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Abstract. In this paper we take an approach similar to that in [13] to es
tablish a positive mass theorem for spin asymptotically hyperbolic manifolds 
admitting corners along a hypersurface. The main analysis uses an integral 
representation of a solution to a perturbed eigenfunction equation to obtain 
an asymptotic expansion of the solution in the right order. This allows us to 
understand the change of the mass aspect of a conformal change of asymp
totically hyperbolic metrics. 

1. Introduction 

In this paper we study the change of mass aspect for asymptotically hyperbolic 
manifolds under a conformal change of metric and establish a positive mass theo
rem for a class of asymptotically hyperbolic manifolds admitting corners along a 
hypersurface. This work follows an approach similar to that in [13]. The dimensions 
of all manifolds concerned in this paper are greater than 2. Positive mass theorems 
for asymptotically hyperbolic manifolds have been studied in many works, notably 
in [3,6,14,21]. A Riemannian manifold (M, g) with corners along a hypersurface Σ 
is a manifold that is separated by an embedded hypersurface Σ ⊂ M such that each 
individual part is a smooth Riemannian manifold and the metric g is continuous 
across the hypersurface Σ. An asymptotically hyperbolic manifold with corners 
along a hypersurface is a Riemannian manifold with corners along a hypersurface 
with one part compact and the other part asymptotically hyperbolic. The issue at 
hand is to investigate the validity of a positive mass theorem for asymptotically 
hyperbolic manifolds with corners along a hypersurface if each part satisfies the 
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scalar curvature condition. A good motivation given in [13] to initiate the study 
of such question is to use the Ricatti equation 

� � ∂H 
R = RΣ − |A|2 + H2 − 2 , (1.1) 

∂n 
which allows one to consider the scalar curvature in distributional sense across the 
hypersurface. It also turns out to relate to a notion of quasi-local mass in relativity 
(cf. [4,13,19,20]. It is desirable to have a non-negative quantity associated with a 
compact domain Ω of an asymptotically hyperbolic manifold M , which is zero 
if and only if Ω can be isometrically embedded into the hyperbolic space and 
converges to the total mass when Ω exhausts M . Analogous to the suggestion for 
the asymptotically flat setting in [4], a natural candidate for such a quantity is 
given by taking the infimum of the total mass over the class of all asymptotically 
hyperbolic manifolds in which Ω can be isometrically embedded and to which 
positive mass theorem can apply. For more details readers are referred to [4, 13, 
19,20]. 

In case of an asymptotically hyperbolic manifold with corners along a hy
persurface we will call the compact part the inside and the non-compact part the 
outside. We will denote the mean curvature of the hypersurface with respect to 
the inside metric in the outgoing direction by H− and the mean curvature of the 
hypersurface with respective to the outside metric in the direction inward to the 
outside by H+. Our main theorem is as follows: 

Theorem 1.1. Suppose that (Mn, g) is a spin asymptotically hyperbolic mani
fold of dimension n ≥ 3 with corners along a hypersurface. And suppose that the 
scalar curvature of both the inside and outside metrics are greater than or equal to 
−n(n − 1) and that 

H−(x) ≥ H+(x) 
for each x on the hypersurface. Then, if in a coordinate system at the infinity, 

ρn 

h + O(ρn+1)g = sinh−2 ρ dρ2 + g0 + , 
n 

then � � 
Trg0h(x)dvolg0 (x) ≥ xTrg0h(x)dvolg0 (x) . (1.2) 

Sn−1 Sn−1 

In [21] the vanishing of the mass is proved to imply the asymptotically hy
perbolic manifold is isometric to the hyperbolic space. However, we did not find it 
is a straightforward consequence to have the same conclusion in our context nor 
did Miao in [13] in the context of asymptotically flat manifolds. We will give an 
affirmative answer to this question in a forthcoming paper. We would like to point 
out though it is easy to see that the scalar curvature should be the constant as 
the hyperbolic space. 

We adopt an approach from [13] to smooth the corners, then conformally 
deform the metric so that the scalar curvature is greater than or equal to −n(n−1) 
and then apply the positive mass theorem in [21]. Instead of solving an equation 
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which is a perturbation of Laplace equation as in [13, 18] for asymptotically flat 
case, we realize, with our experience in [5,16], that we should consider an equation 
which is a perturbation of the eigenfunction equation 

−Δv + nv = 0  (1.3)  

on an asymptotically hyperbolic manifold, where 
n � ∂2 

Δ =  
∂x2 

ii=1 

on Rn in our notation in this paper. We also learned that in fact in each case the 
operator is simply the linearization of the Yamabe equation at the constant scalar 
curvature one. One of the consequences of this consideration gives hope that v 
decays in the right order to allow us to estimate the change of mass aspect after a 
conformal change of metric while another is the following key observation. 

Lemma 1.2. Suppose that (Mn, g) is a Riemannian manifold and v is a positive 
smooth solution to the linear equation 

n − 2 � �− n − 2 � �− −Δv + nv − R + n(n − 1) v = R + n(n − 1) . (1.4) 
4(n − 1) 4(n − 1) 

4
Then the scalar curvature of the metric gv = (1 +  v) n−2 g satisfies 

Rgv ≥ −n(n − 1) . (1.5) 

To find a solution v to (1.4) we use the analysis of weighted function spaces 
and uniformly degenerate elliptic equations, which are well developed in, for ex
ample, [1, 2, 8–12]. The positivity of the solution v to (1.4) follows from a clever 
use of a generalized maximum principle in [15]. We have noticed that the existence 
of the expansion of the solution v was studied in [2, 12]. But we need the explicit 
formula to estimate the change of mass aspects here. We followed the approach 
taken  in [18]  which used an  integral  representation  to  obtain  an asymptotic  ex
pansion. To obtain an integral representation we used an explicit formula for the 
fundamental solution to the eigenfunction equation in the hyperbolic space 

GH (x, y) =  
cn 

θ cosh dH (x, y) , (1.6) 
sinhn−2 dH (x, y) cosh2 dH (x, y) 

where dH (x, y) is the hyperbolic distance between x and y in hyperbolic space Hn , 
1 

cn = ,
(n − 2)vol(Sn−1) 

1 
∞ i 

n −2i+2θ(s) = 1 +  1 − s (1.7) 
θ0 2j + n − 1 

i=2 j=2 

and 
∞ i � � 

n 
θ0 = 1 +  1 − . (1.8) 

2j + n − 1 
i=2 j=2 
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For more detailed account on the above generalized eigenfunctions please see [2,12]. 
Thus 

Lemma 1.3. Suppose that (Mn, g) is an asymptotically hyperbolic manifold, Mc 

is a compact set in M and r0 is a large number. Let 

x = ψ(p) :  M \ Mc → Rn \ Br0(0) , 

be a coordinate at the infinity in which 

h+ O(ρn+1)g = sinh−2 ρ dρ2 + g0 + 
ρn 

, 
n 

2,αwhere sinh ρ = |x|−1. Suppose that v ∈ C (M) with δ >  0 solves the equation δ 

−Δv + nv + fv  = w ,  

with 
f ∈ C0,α w ∈ C2,α(M) and (M) ,κ η 

for some κ >  2 and η > n+ 1. Then  

x 
v(x) =  A |x|−n + O |x|−(n+1) (1.9) |x|

for some function A on Sn−1 . 

