, for which we 
expect a more accurate registration. Upon determining the number of registrations 
that we wish to take into account, we could then estimate Φ by averaging the 
registration parameters corresponding to those coarse scale registrations. A second 
option would be to define Φ as a weighted average of the φk; i.e., 

1 
m−1

Φ := 
� 

akφk, (27) 
m 

k=0 

where the weights ak are appropriately chosen non-negative real numbers such that 
Σak = m. For example, we could perform a statistical analysis on the registration 
parameters corresponding to the φk, and use the mean and standard deviation 
(or the mean and standard deviation of the first several values) to determine the 
weights ak. 

6.2. Algorithm II: Multi-node multiscale registration. In our second mul­
tiscale registration algorithm, we register the kth component of image B with the 
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Figure 9. This schematic represents a multi-node multiscale im­
age registration algorithm in which we register the kth component 
of the moving image B with the kth component of the fixed image 
A, for k = 0, 1, . . . , m − 1, where m is the number of hierarchical 
steps used for the multiscale decompositions. 

kth component of image A, for k = 0, 1, 2, . . . m − 1, as illustrated by the schematic 
in Figure 9. 
We refer to this algorithm as a multi-node multiscale registration algorithm because 
in each of the m registrations prescribed by the algorithm, we consider both the 
components of the fixed image A and the components of the moving image B. 

Let ψk denote the optimal transformation produced by the registration algorithm 
upon registering Ck(B) with Ck(A), k = 0, 1, . . . ,m − 1. As before, we expect that 
registration of Ck(B) with Ck(A) should give an improvement compared to ordinary 
registration for the first few values of k. As k increases, however, we expect that 
eventually the components Ck(A) and Ck(B) will become too noisy to register 
successfully. Since this algorithm considers components of both images, we expect 
that it will be particularly successful in the case in which both images are noisy. 

As in the case of the one-node multiscale registration algorithm, we can define 
the optimal transformation Ψ that should bring image B into spatial alignment 
with image A either by taking into account only the first few registration results 
corresponding to registration of the coarse scales, and averaging the registration pa­
rameters corresponding to these first few registrations, or by computing a weighted 
average: 



Table 3. The registration results upon registering T with I0.70 

using Algorithm I. Here, we use m = 12 hierarchical steps to de­
compose the noisy image, so we perform m = 12 registration sim­
ulations. The transformation parameters φX and φY are the X-
and Y -translation parameters of the optimal transformation φ pro­
duced by the registration algorithm. The actual translation values 
are 13 in X and 17 in Y . The moving image in all simulations is 
the translated image T . 

Mean Normalized Mutual 
Squares Correlation Information 

Fixed Image φX φY n φX φY n φX φY n 
I0.70 4.57 5.17 200 2.08 1.14 7 4.08 0.24 7 
C0(I0.70) 12.65 16.36 200 3.08 1.11 12 3.11 0.17 9 
C1(I0.70) 12.69 16.78 200 2.08 3.08 14 2.13 2.12 12 
C2(I0.70) 12.56 16.79 200 2.11 3.08 14 2.14 3.11 15 
C3(I0.70) 12.53 16.76 200 3.08 2.11 14 3.11 2.14 7 
C4(I0.70) 12.48 16.76 200 24.88 1.16 36 18.86 1.18 30 
C5(I0.70) 12.46 16.78 200 40.80 1.07 52 0.21 1.18 11 
C6(I0.70) 12.43 16.80 200 28.86 0.15 46 27.84 2.19 42 
C7(I0.70) 12.43 16.79 200 -2.87 4.11 15 0.18 3.14 12 
C8(I0.70) 12.43 16.74 200 25.89 3.12 40 -1.84 4.12 14 
C9(I0.70) 9.33 9.41 200 6.05 4.12 12 7.99 2.08 16 
C10(I0.70) 8.44 8.32 200 -3.92 8.12 21 4.09 3.15 16 
C11(I0.70) 6.96 6.46 200 8.97 6.13 13 3.65 1.17 27 

m−11 �
Ψ := bkψk, (28) 

m 
k=0 

where the weights bk are appropriately chosen non-negative real numbers such that 
Σbk = m. 

