
CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly
The q-exponential generating function for permutations
by consecutive patterns and inversions

Don Rawlings

Abstract

The inverse of Fedou’s insertion-shift bijection is used to deduce a general form for the q-exponential
generating function for permutations by consecutive patterns (overlaps allowed) and inversion number
from a result due to Jackson and Goulden for enumerating words by distinguished factors. Explicit
q-exponential generating functions are then derived for permutations by the consecutive patterns 12 . . .m,
12 . . . (m 2)m(m 1), 1m(m 1) . . .2, and by the pair of consecutive patterns (123,132).

1. Introduction

Denoting the set of permutations of {1,2, . . . , n} by Sn, let σ = σ1σ2 . . . σn ∈ Sn and p ∈
Sm with m � n. For i � n − m + 1, σiσi+1 . . . σi+m−1 is said to be a consecutive pattern p

if σ iσ i+1 . . . σ i+m−1 = p where, for 0 � k � m − 1, σ i+k denotes the number of elements in
the set {σi, σi+1, . . . , σi+m−1} that are less than or equal to σi+k . For example, p = 132 ∈ S3

occurs consecutively twice in σ = 14253 ∈ S5: σ 1σ 2σ 3 = 142 = 132 and σ 3σ 4σ 5 = 253 = 132.
The two consecutive occurrences of p = 132 in σ = 14253 overlap in the sense that σ3 = 2 is
common to both.

A number of results for the enumeration of permutations by consecutive patterns have recently
been discovered. Kitaev [7,8] determined a formula that related the exponential generating func-
tion for permutations by the maximal number of nonoverlapping consecutive occurrences of any
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pattern p to the exponential generating function for permutations having no consecutive occur-
rences of p. Subsequently, Mendes and Remmel [9] used the theory of symmetric functions to
reprove and extend Kitaev’s result in three ways: They replaced the single pattern p by a set of
patterns, expanded the theory to deal with tuples of permutations, and threw the inversion number
in so as to obtain q-analogs. Mendes and Remmel further obtained some results on permutations
by consecutive patterns (overlaps allowed) subject to a certain constraint. Prior to [9], Elizalde
and Noy [2] also obtained several results on permutations by consecutive patterns (overlaps al-
lowed). Their approach was based on solving systems of linear ordinary differential equations.

The purpose here is to present yet another approach to the problem of enumerating permuta-
tions by consecutive patterns (overlaps allowed). In brief, the inverse of Fedou’s [3] insertion-
shift bijection is used to convert Jackson and Goulden’s [5] result [6, Theorem 2.8.6] for enumer-
ating words by distinguished factors into an identity for the q-exponential generating function
for permutations by consecutive patterns and inversion number. To be more explicit, the number
of times a pattern p occurs consecutively in a permutation σ will be denoted by p(σ). A non-
empty finite set P of patterns of possibly varying lengths, each greater than or equal to 2, is said
to be permissible if no pattern in P occurs as a consecutive pattern in another pattern in P . The
inversion number of σ ∈ Sn, denoted by invσ , is defined to be the number of integer pairs (i, j)

such that 1 � i < j � n and σi > σj . The q-analog and q-factorial of a nonnegative integer n

are respectively defined by

[n] = 1 + q + q2 + · · · + qn−1 and [n]! = [1][2] · · · [n].
After presenting Jackson and Goulden’s result in Section 2 and the inverse of Fedou’s bijection
in Section 3, the following corollary is deduced in Section 4.

Corollary 1. If P is a permissible set of consecutive patterns and

An,P (q, t) =
∑
σ∈Sn

q invσ
∏
p∈P

t
p(σ )
p ,

then ∑
n�0

An,P (q, t)zn

[n]! = (
1 − z − CP

(
q, t − 1, (1 − q)z

))−1
, (1)

where CP (q, t, z) is as in (7).

Although not done so here, Corollary 1 may easily be extended to tuples of permutations.
Such extensions have been considered by Carlitz, Scoville, and Vaughan [1], by Fedou and Rawl-
ings [4], and by Mendes and Remmel [9].