Note that the function A( x ) in the above lemma in our proof will be given |x|
as a sum of several integrals which later allow us to estimate the size of change of 
the mass aspects, please see Lemma 6.5 in this note. 

The paper is organized as follows: Section 2 is devoted to establishing an 
isomorphism theorem for a class of uniformly degenerate operators based on work 
in [10]. In Section 3 we introduce a linear equation whose solution gives a conformal 
factor for a metric with the scalar curvature greater than or equal to −n(n − 1). 
In Section 4 we derive an explicit formula for the fundamental solutions to the 
eigenfunction equation on hyperbolic space Hn. In Section 5  we  use the  stan
dard fundamental solution to construct an approximate fundamental solution on 
an asymptotically hyperbolic manifold. This gives us an integral representation 
of a solution to the eigenfunction equation and the desired asymptotic expansion. 
In Section 6 we prove our main theorem by calculating the mass aspect of the 
deformed metric and applying the positive mass theorem in [21]. 

2. Analytic preliminaries 

In this section we discuss some preliminaries of the analysis on weakly asymptoti-
M̄ ncally hyperbolic manifolds. Let be a smooth compact n-dimensional manifold 

¯with boundary ∂M and Mn be its interior. A nonnegative smooth function ρ on M 
is said to be a defining function for ∂M if 

ρ >  0 in  M 

ρ = 0  on  ∂M 
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and dρ never vanishes on ∂M . For any non-negative integer m and any 0 ≤ β <  1, a 
smooth Riemannian metric g on M is then said to be conformally compact of 
class Cm,β if for any defining function ρ for ∂M , the conformal metric ḡ = ρ2g

¯extends as a Cm,β metric on M . The  metric  ḡ restricted to T (∂M) induces a 
metric ĝ := ḡ|T (∂M) on ∂M which rescales upon change in defining function and 
therefore defines a conformal structure [ĝ] on  ∂M called the conformal infinity of 
(M, g). 

When m + β ≥ 2, a straightforward computation as in [11] shows that the 
sectional curvatures of g approach −|dρ|2 at ∂M . As in  [5], we  define  weakly  ḡ

asymptotically hyperbolic manifolds as follows: 

Definition 2.1. A connected complete Riemannian manifold (Mn, g) is  said to  be  
weakly asymptotically hyperbolic of class Cm,β if g is conformally compact of class 
Cm,β with m + β ≥ 2 and  |dρ|2 = 1  on  ∂M for a defining function ρ.ḡ

We will use the definitions of weighted function spaces from the papers of 
Lee [9, 10] (see also [1, 8]. Let (Mn, g) be a weakly asymptotically hyperbolic 
manifold and let ρ be a defining function. The weighted Hölder spaces are defined, 
for δ ∈ R, 

k,α (M) :=  ρδCk,α(M) =  ρδ u : u ∈ Ck,α(M)C (2.1) δ 

with the norm 
�u� k,α := �ρ−δ u�Ck,α(M) .C (M)δ 

The weighted Sobolev spaces are defined, for δ ∈ R, 
k,p u : u ∈ W k,p(M)W (M) :=  ρδW k,p(M) =  ρδ (2.2) δ 

with the norm 
�u� k,p := �ρ−δ u�W k,p(M) .Wδ 

We recall the following weighted Sobolev embedding theorem from [10]. 

Lemma (Sobolev embedding). Let (Mn, g) be weakly asymptotically hyperbolic 
manifold of class Cm,β and U ⊂ M an open subset. For 1 < p, q  <  ∞, 0 < α <  1, 
δ ∈ R, 1 ≤ k ≤ m, and  k + α ≤ m + β, the inclusions 

n nk,q j,p W (U) �→ W (U) for k − ≥ j − (2.3) δ δ q p 

and 
nk,p j,α W (U) �→ C (U) for k − ≥ j + α (2.4) δ δ p 

are continuous. 

The readers are referred to [10] (see also [1,8,9] for a more complete discussion 
of properties of the weighted Hölder and Sobolev spaces on weakly asymptotically 
hyperbolic manifolds. Our goal in this section is to derive an isomorphism result 
from [8,10], particularly Theorem C in [10], for the operator −Δ +  n+ f . We  first  
state a simpler version of Theorem C in [10]. 
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Lemma 2.2. Suppose that (Mn, g) is a weakly asymptotically hyperbolic manifold 
of class Cm,β . Let  k + 1 +  α ≤ m + β and f ∈ Cγ 

0,α for some γ >  0. Then  

2,α 0,α−Δ +  n + f : C (M) → C (M)δ δ 

is a zero index Fredholm operator whenever δ ∈ (0, n). The possible kernel is the 
L2-kernel of −Δ +  n + f . 

Then we derive an isomorphism result by asking that −Δ +  n + f is a per
turbation of −Δ +  n with the negative part of f small in integral sense. We will 
denote 

f = f+ − f− 

where f+ = max{f, 0} and f− = − min{f, 0}. 
Proposition 2.3. Suppose that (Mn, g) is a weakly asymptotically hyperbolic mani
fold of class Cm,β . Let  4 ≤ m + β and f ∈ C0,α for some γ >  0. Then there is a γ 
positive number �0 such that, if 

� � � 2 
n 

M 
|f−| n 

2 dvol ≤ �0 , (2.5) 

then 
2,α 0,α−Δ +  n + f : C (M) → C (M) (2.6) δ δ 

is an isomorphism when δ ∈ (0, n). 

Proof. Suppose that v is a function in the L2-kernel of the operator −Δ +  n + f . 
Due to some standard weighted L2 estimates (cf. Lemma 4.8 in [10], for instance) 
we know that v ∈ W 2,2(M) and solves the equation 

−Δv + nv + fv  = 0  . (2.7) 

Let ρ be a geodesic defining function for the weakly asymptotically hyperbolic 
manifold (Mn, g). For � >  0 let  

M� = p ∈ M : 0  < ρ(p) < �  . 

Multiplying (1) by v and integrating by parts over M\M� we see 

20 =  −vΔv + fv2 + nv 
M\M� 

∂v 
= (|∇v|2 + nv 2) +  fv2 + v dσ . 

M\M� M\M� {ρ=�} ∂�n 

Now v ∈ W 2,2(M) so  for  a fixed  small  number  �1 > 0 
�1 ds |v||∇v|dσ = |v||∇v| < ∞ . 