7. Examples of multiscale registration. 

7.1. A noisy fixed image. In this section, we use the multiscale registration tech­
nique described in Section 6 to register the translated (non-noisy) image T with the 
noisy image I0.70. Recall that I0.70 is the image obtained upon adding impulse noise 
of density 0.70 to the brain proton density slice image I. As before, let Ck(I0.70) de­
note the kth component in the multiscale decomposition of I0.70, for k = 0, 1, . . . m, 
obtained as in Section 6. We perform the multiscale decomposition using m = 12 
hierarchical steps, λ0 = 0.01, and λj = λ02j . In Table 3, we present the results 
of m = 12 registration simulations, obtained upon registering T with Ck(I0.70), 
k = 0, 1, . . . , 11, using Algorithm I of Section 6.1. For each registration, we let φ 
denote the optimal transformation produced by the registration algorithm, and we 
let φX and φY the X- and Y -translation parameters of the optimal transformation 
φ. The moving image in each registration is the translated image T . For reference, 
we also include in the first line of Table 3 the parameters obtained using ordinary 
registration. 



It is clear from the results presented in Table 3 that the results obtained us­
ing mean squares and normalized correlation methods are completely inaccurate. 
Thus, the one-node multiscale algorithm did not produce meaningful results for 
these metrics. For mutual information, however, the X and Y translation param­
eters are clustered around 12.5 units in X and 16.8 units in Y for k = 0, 1, . . . 8, 
but then are significantly different for the remaining values of k. We expected 
that the multiscale registration results would be an accurate approximation of the 
actual transformation Φ for small values of k, but then would deviate as k be­
came sufficiently large, because as k becomes large, increasing scales of detail (and 
hence, noise) appear in the component Ck. Thus, even without knowing the actual 
values of the X- and Y -translations, it makes sense to take into account only the 
parameters corresponding to the first 9 registrations (k = 0, 1, . . . 8). Averaging 
the translation parameters for the first 9 registrations, we obtain ΦX = 12.52 and 
ΦY = 16.73. Since the actual values are 13 in X and 17 in Y , we see that multi-
scale mutual information registration produced very accurate results in this case, 
and indeed is a significant improvement compared to ordinary registration as well 
as to classical and modern denoising followed by registration. 

Next, we provide the results obtained with Algorithm II by registering the multi-
scale components of the translated image T with the multiscale components of the 
noisy image I0.70. Let Ck(T ) and Ck(I0.70) denote the multiscale components of T 
and I0.70, respectively, obtained through the multiscale decomposition presented in 
Section 5. As before, we use m = 12 hierarchical steps, λ0 = 0.01, and λj = λ02j to 
perform the decomposition. In Table 4, we present the results of m = 12 registra­
tion simulations, obtained upon registering Ck(T ) with Ck(I0.70), k = 0, 1, . . . , 11. 
For each registration, we let ψ denote the optimal transformation produced by the 
registration algorithm, and let ψX and ψY denote the X- and Y -translation param­
eters of the optimal transformation ψ. For reference, we also include in the first 
line of Table 4 the parameters obtained using ordinary registration. 

To estimate the transform parameters ΨX and ΨY , we note that for mutual 
information, the translation parameters ψx and ψy are clustered together for the 
first 9 registrations, and for mean squares and normalized correlation, the values 
are clustered together for the first 2 registrations. Thus for mutual information we 
determine Ψ by averaging the parameters corresponding to the first 9 registrations, 
and for mean squares and normalized correlation, we average the first 2 values. 
In Table 5, we present the X- and Y -translation values corresponding to these 
averages. 

Remark.Since the actual translation values are 13 in X and 17 in Y , we see 
that the multinode multiscale registration of the translated image T with the noisy 
image I0.70 produces very accurate results for each of the three optimal linear regis­
tration metrics considered here (mean squares, normalized correlation, and mutual 
information). The main difference between the results obtained with Algorithm I 
and Algorithm II is the accurate registration of the coarse scales obtained with Al­
gorithm II. 

7.2. Noisy fixed and moving images. In this section, we consider the registra­
tion problem in which both the fixed and moving images are noisy. Consider the 
noisy images I0.40 and T0.40, where T , as before, is the result of translating I 13 
units in X and 17 units in Y , and Aδ denotes the image obtained by adding impulse 
noise of density δ to the image A. The noisy images are shown in Figure 10. 



Table 4. The registration results obtained with Algorithm II. 
Here we register the kth multiscale component Ck(T ) of the trans­
lated image T with the kth multiscale component Ck(I0.70) of the 
noisy image I0.70 obtained via the multiscale decomposition dis­
cussed in Section 5. Here, we use m = 12 hierarchical steps to 
decompose the noisy image, so we perform m = 12 registration 
simulations. The transformation parameters ψX and ψY are the 
X- and Y -translation parameters of the optimal transformation 
ψ produced by the registration algorithm. The actual translation 
values are 13 in X and 17 in Y . 

