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Abstract We will give descriptions of u-singularities as we introduce the notion of t-topos 
theoretic entropies. The unifying methodology for a u-singularity is the universal mapping 
property of an inverse or direct limit. The qualitative, conceptual, and structural analyses of 
u-singularities are given in terms of inverse and direct limits of micro decompositions of a 
presheaf and coverings of an object in t-site in the theory of temporal topos. 

Prologue 

One of the main reasons for introducing a categorical approach to quantum field theory is 
to avoid divergent expressions, e.g., for the total amplitude of a quantum process. One may 
also take categorical and sheaf theoretic methods as avoidance of the Dedekind-Cantor con­
tinuum approach to physical entities. We should mention here the possibility that sheaf the­
ory is relevant to some non-perturbative approaches to quantum gravity, e.g., loop quantum 
gravity and non-perturbative superstring theory. The concept of a sheaf has been effectively 
used for the foundations of quantum physics and quantum gravity, especially among people 
in the C. Isham school at Imperial College as in [1–3], and Mallios’ school as in [4, 5], 
and Penrose as twistor cohomology of sheaves in [6], and even though direct connections to 
our temporal topos method are not known, a few names also should be mentioned: Mulvey, 
Van Oystaeyen, Heller, and Sasin. In particular, the noncommutative geometry approach, 
called virtual topology of F. Van Oystaeyen, seems to be quite relevant to our work (see 
the treatise Virtual Topology and Functor Category, Tayler and Francis Group, 2007). See 
[7–9] for the developments and the history of sheaf theory in the theory of holomorphic 
functions in several complex variables, algebraic analysis, and algebraic geometry. This is 
the third paper in the series on the fundamentals of the theory of temporal topos, (t -topos) 
following [10, 11]. Our method of temporal topos, referred to as t -topos for short, differs 
from Isham’ s and Mallios’ schools, and also from the Russian school directed by A.K. Guts 
and E.B. Grinkevich. However, we should acknowledge the motivational influence coming 
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especially from [1]. In a way, compared with other approaches to quantum gravity via topos, 
our method of t -topos is a more direct and straightforward application of commonly used 
familiar algebraic geometric (cohomological-algebraic) methods. That is, in order to express 
the changing state of a particle over a time period, the associated presheaf representing the 
particle is “parameterized” by an object in a (t -)site. We call such an object in t -site a gener­
alized time period. Namely, we introduce such a state controlling parameter as a generalized 
time period-object in the t -site to keep track of varying states of a particle. See below for 
more on t -site. One of our goals is to study the topos of presheaves (t -topos) defined on a 
t -site and to study applications to quantum gravity. However, in t -topos theory, a presheaf is 
not always defined on every object in a t -site. When it is defined, a presheaf in t -topos sat­
isfies the usual properties of a contravariant functor. This is one of the issues relevant to the 
Kochen-Specker theorem in [2] and  [3]. For such a connection of t -topos to the approach 
taken in [2] and  [3], the reader is referred to [10]. The theory of t -topos is a background 
independent and scale independent theory* (see (*) below) in the following sense: all the 
concepts (e.g., particle-wave duality, quantum entanglement, light cones) discussed are de­
fined in terms of presheaves associated with either a macro or micro particle together with 
the associated space and time presheaves. For a particle, we associate a presheaf m so that 
each (particle) state of the particle is represented by a pair of the presheaf m and an object V 

(which is called a generalized time period V ) in a site S. [At the Second International Con­
ference on Theoretical Physics and Topos, held at Imperial College, London, 2003, (*)C. 
Isham at the Conference said “(In the definitions in t -topos theory) a particle can be re­
placed by an elephant.”] Such a site as used in t -topos theory is called the t -site. Recall 
that a site in general is a category with a Grothendieck topology as defined in [9, 12, 13]. 
A particle ur-state of the presheaf m associated with a particle is expressed as m(V ) as an 
object in a product category 