0 ρ=s s M\M�1 

Therefore, there is a sequence of �i → 0 such that 

|v||∇v|dσ → 0 , 
ρ=�i 



� � � � 

� � 

� � � � � � � 
� � 

which implies 
2|∇v|2 + nv = − fv2 . 

M M 

Then, by Hölder inequality, 
� � �� � 2 �� �1− 2 

f− n 2n2 2|∇v|2 + nv ≤ v 2 ≤ (f−) 
n 

v n−2 

n 

. 
M M M M 

Next we apply the Sobolev embedding theorem and obtain 
2 

2 2|∇v|2 + nv ≤ C (f−) 
n 
2 

n 

|∇v|2 + v , (2.8) 
M M M 

where C here is the Sobolev constant, which is independent of v. Thus, for  

1 
�0 = ,

2C 
we may conclude that v = 0. So the proposition follows from Lemma 2.2. � 

3. Conformal deformations 

In this section we discuss the conformal deformation of the scalar curvature on 
an asymptotically hyperbolic manifold (Mn, g). This idea comes from the work 
in [18] where the analogous situation was treated in the context of asymptotically 
flat manifolds. 

Lemma 3.1. Suppose that v is a positive solution to the following equation 

n − 2 � �− n − 2 � �− −Δv + nv − R + n(n − 1) v = R + n(n − 1) (3.1) 
4(n − 1) 4(n − 1) 

on a manifold (Mn, g). Then  
� 

4 
� 

R (1 + v) n−2 g ≥ −n(n − 1) . 

Proof. Let u = 1 +  v. Then  

n − 2 n − 2 � � n(n − 2)−Δu + Ru = −Δv + R + n(n − 1) u − u
4(n − 1) 4(n − 1) 4 

n − 2 � �− ≥ −Δv + nv − R + n(n − 1) v
4(n − 1) 

n − 2 � �− − R + n(n − 1)
4(n − 1) 

n(n − 2)− nv − (1 + v)
4 

4 v 
n+2(n − 2) 1 +  n−2 1+v 
n−2= − n(n − 1) 4 u .

4(n − 1) (1 + v) n−2 
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Hence to prove the lemma is to show that 
4 4 1 4

1 +  − ≤ (1 + v) n−2 . (3.2) 
n− 2 n− 2 1 +  v 

We differentiate the two sides with respect to v and compare 
4 4 

n−2−1(1 + v)−2 < (1 + v) 
4 

. 
n− 2 n− 2

Therefore, by the fact that the two sides are the same when v = 0, the lemma 
follows. � 

The rest of this section is devoted to solving for a positive solution to the 
equation 

(−Δ +  n+ f)v = h (3.3) 
on an asymptotically hyperbolic manifold (Mn, g) with the function f suitably 
small in an integral sense. By the isomorphism proposition in the previous section 
we know, for δ ∈ (0, n) and  each  h ∈ C0,α(M), there is a unique solution v ∈δ 

C2,α(M) to the equation (3.3). Hence what really need to do is to show that v > 0δ 
in M . For simplicity we will denote 

n− 2 � �− 
f = − R+ n(n− 1) ≤ 0 .

4(n− 1) 

Proposition 3.2. Suppose that (Mn, g) is a weakly asymptotically hyperbolic mani
fold of class Cm,β with m+ β ≥ 4. Let  �0 be the small positive number in Propo
sition 2.3 in the previous section and α ∈ (0, 1). Suppose that f ∈ C0,α(M) forδ 
some δ ∈ (0, n) and that 

2 
n 

2|f | n ≤ �0 . (3.4) 
M 

Then there is a positive solution v ∈ C2,α(M) to the equation δ 

−Δv + nv + fv  = −f .  (3.5) 

Proof. We first prove that v has to be nonnegative in M . Assume otherwise that 
v is negative somewhere in M so that 

v− = min  v(p) :  p ∈ M < 0 . 

Let us consider instead the function u = v + v0 for a small  positive  number  
v0 < min{1,− v− }. Then  2 

−Δu+ nu+ fu = −f(1 − v0) +  nv0 > 0 
2,αin M and min{u(p) :  p ∈ M} < 0. Since v ∈ C (M) for  δ >  0,  for a geodesic  δ 

defining function ρ, we may assume that 

u > 0 on  ∂(M \ Mτ ) =  p ∈ M : ρ(p) =  τ 

provided that τ >  0 is sufficiently small. Now we are going to apply the generalized 
maximum principle in Section 2.5 in [15] to the function u on the manifold M \Mτ . 
According the generalized maximum principle what we need is to verify that the 
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first eigenvalue of the operator −Δ+  n + f on the domain M \ Mτ � for some τ � < τ  
with Dirichlet boundary condition is positive. Therefore, for any φ ∈ C∞(M \Mτ � ),c 
we consider the ratio 

(|∇φ|2 + nφ2 + fφ2)
M 

φ2 
M 

n 

1 2 1 
2≥ � (|∇φ|2 + φ2) − C |f | n 

(|∇φ|2 + φ2) ≥ . 
M M MM φ

2 2 

Thus the first eigenvalue of the operator −Δ+  n + f on the domain M \ Mτ � with 
the Dirichlet boundary condition is always positive. We may apply Theorem 10 
in Section 2.5 of the book [15] to the function u/φ, where  φ is the positive first 
eigenfunction over M \ Mτ � , to obtain a contradiction. Therefore v is nonnegative 
in M . To show that v is in fact positive in M , for  each  τ >  0, we apply the Hopf 
strong maximum principle to the function v/φ on the domain M \ Mτ , where  φ is 
the positive first eigenfunction over M \ Mτ � for any 0 < τ � < τ . Thus the proof is 
complete. � 

4. The fundamental solutions on the hyperbolic space 

The materials in this section are well known and readers are refered to [1, 2, 10, 
12] for more detailed account on the references. But for the convenience of the 
readers we will present a construction briefly. Let us first recall the definition of 
the hyperbolic space as a hyperboloid in the Minkowski space-time. The Minkowski 
space-time is Rn+1 equipped with the Minkowski metric −dt2 + |dx|2 for (t, x) ∈ 
Rn+1. The upper hyperboloid is the submanifold 

Hn = (t, x) ∈ Rn+1 : −t2 + |x|2 = −1, t >  0 . (4.1) 

Hence 

(d|x|)2 

(Hn , gH ) =  Rn , + |x|2 gSn−1 , (4.2) 
1 +  |x|2 

where gSn−1 is the standard metric on the unit round (n − 1)-sphere. We want to 
find the solution to the equation 

−ΔHn G0(x) +  nG0(x) =  δ0(x) , (4.3) 

which defines the Green’s function in x centered at the origin of the differential 
operator −Δ +  n on hyperbolic space Hn. We first compute, for r = |x|, 

−n+2 −k −n+2 −n+2 −k−2(−ΔHn + n)r t = −(k − 2)(k + n − 1)r t−k + k(k + 1)r t . 
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We then observe inductively that, for even number k 