Mean Normalized Mutual 
Squares Correlation Information 

Fixed and 
Moving Images φX φY φX φY φX φY 

I0.70 and T 4.57 5.18 2.08 1.14 4.08 0.24 
C0(I0.70) and C0(T ) 12.69 16.66 12.29 17.72 12.96 17.08 
C1(I0.70) and C1(T ) 12.67 16.87 13.70 17.75 12.99 17.67 
C2(I0.70) and C2(T ) 12.59 16.86 20.77 5.20 16.84 4.31 
C3(I0.70) and C3(T ) 12.55 16.82 3.19 0.31 4.20 4.23 
C4(I0.70) and C4(T ) 12.52 16.83 2.20 2.24 26.74 5.18 
C5(I0.70) and C5(T ) 12.51 16.84 31.65 2.23 14.90 6.27 
C6(I0.70) and C6(T ) 12.49 16.87 30.69 6.16 19.87 4.29 
C7(I0.70) and C7(T ) 12.48 16.85 33.64 3.16 29.64 3.32 
C8(I0.70) and C8(T ) 12.53 16.71 28.81 3.22 1.26 1.29 
C9(I0.70) and C9(T ) 9.26 9.36 2.13 3.13 17.93 3.21 
C10(I0.70) and C10(T ) 8.80 8.61 2.12 3.12 32.63 3.14 
C11(I0.70) and C11(T ) 6.95 6.34 34.74 2.10 4.13 5.08 

Table 5. The translation parameters ΨX and ΨY obtained by 
averaging the parameters corresponding to the coarse scale reg­
istrations. The actual translation values are 13 in X and 17 in 
Y . 

Mean Normalized Mutual 
Squares Correlation Information 

ΨX 12.56 12.99 12.98 
ΨY 16.82 17.74 17.37 

Before applying our multiscale registration algorithm, we attempt to register 
T0.40 with I0.40 using the three registration methods mean squares, normalized 
correlation, and mutual information. The results shown in Table 6 indicate that 
registration of the noisy images fails, regardless of the metric used in the optimal 
linear registration algorithm. 

Since ordinary registration of the noisy images fails, we register the images using 
Algorithm II, the multi-node multiscale registration technique. First, we perform 
the multiscale decomposition discussed in Section 5 to both noisy images, again us­
ing m = 12 hierarchical steps, initial scale λ0 = 0.01, and λj = 2j λ0. Let Ck(I0.40) 
and Ck(T0.40) denote the kth component in the multiscale decomposition of I0.40 
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Figure 10. The original image I and translated image T with 
impulse noise of density δ = 0.40 

Table 6. The results of registering the noisy translated image 
T0.40 with the noisy image I0.40, using three different metrics. The 
actual translation values are 13 in X and 17 in Y . 

Registration Method φX φY 

Mean Squares 11.02 7.04 
Normalized Correlation 3.05 0.99 
Mutual Information 5.03 2.54 

and T0.40, respectively. Since both images are noisy, we register the kth component 
Ck(T0.40) with the kth component Ck(I0.40). For each registration simulation, de­
note by ψ the optimal transformation produced by the registration algorithm, and 
denote by ψX and ψY the corresponding X- and Y -translation parameters of the 
optimal transformation ψ. We present the results of this multiscale registration in 
Table 7. 

To estimate the transformation Ψ, for mutual information we average the pa­
rameters corresponding to registration of the first 7 scales. For mean squares, we 
average the results of the first 2 registrations, and for normalized correlation, we 
average the registration results from the first 4 registrations. In Table 8, we present 
the X- and Y -translation values ΨX and ΨY . 

Note that since the actual translation values are 13 in X and 17 in Y , our 
multiscale registration technique provides accurate results in the case in which 
both the fixed and moving images contain significant levels of noise. 

Remarks. 

1.	 For the sake of brevity, we presented only the multiscale registration results 
for registration of images that contain levels of noise greater than the level at 



Table 7. The results of registering T0.40 with I0.40 using Algo­
rithm II. Here, we use m = 12 hierarchical steps to decompose the 
noisy image, so we perform m = 12 registration simulations. The 
actual translation values are 13 in X and 17 in Y . 