Cα. (0.0) 
α∈� 

(See [10, 11, 14].) One of the reasons for introducing the product category indexed by a 
finite set is that for each physical quantity possibly measured, we need a category where 
such a measurement (a morphism) can take place. Following the terminology used among 
topos theorists, the category Ŝ of presheaves on S (with a restricted sense as follows) is said 
to be a temporal topos or simply t -topos. Namely, Ŝ is the category of contravariant functors 
from the t -site S to α∈� Cα . However, such a  t -topos theoretic presheaf is more restricted 
than the usual definition of a presheaf. That is, m(V ) may not be defined for every pair of 
an object m of Ŝ and an object V of S. Hence, an object of the t -topos Ŝ may be more 
appropriately called an ur-presheaf rather than just a presheaf. Let m and P be presheaves. 
We say that m is observable (measurable) by  P over a generalized time period V (i.e. an 
object of the t -site S), when there exists a morphism from m(V ) to P (V  ). For  a presheaf 
m associated with a particle, there are the space and time presheaves κm and τm associated 
with m. As a consequence of an entanglement, those associated space and time presheves 
depend upon a particle presheaf m. This dependency means that space and time are locally 
determined by the particle m, and that the space and time presheaves do not exist without 
the particle. (See [10].) Also recall that a presheaf m is said to be in a particle ur-state if 
there exists an object V in S such that m(V ) is defined. Otherwise, m is said to be in a wave 
ur-state. That is, for example, when such an object V in the t -site cannot be specified as 
in the case of double slit experiment, m is said to be in a wave ur-state. (See [14] for the 
application of t -topos to double slit experiment.) Recall also that m and m � are ur-entangled 
when presheaves m and m � are defined always on the same objects of S. (See [10, 15] for 
connections to EPR type non-locality.) 
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In this paper, for a presheaf m representing a particle and for an object V in the t -site, 

a decomposition of m and a covering of V play major roles to define a notion of entropy. 
Let 

m = mj (0.1) 
j∈J 

be a (micro) decomposition of m into a product of subpresheaves mj of m, indexed by a 
finite set J , and  let 

ϕk{V ←− Vk}k∈K (0.2) 

be a covering of V by the family of objects Vk , indexed by a finite set K , in the sense of [12, 
13], or [9]. For a covering in (0.2), ϕk : V ←− Vk induces the morphism τm(ϕk) : τm(V ) −→ 
τm(Vk) on time presheaf τm. This morphism τm(ϕk) is regarded as the restriction of the time 
period from the longer time period τm(V ) to the shorter period τm(Vk). Notice that even 
though m(V ) is defined, mj(Vk) may not be defined, which is connected to the Kochen-
Specker theorem discussed in [2, 3]. See [10] for a connection to the notion of t -topos. 

Definition 0.1 For an object m in Ŝ and an object V in S, the pair (m,V ) in Ŝ × S is said 
to be compatible when m(V ) is defined. 

Namely, for a (micro) decomposition of m and a covering of V as in (0.1) and  (0.2), 
respectively, among all the possible pairs {mj(Vk)}(j,k)∈J×K , only for a subset of J × K we 
have compatible pairs mj(Vk). We will define a notion of entropy of the state m(V ) as a 
number of such compatible pairs in the next section. For a detail discussion of a microde­
composition, see [11]. 

1 Methods of t -Topos 

Since the first two papers of this trilogy have been published by a different journal, we will 
give a concise description of the results in the earlier two papers [10] and  [11], which is 
relevant to the current paper. We have introduced notions of a microdecomposition and a 
micromorphism. For example, the concept of a t -topos theoretic light cone is viewed like 
a light cone with holes similar to ‘Swiss cheese’. This is because the notion of a micro­
morphism gives the impossibility of factorization between two states given by two objects 
in the t -site. See Epilogue for more on micromorphisms. Together with a microdecomposi­
tion and a further refinement of a covering in what will follow, we get similar “unreified” 
pairs of particle-decomposed presheaves and covering-decomposed objects in a t -site. Such 
a situation where there exist “floating” abundant unmatched pairs of particle presheaves and 
objects in t -site is an ultra microcosm and also closer to “singularity” condition. 