(−ΔHn + n) 

2 · 3 2 · 3 · 4 · 5 · · · (k − 1)−n+2 −k−2 +r t t−4 + · · · + t
2(n+ 3) (2(n+ 3)  · · · (k − 2)(k + n− 1)

2 · 3 · 4 · 5 · · ·k · (k + 1)  −n+2 −k−2= r t .
(2(n+ 3)  · · · (k − 2)(k + n− 1)

Therefore we consider the function 
∞ i � � 

n 1
θ̃(t) = 1 +  1 − . (4.4) 

2j + n− 1 t2i−2 
i=2 j=2 

Notice that the infinite series θ̃ is obviously convergent when t > 1. In fact, when 
t = 1, taking the logarithm of the general term we see 

i � � � � 
n n n− 1

log 1 − ≤ −  log i+ + c(n) 
j=2 

2j + n− 1 2 2 

for some dimensional constant c(n). Thus the infinite series 
∞ i � � 

˜ n 
θ(1) = 1 + 1 − (4.5) 

2j + n− 1 
i=2 j=2 

converges for all n ≥ 3. We set 

θ̃(t)
θ(t) =  (4.6) 

θ̃(1) 

and easily conclude that 

Lemma 4.1. Let 
θ(t) 1 

G0(x) =  . (4.7) 
(n− 2)vol(Sn−1) rn−2t2 

Then 
−ΔHn G0(x) +  nG0(x) =  δ0(x) 

on hyperbolic space Hn . 

To write the fundamental solution at any point in the hyperbolic space we 
want to express hyperbolic translation in the hyperboloid model of hyperbolic 
space Hn . Recall that the changes of coordinates between the ball model and 
hyperboloid model of the hyperbolic space are 

2 1 +  |x̄|2 

x = x ,  = ,¯ t
1 − |x̄|2 1 − |x̄|2 

and 
1 

x̄ = x .
1 +  t 
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Also recall that hyperbolic translation by ¯ b in the ball model is given in [17] by 
¯ 2 ¯1 − |b| |x̄|2 + 2x̄ · b + 1  ¯ τ¯(x̄) =  x̄+ b ,  (4.8) b |x̄|2|¯ b|2 + 2x̄ · ̄  b + 1  |x̄|2|¯ b|2 + 2x̄ · ̄  b + 1  

2where tx = 1 +  |x| and tb = 1 +  |b|2. Therefore we have 

Tb(x) =  x + txb + 
x · b

b (4.9) 
1 +  tb 

with 
|Tb(x)| = sinh  dH (x, −b) . (4.10) 

One key fact here is that 

cosh dH (x, b) =  txtb − x · b .  (4.11) 

Thus 
GH (x, y) =  Gy(x) =  G0 T−y(x) . (4.12) 

and explicitly 

GH (x, y) =  
cn 

θ cosh dH (x, y) (4.13) 
sinhn−2 dH (x, y) cosh2 dH (x, y) 

where 
1 

cn = . (4.14) 
(n − 2)vol(Sn−1) 

5. Asymptotic behavior 

So far, for a weakly asymptotically hyperbolic manifold (Mn, g) with  
� n � �− � �− 2R + n(n − 1) ∈ C0,α and R + n(n − 1) 

2 ≤ � 
n 

,δ 0 
M 

4
we have obtained a conformal deformation gv = (1 +  v) n−2 g such that 

R[gv] ≥ −n(n − 1) 

and 
0 < v  ∈ C2,α(M ) ,δ 

provided that δ ∈ (0, n). Unfortunately the decay rate of v just misses the decay 
rate on which the mass aspect of an asymptotically hyperbolic manifold is defined. 
We will use the Green’s function we constructed in the pervious section to obtain 
an expansion at the infinity of the solution v to the equation 

n − 2 � �− n − 2 � �− −Δv + nv − R + n(n − 1) v = R + n(n − 1) .
4(n − 1) 4(n − 1) 

We follow the idea used in [18] to write an integral representation of the solution v 
with the help of the approximate Green’s function GH (x, y) on the asymptotically 
hyperbolic manifold M . Let us start with a definition of asymptotically hyperbolic 
manifolds, which should be compared with the definition of weakly asymptotically 
hyperbolic manifolds given in Section 2. Since we will adopt the definition of mass 
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aspect and mass for asymptotically hyperbolic manifolds from the work [21] we 
use his definition for asymptotically hyperbolic manifolds. 

Definition 5.1. (Mn, g) is said to be an asymptotically hyperbolic manifold if 
(M n, g) is a weakly asymptotically hyperbolic manifold with the standard round 
sphere (Sn−1 , [g0]) as its conformal infinity, and, for a geodesic defining function ρ, 
in the conformally compact coordinates at the infinity, 

1 
ρnh + O(ρn+1)g = sinh−2 ρ dρ2 + g0 + , (5.1) 

n 

where h is symmetric two tensors on Sn−1 at each point. 

In the light of the above definition, we set up a conformally compact coordi
nate at the infinity associated with a defining function ρ as follows. Let 

ψ : M \ Mc → Rn \ Br0(0) , 

for some compact subset Mc ⊂ M , such that 

(d|x|)2 

gH = + |x|2 g0 = sinh−2 ρ(dρ2 + g0) (5.2) 
1 +  |x|2 

1for |x| > r0 and sinh ρ = |x| . 
We construct an approximate Green’s function of an asymptotically hyper

bolic manifold (Mn, g). At each point y ∈ Rn \ Br0(0), we consider the hyperbolic 
space Hn in the coordinate so that 

2 gH (x) =  
1 

dr2 + r (x)g0 = (g̃H )ij (x)dxidxj ,y1 +  r2(x)y 

where 

ry(x) =  Aij (y)xixj . (5.3) 

This coordinate can be made into the standard coordinate by the linear transfor
mation B : Rn → Rn such that B2 = A. More importantly we need to ask 

(g̃H )ij (y) =  gij (y) . (5.4) 

A simple calculation yields 
Aikxk Ajlxl(g̃H )ij (x) =  Aij − . (5.5) 
1 +  Aklxkxl 

Hence 
gik(y)ykgjl(y)yl

Aij (y) =  gij (y) +  . (5.6) 
1 − gkl(y)ykyl 

Therefore, since 
xixj

gij (x) =  δij − + O |x|−n h̃ij (x) (5.7) 
1 +  |x|2 

and 
h̃ij (x)xj = 0  , (5.8) 
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we have 
yiyj −n 

�˜Aij (y) =  gij (y) +  = δij + O |y| hij (y) . (5.9) 
21 +  |y|

Let d̃H (x, y) be the hyperbolic distance function in the metric (g̃H )ij (x)dxidxj 

and let 

1 θ cosh d̃H (x, y)
Gy(x) =  . (5.10) 

(n − 2)vol(Sn−1) sinhn−2 d̃H (x, y) cosh2 d̃H (x, y) 

In the geodesic ball B1(y) in the  metric  g we calculate 
−n gij (x) =  (g̃H )ij (x) +  d̃H (x, y)O |y| (5.11) 

and 

Δg = √ 
1 

∂j det ggij ∂jdet g (5.12) 
= ΔH + d̃H (x, y)O |y|−n ΔH + (g̃H )ij ∂i O(|y|−n)d̃H (x, y) ∂j . 

