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a b s t r a c t  

Taking an elementary and straightforward approach, we develop the concept of a regular 
value for a smooth map f : O → P between smooth orbifolds O and P . We show that  
Sard’s theorem holds and that the inverse image of a regular value is a smooth full 
suborbifold of O. We also study some constraints that the existence of a smooth orbifold 
map imposes on local isotropy groups. As an application, we prove a Borsuk no retraction 
theorem for compact orbifolds with boundary and some obstructions to the existence of 
real-valued orbifold maps from local model orbifold charts. 

1. Introduction 

Inspired by the elementary and elegant treatment of differential topology found in J. Milnor’s book [7], Topology from a 
differentiable viewpoint, we generalize some of the fundamental material of that book to the category of smooth orbifolds in 
a manner that is elementary. 

2. Smooth orbifolds 

Although there are many references for this background material, we will use our previous work [3,4] as our standard 
reference. While much of what we discuss here works equally well for smooth Cr orbifolds, to simplify the exposition, we 
restrict ourselves to smooth C∞ orbifolds. Throughout, the term smooth means C∞ . This results in no loss of generality 
[3, Proposition 3.11], [6]. Note that the classical definition of orbifold given below is modeled on the definition in Thurston 
[12] and that these orbifolds are referred to as classical effective orbifolds in [1]. 

Definition 2.1. An n-dimensional smooth orbifold O, consists of a paracompact, Hausdorff topological space XO called the 
underlying space, with the following local structure. For each x ∈ XO and neighborhood U of x, there is a neighborhood 
Ux ⊂ U , an open set  Ũx diffeomorphic to Rn , a finite group Γx acting smoothly and effectively on Ũx which fixes 0 ∈ Ũx , 
and a homeomorphism φx : Ũx/Γx → Ux with φx(0) = x. These actions are subject to the condition that for a neighborhood 

˜ ∼Uz ⊂ Ux with corresponding Uz = Rn , group Γz and homeomorphism φz : Ũ z/Γz → Uz , there is a smooth embedding 
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Fig. 1. Compact connected 1-orbifolds. 

ψ̃zx : Ũ z → Ũx and an injective homomorphism θzx : Γz → Γx so that ψ̃zx is equivariant with respect to θzx (that is, for 
γ ∈ Γz, ψ̃zx(γ · ỹ) = θzx(γ ) · ψ̃zx( ỹ) for all ỹ ∈ Ũ z ), such that the following diagram commutes: 

ψ̃zx˜

˜

φx 

We will refer to the neighborhood Ux or (Ũx,Γx) or (Ũx,Γx,ρx, φx) as an orbifold chart, and write Ux = Ũx/Γx . In the  
4-tuple notation, we are making explicit the representation ρx : Γx → Diff∞(Ũx). The  isotropy group of x is the group Γx . The 
definition of orbifold implies that the germ of the action of Γx in a neighborhood of the origin of Rn is unique, so that 
by shrinking Ũx if necessary, Γx is well defined up to isomorphism. The singular set of O is the set of points x ∈ O with 
Γx  = {1}. More detail can be found in [3]. 

Definition 2.2. A smooth orbifold with boundary X , is an orbifold as in Definition 2.1 where one replaces the requirement 
that Ũx be diffeomorphic to Rn with the requirement that Ũx be diffeomorphic to Rn or Rn + , the closed upper half-space. 

The boundary ∂X of X consists of those points x ∈ X where Ũx is diffeomorphic to Rn . Throughout the rest of the article, +
we will use X to denote a smooth orbifold with nonempty boundary. 

2.1. Compact 1-dimensional orbifolds 

Using the classification of compact 1-dimensional manifolds, it is easy to classify all 1-dimensional compact connected 
orbifolds with or without boundary. There are four types: (a) the circle S1, (b) the closed interval [0, 1] with trivial orbifold 
structure, (c) the closed interval [0, 1] with where {0} is a singular point with Z2 isotropy, and (d) the closed interval [0, 1]
where both {0, 1} have Z2 isotropy. Thus, the compact 1-orbifolds must be finite unions of orbifolds of these types. See 
Fig. 1. 

2.2. Smooth suborbifolds 

The definition of suborbifold is somewhat subtle and we distinguish two types of suborbifolds. 

Definition 2.3. An (embedded) suborbifold P of an orbifold O consists of the following. 

(1) A subspace XP ⊂ XO equipped with the subspace topology; 
(2) For each x ∈ XP and neighborhood W of x in XO there is an orbifold chart (Ũx,Γx,ρx, φx) about x in O with Ux ⊂ W , 

a subgroup Λx ⊂ Γx of the isotropy group of x in O and a ρx(Λx) invariant linear submanifold Ṽ x ⊂ Ũx = Rn , so  ∼
that (Ṽ x,Λx/Ωx,ρx|Λx ,ψx) is an orbifold chart for P where Ωx = {γ ∈ Λx: ρx(γ )| ˜ = Id} (in particular, the intrinsicVx 
isotropy subgroup at x ∈ P is Λx/Ωx); and 

(3) Vx = ψx(Ṽ x/ρx(Λx)) = Ux ∩ XP is an orbifold chart for x in P . 