Even though the method of t -topos is a more kinematical and qualitative theory, the dy­
namical aspect is embedded in the space and time presheaves. Namely, space presheaf κm 

and time presheaf τm are associated with a particle. Hence, for example, when the curvature 
of κmis measured (specifying a category among the product category in (0.0)), the funda­
mental composition principle (see what will follow) can be used to assign a (real) value. 
Another view of a dynamical aspect of t -topos is the following. Suppose two particles are 
close enough to influence spacetime in the common “region” of two spacetime presheaves 
(κm� , τm� ) and (κm, τm). Then one can associate with the two gravitationally interacting parti­
cles the “product spacetime,” of the associated spacetime presheaves (κm� , τm� ) and (κm, τm) 

(see p. 176 of [11]). 
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Let a presheaf m associated with a particle be observed twice over V and U . Namely, we 
consider the case when m is observed over V first and then over  U . That is, time τm(V ) pre­
cedes time τm(U) in the usual classical linearly ordered sense. Then there exists a morphism 
g from V to U in the t -site S. Note that not every morphism from V to U in S represents 
such a linear temporal order in the above sense. This is one of the reasons for introducing the 
notion of a site rather than just a topological space for our sheaf theory. From the contravari­
antness of m, there exists the canonically induced morphism m(g) from m(U) to m(V ). If  
an observer P in Ŝ observes m over V , represented by a morphism tV : m(V ) −→ P (V  ), 
then the composition of tV : m(V ) −→ P (V  )  with the canonical morphism m(g) gives the 

m(g) tvmorphism: m(U) −→ m(V ) −→ P (V  ). Then the image Im(tV ◦ m(g)) of the composition 
of those morphisms can be physically interpreted as the information of m over U to P 

over V . An expression as “An electron moves from point A to point B taking all available 
paths simultaneously” is inadequate. This is because expressions like “path” and “simulta­
neously” are the concepts assuming the following: such an electron were observed besides 
the two states at A and B . Our theory focuses on all the possible factorizations {W } by 
linearly t -ordered morphisms from V to U via W where V and U are the corresponding 
objects in t -site S to A and B , respectively (see [14]). Note that if a morphism from V to 
U is a micromorphism, such a proper factorization W does not exist except for the trivial 
ones, i.e., a morphism V to U can be factored only via either V � or U � where V � and U � are 
isomorphic to V and U , respectively. When a morphism from V to U is a micromorphism, 
such an electron cannot be observed after the state corresponding to A and before the state 
corresponding to B . 

For the projection morphism pj from m to each component of the decomposition 

Pj 
m = mj −→ mj, (1.1) 

j∈J 

suppose that mj is observed by P over a generalized time period W . When  P and W are 
compatible (Definition 0.1), we have the induced morphism sW : mj(W) −→ P (W). Then  
the composition morphism 

∏ pj (W) sW 
sW ◦ pj (W) : m(W) = mj (W) −→ mj −→ (W)P (W) (1.2) 

j∈J 

is regarded as the information (measurement) of the (macro) object m via the observation of 
the (micro) object mj by P over the generalized time period W . However, the converse: an 
observation morphism of the (macro) object m over P over a generalized time period cannot 
be composed with the projection morphism pj . Namely, a measurement of a macro object 
(presheaf) m does not give any information of the micro objects (subsheaves) of which m 

consists. 
For a given state m(V ) of m over V , assume that there exists an object V � in such a way 

τm(V � ) precedes τm(V ). That is, there exists a linear t -order sequence of objects in t -site S 

as 

· · ·  −→ V �� −→ V � −→ V.  (1.3) 

In what will follow, such an inverse (projective) limit of (1.1) is to play an important role for 
u-singularities and Planck scale objects for the given state of m over V . 