Thus, for any x ∈ B1(y) and  x �= y, 
−n ˜Ψy(x) =  −Δg Gy(x) +  nGy(x) =  O |y| O dH (x, y)−n+1 , (5.13) 

as |x − y| → 0 and  |y| → ∞. On the other hand, outside the geodesic ball B1(y), 
we simply need 

−n 
�˜ −n gij (x) = (g̃H )ij (x) +  O |x| hij (x) +  O |y| ξij (x, y) , 

as |x| → ∞ and |y| → ∞, which follows from some calculations, where 

h̃ik(y)xkxj + h̃jk xkxi xixj h̃klxkxl
ξij (x, y) =  h̃ij (y) − + .

2 2 21 +  |x| 1 +  |x| 1 +  |x|
Therefore 

˜ ˜hij xj xi hklxkxl
ξij xj = −

2 2 21 +  |x| 1 +  |x| 1 +  |x|
and 

(g̃H )ij = δij + xixj + O |y|−n ξij . 

This implies 

gij = (g̃H )ij + O |y|−n ξij + O |x|−n h̃ij + higher order terms . 

Here we use the facts that 

(δik + xixk)ξkl(δlj + xlxj ) =  ξij 

and 
(δik + xixk)h̃kl(δlj + xlxj ) =  h̃ij . 

Therefore, outside the geodesic ball B1(y), 

−n −nΔg = Δg̃H + O |y| + O |x| Δg̃H 

+ (g̃H )ij ∂i O(|y|−n) +  O(|x|−n) ∂j . 
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One last calculation we need is an estimate for Ψy(x) outside the geodesic ball 
B1(y). We compute 

1 Aik (y)xk
∂id̃H (x, y) =  ty −Aik (y)yk ,


sinh d̃H (x, y) tx
 

(n − 2)θ(cosh s) 2θ(cosh s) θ�(cosh s)
G�(s) =  cn − − + ,

sinhn−1 s cosh s sinhn−3 s cosh3 s sinhn−3 s cosh2 s 

and 
coshn d̃H (y, x)G� d̃H (y, x) → −ncn , 

as d̃H (y, x) → ∞. Thus, outside the geodesic ball B1(y), 

Ψy(x) =  −Δg Gy(x) +  nGy(x) 
� � � � 1−n −n=	 O |x| + O |y| O . (5.14) ˜coshn dH (x, y) 

Lemma 5.2. Suppose that (Mn, g) is an asymptotically hyperbolic manifold. Then 

−ΔGy(x) +  nGy(x) =  δy(x) + Ψy(x) (5.15) 

where Ψy(x) satisfies the estimates (5.13) and (5.14). 

As a consequence we have the following integral representation. 

Proposition 5.3. Suppose that (M n, g) is an asymptotically hyperbolic manifold 
and that 

ψ : M \Mc → Rn \Br0(0) 

is a conformally compact coordinate associated with a defining function ρ in which 

ρn � � 
ρn+1g = sinh−2 ρ dρ2 + g0 + h + O . 

n 

Suppose that v ∈ C2,α(M ) solves the equation δ 

0,α−Δv + nv + fv  = w ∈ Cδ (M ) , 

where f ∈ C0,α(M ) and δ ∈ (0, n). Then, for each x ∈ Rn \Br0(0),δ 

v(x) =  − v(y)Ψx(y)dvolg (y) 
Rn\Br0 (0) 

+	 w(y) − f(y)v(y) Gx(y)dvolg (y) 
Rn\Br0(0) 
�	 (5.16) 

∂Gx− (y)v(y)dσg (y)
∂n∂Br0(0) 

+ 
∂v 

(y)Gx(y)dσg (y) . 
∂n∂Br0(0) 
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Proof. We use the density property (cf. [10]) of the the space C2,α(M ) to  have  a  δ 
sequence of functions vn ∈ C∞(M ) such that c 

vn → v in C2,α(M ) .δ 

Then from (5.16) we have, for vn, 

vn(x) =  − vn(y)Ψx(y)dvolg (y) 
Rn\Br0 (0) 

+	 (−Δvn + nvn)Gx(y)dvolg (y) 
Rn\Br0(0) 
�	 (5.17) 

∂Gx− (y)vn(y)dσg (y)
∂n∂Br0(0) 

∂vn+ (y)Gx(y)dσg (y) . 
∂n∂Br0(0) 

Hence, by taking the limit, we obtain (5.16) for v.	 � 

Now we are ready to state and prove our main result of this section. 

Theorem 5.4. Suppose that (M n, g) is an asymptotically hyperbolic manifold and 
that 

ψ : M \ Mc → Rn \ Br0(0) 

is a conformally compact coordinate associated with a defining function ρ in which 

ρn 

h + O(ρn+1)g = sinh−2 ρ dρ2 + g0 +	 . 
n 

Suppose that v ∈ C2,α(M ) with δ >  0 solves the equation δ 

−Δv + nv + fv  = w 

with 

f ∈ C0,α w ∈ C2,α(M ) and (M )κ	 η 

for some κ >  2 and η > n  + 1. Then, for each x ∈ Rn \ Br0(0), 

x 
v(x) =  A |x|−n + O |x|−(n+1) . (5.18) |x| 

Remark 5.5. We would like to point out that the expansion (5.18) is a simple 
consequence of the work in [2, 12]. But we need some explicit expression of the 
coefficient A in (5.18) to prove Theorem 6.3 and Lemma 6.5 in the following section, 
which we did not find that it is easier to extract it from [2,12] than to obtain it in 
the way presented here. The explicit expression of A will be obtained in the course 
of the following proof of Theorem 5.5 based on the integral representation of the 
solution v in (5.16). 
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Proof of Theorem 5.4. We are going to study the asymptotic behavior of v(x) term  
by term in (5.16). We treat the easy ones first. First we consider 

∂vn|x| (y)Gx(y)dσ(y) ,
∂n∂Br0 (0) 

as |x| → ∞ and y ∈ ∂Br0(0). Now 

n|x| cn coshn−2 d̃H (y, x) � � |x|nGx(y) =  θ cosh d̃H (y, x) ,
coshn d̃H (y, x) sinhn−2 d̃H (y, x) 

where 
i jcosh d̃H (y, x) =  txty −Aij (x)x y

and 
−nAij (x) =  δij + O |x| . 