The difficulty in using (1) to determine the q-exponential generating function for permutations
by a particular permissible set P lies in computing a certain q-sum that arises in connection with
CP (q, t, z). The details when P = {p} for p = 12 . . . (m − 2)m(m − 1), p = 1m(m − 1) . . .2,
and p = 12 . . .m ∈ Sm are worked out in Sections 5–7. The q-exponential generating function
for the joint distribution of 123 and 132 is derived in Section 8.

2. Words by distinguished factors

For the purposes at hand, Jackson and Goulden’s [6] Theorem 2.8.6 is best as formulated
by Stanley [10, pp. 266–267] in the context of formal series over the free monoid. Let X be a



nonempty alphabet and X∗ be the free monoid of words formed with letters from X. The length
of a word w ∈ X∗, denoted by l(w), is the number of letters in w. The set of words of length n

in X∗ is signified by Xn. A word v ∈ X∗ is said to be a factor of w ∈ X∗ if there exist words r

and s (possibly empty) in X∗ such that w = rvs. The ith letter of a nonempty word w will be
denoted by wi .

A nonempty set D ⊂ X∗ is said to be distinguished if no word in D is a factor of another word
in D. A cluster of distinguished factors (or D-cluster) is an ordered triple (w, δ,β) where

w = w1w2 . . .wl(w) ∈ X∗,
δ = (d1, d2, . . . , dk) for some k � 1 with each di ∈ D, and

β = (b1, b2, . . . , bk) is a k-tuple of positive integers

such that

• di = wbi
wbi+1 . . .wbi+l(di )−1 for 1 � i � k (each di appears as a factor of w),

• 1 = b1 < b2 < · · · < bk−1 < bk = l(w) − l(dk) + 1 (w begins with a copy of d1, a copy of
di+1 begins to the right of the initial letter of a copy of di in w, and w ends with dk), and

• bi+1 � bi + l(di) − 1 (the copy of di beginning at wbi
and the copy of di+1 beginning at

wbi+1 overlap in w).

Roughly speaking, a D-cluster is a word w together with a recipe for covering w with overlap-
ping distinguished factors. A word w which appears as the first component in a D-cluster is said
to be D-coverable.

Let CD denote the set of D-clusters. The cluster generating function is then defined to be the
formal series

CD(y,w) =
∑

(w,δ,β)∈CD

( ∏
d∈D

y
d(δ)
d

)
w ∈ �[[yd : d ∈ D]]〈〈X〉〉, (2)

where d(δ) denotes the number of times d appears as a component in δ. Theorem 2.8.6 in [6] as
reformulated by Stanley reads as follows.

Theorem 1 (Jackson and Goulden). For a nonempty alphabet X and a distinguished set D ⊂ X∗,
the generating function for words by distinguished factors is given by

∑
w∈X∗

( ∏
d∈D

y
d(w)
d

)
w =

(
1 −

∑
x∈X

x − CD(y − 1,w)

)−1

, (3)

where d(w) denotes the number of times d appears as a factor of w and CD(y − 1,w) is obtained
by replacing each yd in CD(y,w) with yd − 1.

Independently of Jackson and Goulden, Zeilberger presented an erroneous version of Theo-
rem 1 in [11]. Although stated and proven in both [6,10] for X finite, Theorem 1 actually holds
for any nonempty alphabet. The proof for a finite alphabet works without modification for an
infinite alphabet.

Results for enumerating permutations by consecutive patterns may be extracted directly
from (3). For instance, consider the problem of determining the number cn,k of permutations
in Sn with exactly k occurrences of the consecutive pattern p = 12 . . .m ∈ Sm where m � 2.



In order to apply (3), take X = {1,2, . . . , n} and let D = {w ∈ Xm: 1 � w1 � w2 � · · · � wm}.
Then set yd = y for all d ∈ D and map w �→ zw1zw2 · · · zwn where z1, z2, . . . , zn are commuting
indeterminates. With these choices in (3), cn,k is the coefficient of ykz1z2 · · · zn. The derivation
of the exponential generating function for cn,k requires much more work. Corollary 1 provides a
more elegant means of obtaining the generating function for cn,k .