A definition of a t -topos theoretic light cone is given in [11]. We will give another defin­
ition of a light cone using the presheaf γ associated with a photon. 
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Definition 1.1 Let γ be a photon presheaf which is observed over a generalized time pe­
riod V . Then consider all the cone-sequences going through V : 

{· · · ←− V 2 ←− V 1 ←− V ←− V −1 ←− · · ·}  (1.4) 

where all the morphisms involved in (1.4) are linearly t -ordered. Then we define the light 
cone with respect to the state γ (V  )  as follows. The light cone for the state γ (V  )  is the 
collection of all the objects and the induced morphisms from (1.4): 

{κγ (V l), τγ (V l)} for l = ±1,±2, . . . ,  (1.5) 

where κγ and τγ are the space and time presheaves associated with a photon presheaf γ . That 
is, the light cone with respect to V can be interpreted as the collection of all the possible 
sequences: 

2 1 −1{· · · ←− κγ (V ) ←− κγ (V )κγ (V ) ←− κγ (V ) ←− · · ·}  (1.6) 

and 

2 1 −1{· · · ←− τγ (V ) ←− τγ (V ) ←− τγ (V )τγ ←− (V ) ←− · · ·}  (1.7) 

for all the cone-sequences of objects going through V as (1.4) in the  t -site S. In general, in 
terms of t -site S, we can also define the notion of a light cone as follows: V and V � are said 
to be in a light cone if there exists a cone-sequence between V and V � . 

2 Entropy and Limits 

We will define the notions of entropies for a decomposition as in (0.1) of  m and for a cover­
ing as in (0.2) of  V of objects in the t -topos Ŝ and t -site S, respectively. 

Definition 2.1 The t -entropy of the state m(V ) for a micro decomposition m = mjj∈J 
ϕkand a micro covering {V ←− Vk}k∈K is defined as the number of compatible pairs {mj(Vk)}. 

Definition 2.2 The formal entropy of m(V ) for the decomposition and the covering is de­
fined by the product of cardinalities of J and K . 

Note 2.3 For compatible pairs mj(Vk) and mj∗(Vk∗), there need not be a linear t -order 
between τmj 

(Vk) and τmj∗(Vk∗). The rest of the non-compatible pairs between the decom­
position and the covering are the collection of non-observable (non-measurable) particle 
associated subsheaves. Hence, then there is no associated space and time with such non-
compatible pairs. 

Definition 2.4 The absolute entropy of m(V ) is the maximum number of compatible pairs 
for all decompositions and coverings of m and V , respectively. 

Next, we will consider limits of such sequences as in (0.1) and  (0.2) and a sequence as in 
(1.3). Considering a further decomposition of each subsheaf mj in (0.1), we get a sequence 
of morphisms 

m = mj −→ −→ · · · , (2.1)mji 

j∈J i∈I 



 

 

 

which is a sequence of the projection morphisms as in (1.1). Also, for such a covering as in 
(0.2), since a covering of a covering is a covering of V (e.g., [11]), we have a sequence as 

ϕk ϕki{V ←− Vk}k∈K ←− {V ←− Vki 
}k∈K,i∈I ←− · · ·  . (2.2) 

We will discuss the inner relations among 

(i) u-singularities, 
(ii) an inverse limit appearing in (1.3), and 

(iii) a direct limit of (2.1) and an inverse limit of (2.2). 

Our study of “singularities” is categorical, which is neither in Morse-Thom topological 
catastrophe theory nor the differential geometric theories of general relativity. That is one of 
the main reasons for us to choose the notion of a topos by replacing “points” with either “re­
gions” or objects of a category as mentioned in Prologue. The terminology “u-”singularities 
is meant to be a characterization in terms of “universal” mapping property of direct and 
inverse limits. That is, our u-singularities are defined (and hopefully captured) in terms of 
categorical notions of limits. For the general notions of direct (inductive) and inverse (pro­
jective) limits, see treatises [9, 12, 13]. First, the direct limit of the sequence of morphisms 
in (2.1) may be called an ur-subplanck decomposition. (Note that in [11], this notion of a 
ur-subplanck decomposition is introduced. However, the direct sum used in [11] should be 
replaced by the direct product as in (2.1). Hence, the direct limit is appropriate, not the in­
verse limit used in [11].) The inverse limit of (2.2) is called an ur-subplanck covering of V . 
By the definition of the t -topos theoretic entropy, the mass of the particle ur-state m(V ) is 
in general greater than the totality of the measured total mass of all the compatible pairs for 
any decomposition as in (0.1) of  m and any covering as in (0.2) of  V . 