Hence 

1 cn coshn−2 d̃H (y, x) � � |x|nGx(y)=  � � θ cosh d̃H (y, x) ∈ C1(M)n 
tx

i 
yj sinhn−2 d̃H (y, x)|x| ty −Aij (x) |

x
x| 

and � �−n 
x 

xlim λnGλ (y) =  cn ty − · y . 
λ→∞ |x| |x|

Therefore 
∂vn|x| (y)Gx(y)dσ(y) ∈ C1(M)
∂n∂Br0 (0) 

and 

λn 
xA1 

x 
= lim 

∂v 
(y)Gλ (y)dσ(y)|x| λ→∞ ∂Br0(0) ∂n

|x| 

� � (5.19) �−n 

= cn 
∂v 

(y) ty − 
x · y dσ(y) . 

∂n |x|∂Br0(0) 

Next we consider 
∂Gxn|x| (y)v(y)dσ(y) ,
∂n∂Br0 (0) 

as |x| → ∞ and y ∈ ∂Br0(0). We compute 

n ∂Gx � ̃ � ∂d̃H (y, x)|x| (y) =  |x|nρ(y)cnG� dH (y, x)
∂n ∂r 

i j jgij y y i ytx |y|ty 
− gij x |y|= |x|nρ(y)G� ,

sinh d̃H (y, x) 

where 

(n − 2)θ(cosh s) 2θ(cosh s) θ�(cosh s)
G�(s) =  cn − − + 

sinhn−1 s cosh s sinhn−3 s cosh3 s sinhn−3 s cosh2 s 
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and 
coshn d̃H (y, x)G� d̃H (y, x) → −ncn 

as d̃H (y, x) → ∞. Therefore 
x
x ∂Gλ |x|


A2 = lim λn (y)v(y)dσ(y)|x| λ→∞ ∂n∂Br0(0) 
(5.20) � � �−n |y| − x · y 

x ty |x||y|= −ncn v(y) ty − · y − x dσ(y) . 
∂Br0 (0) |x| ty |x| · y 

For the term � 
n|x| (h − fv)Gx(y)dvolg (y) , 

Rn\Br0(0) 

we know, for any given y ∈ Rn \Br0(0), 
� �−n 

x 
x 
|x| 

lim λnGλ (y) =  cn ty − · y . 
λ→∞ |x|

We observe that 
x 

ty − · y = ty − |y| cos φ ≥ (1 − cos φ)|y| ,|x| 
xwhere φ is the angle between x and y. Fixing a direction , we easily see that for |x|

any �0 > 0 

x 
|x| 

lim λn (h − fv)Gλ (y)dvolg (y) 
λ→∞ {y∈Rn\Br0 (0): cos φ≤1−�0} 

� � �−n 
x 

= (h − fv) ty − · y dvolg (y) . 
{y∈Rn\Br0 (0): cos φ≤1−�0} |x| 

On the other hand, when cos φ >  1 − �0, it suffices to verify the claim 
∞ n−1r

(h − fv)(ty − r cos φ)−n dσ0dr < ∞ . (5.21) 
r0 {cos φ>1−�0} ty 

Here we need to use the fact that η > n. We simply notice that 
21 + sin2 φ|y|

ty − |y| cos φ = . 
ty + |y| cos φ 

Hence 
�0 � �−n � �−n 

ty − |y| cos φ dσ � ty − |y| cos φ φn−2dσdφ 
{cos φ>1−�0} 0 Sn−2 

�1 � �−n� ty − |y| cos φ φn−2dσdφ 
Sn−20 

�0 � �−n+ ty − |y| cos φ φn−2dσdφ 
Sn−2�1 

n�n−1 −n�−n−1� |y| + |y| � |y|1 1 
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for �1 = |y|−1 < �0. Therefore 

n−1 � �−n r � �−ι+n−1(h − fv) ty − r cos φ dσ0 = O r , 
{cos φ>1−�0}	 ty 

where ι = min{η, n + 1 δ} > n, which implies our claim (5.21). Thus 2 

x 
x 
|x| 

A0 = lim λn (h − fv)Gλ (y)dvolg (y)|x|	 λ→∞ Rn\Br0(0) 
� � �−n (5.22) 

x 
= (h − fv) ty − · y dvolg (y) . |x|Rn\Br0(0) 

A similar argument yields the next order when we have κ >  2 and  η > n  + 1.  For  
the last term 

n|x| v(y)Ψx(y)dvolg (y) , 
Rn\Br0(0) 

we need to use the estimates about the correction term Ψx(y) in (5.13) and (5.14). 
We first look at 

1 
n	 n|x| v(y)Ψx(y)dvolg (y) � |x| v(y)Ψx(y) sinhn−1 rdσdr 

Sn−1B1(x)	 0 

1 
n −n −n+1� |x| |y|−n+�|x| r r n−1dr 

0 

for any small positive number �. Clearly 

nlim |x| v(y)Ψx(y)dvolg (y) = 0 (5.23) 
|x|→∞ B1(x) 

since |y| ≥ c|x| for y ∈ B1(x) and  |x| → ∞. Next we  look  at  

n|x|	 v(y)Ψx(y)dvolg (y) . 
(Rn\Br0(0))\B1(x) 

In the light of (5.14) and (5.23), using the argument we used to treat last term to 
obtain (5.21) and (5.22), we have 

x 
xA−1 = lim λn v(y)Ψλ (y)dvolg (y)|x|	 λ→∞ |x|

Rn\Br0 (0) 
� (5.24) 

= lim λn v(y)Ψλ (y)dvolg (y) .x 
|x|λ→∞ (Rn\Br0 (0))\B1(x) 

We have thus proven the theorem with 

x x x x x 
A = A−1 + A0 + A1 + A2 . (5.25) |x| |x| |x| |x| |x| 
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6.  Proof of the  main  theorem  

In this section we prove the main theorem. We first recall a positive mass theorem 
for asymptotically hyperbolic manifolds from [21]. Readers are referred to [6] for 
more elaborated and complete discussions of positive mass theorems for asymptot
ically hyperbolic manifolds. Recall that, on an asymptotically hyperbolic manifold 
(Mn, g) as defined in Definition 5.1, we have a coordinate at the infinity such that 

n 
n+1g = sinh−2 ρ dρ2 + g0 + 

ρ
h+ O 

� 
ρ

� 
. (6.1) 

n 

In [21] it was proven that 

Theorem 6.1 (Xiaodong Wang). Suppose that (Mn, g) is a spin asymptotically 
hyperbolic manifold and that Rg ≥ −n(n− 1). Then  

Trg0h(x)dvolg0 (x) ≥ Trg0h(x)xdvolg0 (x) . (6.2) 
Sn−1 Sn−1 

Moreover the equality holds if and only if (Mn, g) is isometric to the standard 
hyperbolic space Hn . 

We adopt the idea from [13] to deal with asymptotically hyperbolic manifolds 
with corners along a hypersurface. 