3. The inverse of Fedou’s bijection

Let N = {0,1,2, . . .} and Λn = {λ ∈ Nn: 0 � λ1 � λ2 � · · · � λn}. For w ∈ Nn, set ‖w‖ =
w1 + w2 + · · · + wn. An element λ ∈ Λn satisfying ‖λ‖ = k may be viewed as a partition of k

with at most n parts. Note that∑
λ∈Λn

q‖λ‖ = 1

(1 − q)(1 − q2) · · · (1 − qn)
.

The number of inversions in σ ∈ Sn induced by σi is defined to be invi σ = |{j : i < j � n,

σi > σj }|.
The inverse of Fedou’s [3] insertion-shift bijection fn as described by Foata (personal com-

munication) maps Sn × Λn onto Nn by the rule fn(σ,λ) = w where wi = invi σ + λσi
. For

instance, f6 sends (314652,011112) ∈ S6 × Λ6 to 302421 ∈ N6.
Tracking the pattern and inversion counts through the bijection fn is key. Let σ ∈ Sn and

p ∈ Sm. Further, suppose that fn(σ,λ) = w. For the inversion count, note that the definition of
fn implies that

invσ + ‖λ‖ = ‖w‖.
For the pattern count, observe for 1 � i < k � n that

σi < σk if and only if wi � wk + ∣∣{j : i < j < k, σi > σj }
∣∣ and

σi > σk if and only if wi > wk + ∣∣{j : i < j < k, σi > σj }
∣∣. (4)

To see how (4) may be used to track a pattern through fn, consider the case when p = 14352 ∈ S5
occurs at σiσi+1σi+2σi+3σi+4 in σ . Then

σi+3 > σi+1 > σi+2 > σi+4 > σi. (5)

In view of (4), (5) holds if and only if

wi+3 + 1 � wi+1 > wi+2 > wi+4 � wi.

So (4) provides a one-to-one correspondence between the occurrences of the consecutive pattern
p = 14352 in σ and the factors in w belonging to the distinguished set

D14352 = {
v = v1v2v3v4v5 ∈ N5: v4 + 1 � v2 > v3 > v5 � v1

}
.

In general, for any pattern p, there is a one-to-one correspondence of the set of consecutive
occurrences of p in σ with the set of factors in w belonging to a distinguished set Dp completely
determined by (4). Furthermore,

p(σ) =
∑

d∈Dp

d(w). (6)

Tracking a permissible set of patterns is much the same. If P is a permissible set of patterns, then
DP = ⋃

p∈P Dp is a distinguished set of factors and (6) holds for each p ∈ P .



4. Proof of Corollary 1

Let P be a permissible set of patterns. The map φ that sends

• w ∈ N∗ to q‖w‖zl(w) where q and z are commuting indeterminates and
• yd to tp for each pattern p ∈ P and each d ∈ Dp

extends to a continuous homomorphism from �[[yd : d ∈ CDP
]]〈〈N〉〉 to �[[tp: p ∈ P ]][[q, z]].

The image under φ of the cluster generating function CDP
(y,w) is

CP (q, t, z) =
∑

(w,δ,β)∈CDP

q‖w‖zl(w)
∏
p∈P

∏
d∈Dp

td(δ)
p . (7)

The properties of fn and the application of φ to Theorem 1 justify the following computation:∑
n�0

An,P (q, t)zn

(1 − q)(1 − q2) · · · (1 − qn)

=
∑
n�0

zn
∑

(σ,λ)∈Sn×Λn

q invσ+‖λ‖ ∏
p∈P

t
p(σ )
p

=
∑

w∈N∗
q‖w‖zl(w)

∏
p∈P

∏
d∈Dp

td(w)
p

=
(

1 − z

1 − q
−

∑
(w,δ,β)∈CDP

q‖w‖zl(w)
∏
p∈P

∏
d∈Dp

(
td(δ)
p − 1

))−1

.

The replacement of z by z(1 − q) then yields (1).
The above derivation is just an extension of the proof used by Fedou and Rawlings [4] to

obtain the q-exponential generating function for the q-Eulerian polynomials. In contrast to the
methods used to enumerate permutations by consecutive patterns in [2,9], the inversion number
is indispensable in the approach embodied in Corollary 1.