Mean Normalized Mutual 
Squares Correlation Information 

Fixed 
Image 

Moving 
Image 

φX φY φX φY φX φY 

I0.40 T0.40 5.03 2.54 11.02 7.04 3.05 0.99 
C0(I0.40) C0(T0.40) 13.06 16.92 13.05 16.92 13.05 16.92 
C1(I0.40) C1(T0.40) 13.05 16.93 13.02 16.22 13.06 16.92 
C2(I0.40) C2(T0.40) 13.03 16.93 8.11 5.29 13.02 16.27 
C3(I0.40) C3(T0.40) 13.02 16.94 5.40 12.19 13.02 16.25 
C4(I0.40) C4(T0.40) 13.02 16.94 2.20 8.00 2.23 5.09 
C5(I0.40) C5(T0.40) 13.01 16.93 26.76 1.21 1.17 7.00 
C6(I0.40) C6(T0.40) 12.99 16.81 23.83 4.11 1.22 2.17 
C7(I0.40) C7(T0.40) 7.05 6.08 0.20 3.15 0.20 4.15 
C8(I0.40) C8(T0.40) 6.78 5.05 6.04 2.09 6.04 6.05 
C9(I0.40) C9(T0.40) 3.05 1.02 9.98 1.10 5.06 10.01 
C10(I0.40) C10(T0.40) 12.20 14.01 -1.97 0.99 -3.93 3.04 
C11(I0.40) C11(T0.40) 4.80 3.19 1.01 5.98 3.91 0.72 

Table 8. The translation parameters ΨX and ΨY for registration 
of T0.40 with I0.40 obtained by averaging the translation parameters 
of the coarse scale registrations. The actual translation values are 
13 in X and 17 in Y . 

Mean Normalized Mutual 
Squares Correlation Information 

ΨX 13.03 13.03 13.04 
ΨY 16.92 16.57 16.59 

which ordinary registration methods fail. However, we also performed mul­
tiscale registration simulations for noise densities lower than those presented 
here, and in all cases, the multiscale technique was either as accurate as or 
more accurate than ordinary registration techniques. 

2.	 The method of estimating the translation parameters in X and Y by averag­
ing the parameters corresponding to the coarse scale registrations is based on 
determining the scales that should be taken into consideration. For the results 
presented in this paper, as well as for all of the other simulations that we 
studied, we found a drastic jump in the translation parameters such as that 
between the eighth and ninth scales in the mutual information column of Table 
4. In such cases, the natural choice is to average the parameters correspond­
ing to the coarse scales before the jump, and to exclude the remaining values; 
indeed, in all cases considered for this study, we have found that estimating 
the parameters in this way yields extremely accurate results. More generally, 
we expect that for most problems of this type, there should be a noticeable jump 
in the multiscale registration parameters, thus enabling a determination of the 



coarse scales that should be averaged. This jump occurs because once a certain 
level of detail, and hence noise, appears in the scales, the registration process 
fails. More specifically, the optimization of the registration metric does not 
produce meaningful results if enough noise is present, and the registration pa­
rameters that result differ significantly from those that result from registration 
of images in which less noise is present. 

8. Summary. While there are many existing medical image registration tech­
niques, common approaches are shown to fail to give accurate results when one 
or more of the images to be registered contains high levels of noise. Further, if the 
noise level is significantly high, image registration can fail even when a denoising 
algorithm is applied to the noisy images before registration. We have presented 
an image registration technique based on the hierarchical multiscale decomposition 
of [20] of the images to be registered. The multiscale decomposition of an image 
results in a hierarchical representation that separates the coarse and fine scales of 
the image. Upon obtaining the decomposition of one or both of the images to be 
registered, we register the components of the moving image with the components of 
the fixed image. Since the coarse scale components of an image contain the essen­
tial features and shapes of the image, registration of the coarse scale components 
of the moving image with the coarse scale components of the fixed image provides 
an accurate estimate of the actual transformation that brings the moving image 
into spatial alignment with the fixed image. Using images in which the precise 
transformation that maps one to the other is known, we have shown that the mul­
tiscale approach is indeed accurate for levels of noise much higher than the noise 
levels at which ordinary optimal linear registration and denoising prior to ordinary 
registration methods fail; moreover, for all levels of noise, the multiscale technique 
either matches or outperforms ordinary registration techniques. Finally, we hope to 
extend these techniques to other image registration problems in which ordinary reg­
istration techniques are not successful due to degradation or other factors present 
in the images to be registered. 
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