We define the u-singularities for the state m(V ) as the states of stationary conditions in 
the following sense. After a finite number of the processes of refinements of the coverings 
in (2.2), there appear stationary objects Vα so that for the inverse limit of the covering se­
quence of (2.2), the coverings are consisting of isomorphic objects to Vα’s. Namely, we get 

ϕaa covering {V ←− Vα} as the inverse limit of (2.2). See Definition 2.6 below. The t -entropy 
for such a limit pair of the ur-subplanck decomposition of m and the ur-subplanck cover­
ing of V , can be computed in the following sense. By identifying the isomorphic objects, 
the number of compatible pairs, i.e., the t -entropy of the state m(V ), is determined by the 
number of mjω which are compatible with those Vα , where mjω are subobjects of m ap­
pearing in the direct limit of (2.1). See Definition 2.5 below. For each refinement (or as the 
inverse limit) of a covering as in (2.2), the corresponding time periods (not generalized time 
periods as objects of S) τ(Vki

) are shorter than τ(Vk) as noted earlier. Then for the corre­
sponding decomposition (or as the direct limit) as in (2.1), some of the compatibly paired 
objects can be physically interpreted as corresponding to short-lived particles causing more 
severe curvatures in spacetime in the classical sense. Such a condition can be interpreted as 
the non-smoothness of spacetime in microcosm. Note that as noted before an assignment 
of scaling for an object like τ(Vk) can be given by FUNC (the fundamental composition 
principle in [2, 3]. See the following Epilogue). 

Definition 2.5 A presheaf m in Ŝ is said to be fundamental when m cannot be decomposed 
into a product of proper subsheaves. 

Definition 2.6 An object V in S is said to be fundamental when an isomorphism V ←− V � 
is the only covering of V . 



 

 

 

 

 

Note 2.7 Such fundamental presheaves in Definition 2.5 can be considered to correspond 
to presheaves associated with elementary particles. In the definition of an ur-subplanck 
decomposition defined as a direct limit of (2.1), each decomposed subsheaf mjω in the above 
is fundamental. Note also that such an object Vα defined in the above as an inverse limit, 
i.e., an ur-subplanck covering, is a fundamental object in S. 

For m in Ŝ and V in S, if  m(V ) is defined, we have a linearly t -ordered sequence for 
such a V as in (1.3). 

Next we will consider such a sequence as (1.3) for a fundamental presheaf denoted as 
mω . Then we have the following sequence from (1.3): 

· · ·  ←− mω(V �� ) ←− mω(V � ) ←− mω(V ). (2.3) 

The direct limit of (2.3) is associated with the u-singularity induced by the inverse 
limit lim(V ) = lim(· · ·  −→ V �� −→ V � −→ V )  of the linear t -order sequence (1.3). Then←− def ←− 
τmω(lim(V )) must not be preceded in linear t -order, hence by any usual classical time, pro­←− 
vided that such a (particle associated) presheaf mω has survived from the earliest universe. 
As such a fundamental presheaf mω , we may consider cosmic background radiation. If the 
classical notion of the big bang indicates correctly an earliest universe state, it is reasonable 
to assume the following. For any such presheaf mω and such specified object V in the above, 
they have a common (isomorphic) inverse limit corresponding to a big bang state. However, 
there is no reason for such a preasheaf mω to be compatible with such an inverse limit ob­
ject of linear t -order sequence. Notice that this common (isomorphic) object in the t -site is 
related to the stationary object Vα appearing in the inverse limit of the covering (2.2) whose 
u-singularities represent gravitational fluctuations. Note that both cases of a big bang and a 
black hole satisfy the following principle called “Ancestor’s Rule.” That is, each of us has 2 
to the n-th ancestors in our n generations back. For the increasing population, however, the 
number of the ancestors is small for a large n. Note that the entropies in Definitions 2.1, 2.2, 
2.4 of decrease as time recedes. 