Definition 6.2. A Riemannian manifold (Mn, g) is said to have corners along a 
hypersurface Σ if there is a smooth embedded hypersurface Σ ⊂ M such that � 
M \ Σ =  M− M+ and the inside (M−, g−) = (M−, g) is  a  smooth  compact  
Riemannian manifold with a boundary Σ and the outside (M+, g+) = (M+, g) 
is a smooth Riemannian manifold with a boundary Σ. Moreover g− and g+ agree 
on the boundary Σ, that is, g continuous across the hypersurface Σ ⊂M . 

We will consider the outward mean curvature H− of the hypersurface Σ in 
(M−, g−) and the inward mean curvature H+ of the hypersurface Σ in (M+, g+). 
Near the hypersurface Σ we may use Gauss coordinates, that is, for some ν0 > 0, a 
point p within distance ν0 from the hypersurface Σ is labeled by a point x on the 
hypersurface Σ and the signed distance d = dist(p,Σ) to the hypersurface Σ. We 
now recall the smoothing operation given in Proposition 3.1 in [13] to have C2 

metrics on M approximating g. 

Proposition 6.3 (Pengzi Miao). Suppose that (M, g) is a manifold with corners 
along a hypersurface Σ. Then there is a family of C2 metrics gν , for  ν ∈ (0, ν0), 
on M such that gν uniformly converges to g on M and gν = g outside Σ × 
(− 1 ν, 1 ν). Furthermore, the scalar curvature Rν of the metric gν satisfies 2 2 

νRν (p) =  O(1)in when d ∈ ν2 
, 2100 � � �� (6.3) 

100 100 d ≤ ν2 
Rν (p) =  O(1) + 2(H− −H+) ν2 φ ν2 when ,100 

where O(1) stands for terms bounded independent of ν and φ(t) ∈ C∞(−1, 1) is a c 
standard mollifier. 
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Our next goal is to conformally deform the metric gν so that the scalar 
curvature is greater than or equal to −n(n − 1) so that the positive mass theorem 
in [21] applies. The reason that gν admits such conformal deformation relies on 
the fact that 

n 
nn − 2 � �− 2 

Rν + n(n − 1) dvolgν ≤ � 2 04(n − 1)M 

whenever ν is sufficiently small and H− − H+ ≥ 0. Thus we are ready to state and 
prove our main theorem. 

Theorem 6.4. Suppose that (M, g) is a spin Riemannian manifold with corners 
along a hypersurface Σ and that the outside is an asymptotically hyperbolic mani
fold and the inside is compact. Suppose that the scalar curvature of both the inside 
and outside metrics are greater than or equal to −n(n − 1) and that 

H−(x) ≥ H+(x) 

for each x on the hypersurface. Then, if in a coordinate system at the infinity, 

h + O(ρn+1)g = sinh−2 ρ dρ2 + g0 + 
ρn 

, 
n 

then � � 
Trg0h(x)dvolg0 (x) ≥ Trg0h(x)xdvolg0 (x) . 

Sn−1 Sn−1 

Proof. We first use the smoothing operation given in [13] as stated in the above 
proposition. For each small ν < ν0, we then solve the equation 

−Δgν v + nv + fν v = −fν (6.4) 

on M for 
n − 2 � �− 

fν = − Rν + n(n − 1) .
4(n − 1) 

According to Proposition 6.2 above 

2fν 
n 

dvolgν ≤ C(g)ν ,  
M 

where C(g) depends only on the metric g. For sufficiently small ν we apply Propo
sition 3.2 in Section 3 to obtain a positive solution vν to the above equation (6.4). 
Then we consider the new metric 

4 
g̃ν = (1 +  vν ) n−2 gν . 

In the light of Lemma 3.1 in Section 3 we know that the scalar curvature R̃ν of 
the new metric g̃ν is greater than or equal to −n(n − 1). To finish the proof we 
need to establish the following two lemmas. � 

Lemma 6.5. Suppose that (M n, g) is an asymptotically hyperbolic manifold and 
in a coordinate at the infinity associated with a geodesic defining function r 

ρn 

h + O(ρn+1)g = sinh−2 ρ dρ2 + g0 + , 
n 
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where 
cosh ρ − 1 

r = 
sinh ρ 

. 

And suppose that � � 

v = A 
x 

ρn + O(ρn+1)|x|
is a positive function on M . Then there is a geodesic defining function r̃ for g̃ = 

4
(1 + v) n−2 g such that 

g̃ = sinh−2 ρ̃ dρ̃2 + g0 + 
ρ̃n 

h̃+ O(ρ̃n+1) , 
n 

where 
cosh ρ̃ − 1 

r̃ = 
sinh ρ̃ 

and 
4(n + 1)  x

h̃ = A g0 + h .  (6.5) 
n − 2 |x| 

Proof. First we recall that the geodesic defining function of the metric g is a 
defining function s such that 

|ds|s g = 12

near the infinity. We refer the readers to Lemma 2.1 in [7] for the existence and 
uniqueness of the geodesic defining function associated with each boundary metric 
in the conformal infinity. We start with a geodesic defining function r for g. Then  
for each θ ∈ Sn−1, let  

w r̃ = e r and w(θ, 0) = 0 . 

By the definition, w satisfies 
� 

4 
�∂w 1 4

2 + r|dw|2 = (1 + v) n−2 − 1 = Arn−1 + O(r n) . (6.6) r2g∂r r n − 2
By an inductive argument we obtain 

∂kw 
(θ, 0) = 0 

∂rk 

for k ≤ n − 1 and  
∂nw 2

(θ, 0) = (n − 1)! A(θ) . (6.7) 
∂rn n − 2 

Hence 

w(θ, r) =  
2 

A(θ)r n + O(r n+1) . 
n(n − 2)

This gives 
2 n+1 + O(r n+2) .r̃(θ, r) =  r + A(θ)r (6.8) 

n(n − 2)
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By the construction of the coordinate associated with a geodesic defining function, 
∂ ∂we need to compare the integral curves of the vector field and . We know  ∂r ∂r̃

2(n + 1)  2 n+1 ∂A n+1) ,dr̃ = 1 +  Arn dr + r dθi + O(r 
n(n − 2) n(n − 2) ∂θi 

which implies 
∂ 4 2(n + 1)  ∂ 

n−2= (1 +  v)− 1 +  Arn 

∂r̃ n(n − 2) ∂r 

4 2 ∂A � 
n+2
� ∂n+1 ijn−2+ (1 +  v)− r + O r g (6.9) r n(n − 2) ∂θj ∂θi 

∂ 2(n − 1) ∂ � � 
= − Arn + O r n+1 . 
∂r n(n − 2) ∂r 

Therefore 
n+1θ̃(θ, r) =  θ + O r . (6.10) 

Thus 

∂ ∂ 4 ∂ ∂ � � 
n+1sinh2 ρ̃ g̃ , = sinh2 ρ̃ (1 + v) n−2 g , + O r . 