5. Consecutive 12 . . . (m − 2)m(m − 1) patterns

Beginning with the case m = 3, let p = 132. The associated set of distinguished factors is
D132 = {w ∈ N3: w2 > w3 � w1}. Note that two distinct distinguished factors may overlap in a
word in at most one letter. So for w ∈ N∗ to be D132-coverable, l(w) must be odd and greater than
or equal to three. Moreover, a D132-coverable word can be covered with distinguished factors in
only one way. For instance, w = 27586 ∈ {0,1, . . . ,8}5 may only be covered with d1 = 275 ∈
D132 beginning at w1 = 2 and d2 = 586 ∈ D132 beginning at w3 = 5. In other words, w = 27586
appears in but one D132-cluster, namely (27586, (275,586), (1,3)).

In general, (w, δ,β) ∈ CD132 is such that

w ∈ N2k+1, δ = (d1, d2, . . . , dk) with each di ∈ D132, and β = (1,3, . . . ,2k − 1),

where k = ∑
d∈D132

d(w). Thus, there is a natural one-to-one correspondence between CD132 and
the set⋃{

w ∈ N2k+1: w2j > w2j+1 � w2j−1 for 1 � j � k
}
. (8)
k�1



Denoting the kth set appearing in the union in (8) by N2k+1
132 and putting t = t132 in (7), we have

C132(q, t, z) =
∑
k�1

tkz2k+1
∑

w∈N2k+1
132

q‖w‖. (9)

As an example of how to compute the “q-sum” on the right-hand side of (9), note when k = 2
that ∑

w∈N5
132

q‖w‖ =
∑

w1�0

qw1
∑

w3�w1

qw3
∑

w5�w3

qw5
∑

w2>w3

qw2
∑

w4>w5

qw4

= q2

(1 − q)2(1 − q2)(1 − q4)(1 − q5)
.

In general,

∑
w∈N2k+1

132

q‖w‖ = qk

(1 − q)k(1 − q2)(1 − q4) · · · (1 − q2k)(1 − q2k+1)
.

Thus,

C132
(
q, t − 1, (1 − q)z

) =
∑
k�1

qk(t − 1)kz2k+1

[2][4] · · · [2k][2k + 1] . (10)

By defining the q-integral of a formal series in z to be∫ ∑
k�0

akz
k dzq =

∑
k�0

akz
k+1

[k + 1] ,

(10) may be expressed as

C132
(
q, t − 1, (1 − q)z

) =
∫ ∑

k�1

(q(t − 1)z2)k

[2][4] · · · [2k] dzq.

In view of Corollary 1, it follows that

∑
n�0

An,132(q, t)zn

[n]! =
(

1 −
∫ ∑

k�0

(q(t − 1)z2)k

[2][4] · · · [2k] dzq

)−1

. (11)

Elizalde and Noy [2] deduced (11) for the case q = 1. Mendes and Remmel [9] subsequently
indicated how to obtain (11) for general q .

Treatment of the pattern p = 12 . . . (m − 2)m(m − 1) ∈ Sm for m > 3 is much the same as for
m = 3. Omitting the details, the extension of (11) to m � 3 is recorded below.

Corollary 2. The q-exponential generating function for permutations by the consecutive pattern
p = 12 . . . (m − 2)m(m − 1) ∈ Sm (m � 3 and t = tp) and by the inversion number is

∑
n�0

An,p(q, t)zn

[n]! =
(

1 −
∫ ∑

k�0

(q(t − 1)zm−1)k
∏k−1

j=1[j (m − 1) + 1]
[k(m − 1)]! dzq

)−1

.



6. Consecutive 1m(m − 1) . . .2 patterns

In general, consecutive patterns p ∈ Sm with a single peak (pi < pi+1 > pi+2 for but one i),
such as the one of Section 5, are easily dealt with. As a second example of such a pattern, consider
p = 1m(m − 1) . . .2 ∈ Sm where m � 3. Arguing in much the same way as in Section 5, there
is a natural one-to-one correspondence between CDp and

⋃
k�1 N

(m−1)k+1
p where N

(m−1)k+1
p is

the set{
w ∈ N(m−1)k+1: w(m−1)j+2 > w(m−1)j+3 > · · · > w(m−1)j+m and

w(m−1)j+1 � w(m−1)(j+1)+1 for 0 � j � k − 1
}
.