Epilogue 

Our basic approach toward quantum behavior of a particle (elementary or not) is to capture 
an ur-particle state as a reified pair of the associated presheaf m and an object V of t -site. 
When presheaf m does not have an object to be reified, m is said to be in an ur-wave state. 
This ur-wave state includes the case of the double slit experiment because of the indetermi­
nation of such a choice of an object of the t -site. Let V and V � be two objects determining 
the corresponding ur-particle states of presheaf m. Moreover, suppose m(V ) is observed 
first and m(V � ) is observed later. Then there is a morphism f from V to V � in the t -site, 
inducing a linear time order in the usual sense. Let us focus on factorizations of such a mor­
phism from V to V � . Suppose there is no intermediate linearly ordered time state between 
the states m(V ) and m(V � ) via any proper factorization. That is, if there do not exist mor­

g h
phisms g and h and an object W in t -site satisfying f = h ◦ g for V −→ W −→ V � , where 
neither g nor h is isomorphic, then such a morphism f is said to be a micromorphism. 
When applied to the notion of a light cone of a particle in a microcosm, such a t -topos 
theoretic light cone is a light cone with holes, i.e., missing states where the associated par­
ticle presheaf does not have objects from t -site to be reified as we have mentioned earlier. 
One of the missing elements in our approach of t -topos is the aspect of dynamics. In t ­
topos theory there is a notion for such a relativistic dynamics in terms of the space and time 



 

 

 

 

presheaves depending upon a particle (locally defined) and the notion of the product of those 
presheaves. However, further study is needed to develop the t -topos theory to treat further 
applications. The development of t -topos methods is still at the earlier stage. The t -topos 
aspect of the time delay effect, for example near a black hole, is yet to be formulated. In the 
near future, our plan is to investigate the t -topos theoretic interpretations of Hawking radia­
tion and quantum tunneling. See our forthcoming papers, e.g., [17]. Categorically speaking 
(not in the mathematical sense), our theory may belong to a hidden variable approach (with 
direct experimental applications) as indicated in [18]. A similarity between back hole type 
singularity and a big bang type singularity is the concept of u-singularity, i.e., the categori­
cal notion of a limit (inverse or direct). Namely, for a compatible pair of a presheaf and an 
object (generalized time period) of the t -site, a black hole type singularity is described as 
limits of micro decompositions of the given presheaf and of micro coverings of the object 
of the t -site. Meanwhile, a micro big bang type singularity is given as a limit of a linearly 
t -ordered sequence for such a compatible object of the t -site with an arbitrary fundamental 
presheaf. We may even consider the totally incompatible (non-reified) state of fundamental 
presheaves and fundamental objects of S. We may call such a state as a ur-bang, which  
should not be called a “pre-big bang” state. It is the “unmatched melting pot” of t -topos and 
t -site objects without any compatible pairs. Some results from particle physics may tell us 
how many fundamental objects are in t -topos and t -site at the big bang. In order to make 
the t -topos theory into a quantitative theory, we may be able to use the so called the fun­
damental composition principle as in [2] and  [3] for V defined for an operator in a Hilbert 
space H corresponding to a physical quantity. Namely, the following diagram consisting of 
the vertical morphism of Hilbert space H induced by a function from real number R to R: 

v 

H R 

v 

H R 

is commutative. See [10] for details. For the mathematical foundations for t -topos theory, 
see the forthcoming [16]. In this paper, sheaf cohomology per se does not appear. However, 
sheaf cohomology via coverings is crucial for Penrose’s work as mentioned in Prologue 
and also for Mallios and Raptis, De Rham cohomology, i.e., the hypercohomology with 
coefficient in the cochain complex of differential forms, plays an important role in [4] and  
[5]. Volovich’s p-adic string theory as in [19] requires the computation of the 1st p-adic 
cohomology group associated with Fermat curve over a finite field to obtain the Veneziano 
amplitude (see the references in [19]). More general treatments of cohomologies can be 
found in [9] and  [12]. 
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