∂θ̃i ∂θ̃j ∂θi ∂θj 

In the light of the fact that 
sinh ρ̃ 2 n+1)= r̃ = r 1 +  Arn + O(r

1 + cosh  ̃ρ n(n − 2)
sinh ρ 2 n+1)= 1 +  Arn + O(r

1 +  cosh  ρ n(n − 2)
we have 

� �2 � �
1 + cosh  ̃ρ 4 � 

n+1
� 

sinh2 ρ̃ = sinh2 ρ 1 +  Arn + O r ,
1 + cosh  ρ n(n − 2)

where 
1 + cosh  ̃ρ cosh ρ̃ − cosh ρ

= 1 +  
1 + cosh  ρ 1 + cosh  ρ 

= 1 +  O(r)(ρ̃ − ρ) 

= 1 +  O(r) tanh−1 r̃ − tanh−1 r 

= 1 +  O r n+1 . 

Finally, we arrive at 
ρ̃n 

˜ ρn+1) =  g0 + 
4(n + 1)  ρn 

+ O(ρn+1) ,g0 + h + O(˜ ρnA(θ)g0 + h(θ) (6.11) 
n n − 2 n 

which gives 
4(n + 1)  x

h̃ = A g0 + h (6.12) 
n − 2 |x|

So the calculation is completed. � 
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The next lemma is an estimate of the perturbation of mass aspect 4(n+1) 
n−2 

Aν ( x )g0 in terms of the small number ν as ν → 0 when  v = vν .|x| 

Lemma 6.6. Suppose that (M, g) is a complete Riemannian manifold with corners 
along a hypersurface and that the outside is an asymptotically hyperbolic manifold. 
Suppose that the scalar curvature of both the inside and outside metrics are greater 
than or equal to −n(n − 1) and that 

H−(x) ≥ H+(x) 

for each x on the hypersurface. Let gν be constructed as in Proposition 6.2. Then 
there is a unique positive solution vν ∈ C2,α(M ) to the equation δ 

n − 2 � �− n − 2 � �− −Δgν v + nv − Rν + n(n − 1) v = Rν + n(n − 1) ,
4(n − 1) 4(n − 1) 

when ν is sufficiently small. Moreover, in a coordinate at the infinity associated 
with a geodesic defining function r, 

x n+1)vν = Aν r n + O(r |x|
and � � 

� x � 1 
n+1Aν ≤ Cν , (6.13) |x|

where C is independent of ν. 

Proof. By Proposition 6.2 we have 

n − 2 � �− 
Rν + n(n − 1) ≤ C

4(n − 1) 
νwith compact support inside ∂Ω × [− ν , ], where C is independent of ν. Hence 2 2 

n � 
n − 2 � �− 2 

Rν + n(n − 1) dvolgν ≤ Cν . 
4(n − 1)M 

Therefore, by Proposition 3.2 and Theorem 5.5, there is exists the unique positive 
solution to the equation 

n − 2 � �− n − 2 � �− −Δgν v + nv − Rν + n(n − 1) v = Rν + n(n − 1) ,
4(n − 1) 4(n − 1) 

when ν is sufficiently small and in a coordinate at the infinity associated with a 
geodesic defining function r, 

x n+1) ,vν = Aν r n + O(r |x|
where A( x ) is given in (5.25). |x|

First of all, since 
� n − 2 � �−� 

n+1Rν + n(n − 1) ≤ Cν 
1 

(6.14) 
0,n+14(n − 1) Wγ (M) 



� 

� � 

� 

� � 

� � 
� � 
� � 

� � 

� � � 

� � � 

for any γ, we know by an isomorphism theorem similar to Proposition 2.3 (cf. 
Theorem C in [10]), that 

1 �vν� 2,n+1 ≤ Cν n+1 
Wγ (M) 

for any γ <  n+1 . Then by the Sobolev embedding theorem ([10]) we have 2 

n+1 
Cγ (M)�vν� 1,α ≤ Cν 

1 
(6.15) 

for some α ∈ (0, 1). 
Next we estimate A( x ) term by term. We treat the easy terms first. For the |x|

term 
� � � � �−n 
x � �− x 

A0 =cn Rν+n(n−1) (1+v) 1+|y|2 − · y dvolgν (y) ,|x| |x|Rn\Br0 (0) 

we simply ask r0 is large enough so the support of (Rν + n(n − 1))− is outside of 
Rn \Br0(0). Therefore, we may choose r0 so that 

x 
A0 = 0  . (6.16) |x|

For the term 
� � � � �−n 
x ∂vν x 

A1 = cn 1 +  |y|2 − · y dσgν (y) ,|x| ∂n |x|∂Br0 (0) 

we easily see that 
x 1 

A1 ≤ Cν n+1 . (6.17) |x|
Similarly, for the term 

|y| − x y � � � � √�−n · 
x � x 1+|y|2 |x| |y|

A2 =−ncn v(y) 1 +  |y|2 − · y � dσgν (y) ,|x| ∂Br0(0) |x| 1 +  |y|2 − |
x
x| · y 

we easily derive from (6.15) that 
� x � 1 
A2 ≤ Cν n+1 . (6.18) |x|

The last term is 
x 

x 
|x| 

A−1 = lim λn vν(y)Ψλ (y)dvolg(y) . |x| λ→∞ Rn\Br0 (0) 

Due to (6.15) and the estimate (5.14) we know 

1 − n 1
 |A−1| ≤ Cν n+1 lim λn |y| 2 O(|y|−n)O dvolg(y)
 
λ→∞ coshn dH(λ |

x
x| , y) (6.19) 

1 
n+1 ,≤ Cν 



� 

� � 
� � 
� � 

� � 

�	 � �	 � �	 � 
�	 � 

� � 

�	 � �	 � �	 � 
�	 � 
�	 � 

where in the last step we use the same argument we used to establish (5.21) 
xand (5.22) to deal with the term ( 1 +  |y|2 − |x| · y)−n, which is only big when 

y	 xis very close to .  Thus we have proved  that  |y|	 |x| 
� x � 1 

n+1Aν ≤ Cν	 (6.20) |x|
for some C independent of ν.	 � 

Proof of Theorem 6.3. To finish the proof of Theorem 6.3 we simply notice that 
for each ν sufficiently small, by Lemma 3.1 in Section 3, we may apply the positive 
mass theorem in [21] to the metric (1 + vν ) 

4 
and obtain that n−2 gν 

˜ � ˜ �Trg0hdvolg0 (x) ≥ Trg0hxdvolg0 (x) 
Sn−1	 Sn−1 

where 
4(n + 1)  x

h̃ = Aν g0 + h .  
n − 2 |x|

Here we note that the mass aspect of gν is the same as the mass aspect of g since 
gν is the same as g outside a compact set. Therefore, as ν → 0, we have 

Trg0hdvolg0(x) ≥ Trg0hxdvolg0 (x) . 
Sn−1	 Sn−1 

So the proof is finished.	 � 
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