As

∑
w∈N

(m−1)k+1
p

q‖w‖ = qk(m−1
2 )

(1 − q(m−1)k+1)
∏m−2

j=1 (1 − qj )k
∏k

i=1(1 − q(m−1)i )
,

the corresponding cluster generating function (with t = tp) is

C
(
q, t, (1 − q)z

) =
∫ ∑

k�1

(q(m−1
2 )tzm−1)k

([m − 2]!)k ∏k
i=1[(m − 1)i] dzq.

Therefore, by Corollary 1, we have

Corollary 3. The q-exponential generating function for permutations by the consecutive pattern
p = 1m(m − 1) . . .2 ∈ Sm (m � 3 and t = tp) and by the inversion number is

∑
n�0

An,p(q, t)zn

[n]! =
(

1 −
∫ ∑

k�0

(q(m−1
2 )(t − 1)zm−1)k

([m − 2]!)k ∏k
i=1[(m − 1)i] dzq

)−1

.

The case m = 4 and q = 1 of Corollary 3 is due to Elizalde and Noy [2].

7. Consecutive 12 . . .m patterns

For m � 2, let p = 12 . . .m ∈ Sm. The associated set of distinguished factors is Dp =
{w ∈ Nm: w1 � w2 � · · · � wm} = Λm. Note that, for n � m, w ∈ Nn is Dp-coverable if and
only if w ∈ Λn. Generally, w ∈ Λn may be covered by distinguished factors in more than one
way (since two distinct distinguishable factors may overlap in a word in as many as m − 1 let-
ters). For instance, the word w = 24789 ∈ {0,1, . . . ,9}5 appears as the first component in both
of the D123-clusters(

24789, (247,789), (1,3)
)

and
(
24789, (247,478,789), (1,2,3)

)
.

Let an,k(m) be the number of times a w ∈ Λn appears in a Dp-cluster (w, δ,β) with δ having
k components. The cluster generating function (with t = tp) is then

C(q, t, z) =
∑

(w,δ,β)

zl(w)q‖w‖ ∏
d∈Dp

td(δ) =
∑
n�m

zn

n−m+1∑
k=1

an,k(m)tk
∑

w∈Λn

q‖w‖

=
∑ zn

(1 − q)(1 − q2) · · · (1 − qn)

n−m+1∑
an,k(m)tk. (12)
n�m k=1



To determine an,k(m), consider a typical Dp-cluster (w, δ, (b1, b2, . . . , bk)). As b2 may be
2,3, . . . ,m − 1, or m, it follows that

an,k(m) =
m−1∑
j=1

an−j,k−1(m), k � 2. (13)

Define G(x, z) = ∑
n�0

∑
k�1 an,k(m)xkzn. Then (13) implies that

G(x, z) = xzm

1 − xz(1 + z + · · · + zm−2)
= xzm

∑
j�0

(xz)j
(

1 − zm−1

1 − z

)j

. (14)

Extraction of the coefficient of xkzn from (14) yields

an,k(m) =
{

χ(n = m) if k = 1,∑k−1
j=0(−1)j

(
k−1
j

)(
n−jm−m+j−1

k−2

)
if k � 2,

(15)

where χ(n = m) is 1 if n = m and is 0 otherwise. The cases m = 2 and m = 3 have particularly
simple forms:

an,k(2) =
{

1 if n = k + 1 � 2,

0 otherwise,
and an,k(3) =

(
k − 1

n − k − 2

)
, (16)

with the latter equality holding for 1 � k � n − 2.
By noting (12) and invoking Corollary 1, we obtain

Corollary 4. The q-exponential generating function for permutations by the consecutive pattern
p = 12 . . .m ∈ Sm (m � 2 and t = tp) and by the inversion number is

∑
n�0

An,p(q, t)zn

[n]! =
(

1 − z −
∑
n�m

zn

[n]!
n−m+1∑

k=1

an,k(m)(t − 1)k

)−1

,

where an,k(m) is as in (15) or (16).

A system of differential equations for the q = 1 case of the reciprocal of the generating
function in Corollary 4 may be found in [2]. For p = 12, Corollary 4 gives the generating func-
tion for the classical q-Eulerian polynomials associated with the inversion number: If we set
eq(z) = ∑

n�0 zn/[n]!, then

∑
n�0

An,12(q, t)zn

[n]! = 1 − t

−t + eq((t − 1)z)
.

A consecutive occurrence of p = 12 in σ is known as a rise.

8. The joint distribution (123,132, inv)

The set of distinguished factors associated with the permissible set P = {123,132} is

DP = D123 ∪ D132 = {
w ∈ N3: w1 � w2 � w3

} ∪ {
w ∈ N3: w2 > w3 � w1

}
.



For a nonempty word v, let FL(v) and LL(v), respectively, denote the first and last letters of v.
Note that w ∈ Nn is DP -coverable if and only if there is an integer k � 0 and positive integers
nk, . . . , n0 with n0 �= 2 such that

w = vkxkvk−1xk−1 · · ·v1x1v0, (17)

where x1, . . . , xk ∈ N , vi ∈ Λni
, and xi > FL(vi−1) � LL(vi). A word w as in (17) contains ex-

actly k distinguished factors from D132, namely LL(vi)xiFL(vi−1) for 1 � i � k. Let Nn
P,nk,...,n0

denote the set of words satisfying (17). For instance,

N9
P,1,3,3 = {

w ∈ N9: w2 > w3, w6 > w7, w1 � w3 � w4 � w5 � w7 � w8 � w9
}
.

Note that∑
w∈N9

P,1,3,3

q‖w‖ = q2[3][7]
(1 − q)(1 − q2) · · · (1 − q9)

.

In general,

∑
w∈Nn

P,nk,...,n0

q‖w‖ = qk
∏k

i=1[n0 + · · · + ni−1 + i − 1]
(1 − q)(1 − q2) · · · (1 − qn)

. (18)

Let ank,...,n0,j be the number of times that a word w as in (17) appears in a DP -cluster
(w, δ,β) where k signifies the number of components in δ belonging to D132 and j denotes
the number of components in δ belonging to D123. Noting that xi may or may not be the last let-
ter in a distinguished factor from D123, repeated use of (16) leads to the conclusion that ank,...,n0,j

is equal to

∑
A⊆{1,2,...,k}

|A|�j

∑
j0+···+jk=j

∏
i∈A\{l: nl=1}

(
ji − 1

ni − ji − 1

) ∏
i∈A\{l: nl=1}

(
ji − 1

ni − ji − 2

)
,

where A is the complement of A relative to {0,1, . . . , k} (so 0 ∈ A) and, for convenience,
(
μ
ν

) = 0
if either ν > μ or ν < 0.

Relative to (7), put t132 = t and t123 = s. The cluster generating function C(q, t, s, z) is then

∑
n�3

� n−1
2 �∑

k=0

n−2∑
j=0

tksj zn
∑

nk+···+n0=n−k

nk ,...,n0�1

ank,...,n0,j

∑
w∈Nn

P,nk,...,n0

q‖w‖.

So (18) implies that C(q, t, s, (1 − q)z) equals

∑
n�3

� n−1
2 �∑

k=0

n−2∑
j=0

qktksj zn

[n]!
∑

nk,...,n0

ank,...,n0,j

k∏
i=1

[n0 + · · · + ni−1 + i − 1], (19)

where the intermediate sum is over positive integers nk, . . . , n0 such that nk + · · · + n0 = n − k.
Invoking Corollary 1 leads to

Corollary 5. The q-exponential generating function for permutations by the permissible set of
patterns P = {132,123} (t132 = t , t123 = s) and by the inversion number is



∑
n�0

An,P (q, t, s)zn

[n]! = (
1 − z − C

(
q, t − 1, s − 1, (1 − q)z

))−1
,

where C(q, t, s, (1 − q)z) is as in (19).

A system of differential equations for the q = 1 case of the reciprocal of the generating func-
tion in Corollary 5 is given in [2].

9. Concluding remarks

As noted in the introduction, the problem that arises in using (1) lies in the computation of
a certain q-sum. In the examples of Sections 5–8, the q-sums were relatively straightforward to
compute. However, many of the q-sums that arise appear to be intractable.
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