Remark 2.4. Originally, in [12], the notion of an m-suborbifold P of an n-orbifold O required P to be locally modeled on 
R

m ⊂ Rn modulo finite groups. That is, the local action on Rm is induced by the local action on Rn . This is equivalent to 
adding the condition that Λx = Γx at all x in the underlying topological space of P . 



Given this remark, we make the following definition: 

Definition 2.5. P ⊂ O is a full suborbifold of O if P is a suborbifold with Λx = Γx for all x ∈ P . 

Example 2.6. Let Q = R/Z2 be the smooth orbifold (without boundary) where Z2 acts on R via γ · x = −x. The underlying 
topological space XQ of Q is [0, ∞) and the isotropy subgroups are {1} for x ∈ (0, ∞) and Z2 for x = 0. Let O = Q × Q
be the smooth product orbifold (without boundary). See [3, Definition 2.12]. The underlying space for O can be identified 
with the closed first quadrant and the singular points of O lie in one of three connected singular strata: the positive x axis, 
the positive y axis (corresponding to those points with Z2 isotropy), and the origin which has Z2 × Z2 isotropy. Then both 
Q × {0} and {0} × Q are full suborbifolds of O. On the other hand, the diagonal diag(Q) = {(x, x): x ∈ Q} ⊂ O is merely a 
suborbifold. See [3, Example 2.15]. 

Example 2.7. Let O be as in Example 2.6. Consider the circle S ⊂ O of radius 1 centered at (1, 1). Then S is a suborbifold 
of O that is not a full suborbifold. To see this, just note that at the point x = (1, 0) ∈ O any lift of S to Ux = R

2 in a ˜ ∼
neighborhood of x, cannot be an invariant linear submanifold unless we choose Λx = {1}. In this case, we see that the 
intrinsic isotropy group of S at x is trivial which it must be since S is actually a compact 1-dimensional manifold. That is, 
a compact 1-dimensional orbifold with trivial orbifold structure. 

Remark 2.8. Let P ⊂ O be a suborbifold. Note that even though a point p ∈ XP may be in the singular set of O, it need  
not be in the singular set of P . 

3. Smooth mappings between orbifolds 

In the literature, there are four related definitions of maps between orbifolds which are based on the classical Satake– 
Thurston approach to orbifolds via atlases of orbifold charts. In this paper, we only need to use the notion of complete 
orbifold map. It is distinguished from the other notions of orbifold map in that we are going to keep track of all defining 
data. All other notions of orbifold map descend from the complete orbifold maps by forgetting information. It turns out that 
the results of this paper also follow using any of the four notions of orbifold map. This requires only an understanding of 
how these notions of orbifold map are related to one another. We point this out explicitly in our exposition below. More 
detail can be found in [4] and in what follows we use the notation of [3, Section 2]. 

The original motivation for defining the notion of complete orbifold map was to make meaningful and well defined 
certain geometric constructions involving orbifolds and their maps. The need to be careful in defining an adequate notion 
of orbifold map was already noted in the work of Moerdijk and Pronk [8] and Chen and Ruan [5] and was missing from 
Satake’s original work on V -manifolds [10,11]. 

3.1. Complete orbifold maps 

Definition 3.1. A C∞ complete orbifold map ( f , { f̃ x}, {Θ f ,x}) between smooth orbifolds O and P consists of the following: 

(1) A continuous map f : XO → XP of the underlying topological spaces. 
(2) For each y ∈ O, a group homomorphism Θ f ,y : Γy → Γ f (y) . 

(3) A smooth Θ f ,y -equivariant lift f̃ y : Ũ y → Ṽ f (y) where (Ũ y ,Γy ) is an orbifold chart at y and (Ṽ f (y),Γ  f (y)) is an orbifold 
chart at f (y). That is, the following diagram commutes: 

f̃ y˜ ˜U y V f (y) 

f̃ y /Θ f ,y (Γy )
Ũ y /Γy Ṽ f (y)/Θ f ,y (Γy ) 

Ṽ f (y)/Γ f (y) 

U y 
f 

V f (y) 

(*4) (Equivalence) Two complete orbifold maps ( f , { f̃ x}, {Θ f ,x}) and (g, {g̃x}, {Θg,x}) are considered equivalent if for each 

x ∈ O1, f̃ x = g̃x as germs and Θ f ,x = Θg,x . That is, there exists an orbifold chart (Ũx,Γx) at x such that f̃ x| ˜ = g̃x| ˜Ux Ux 
and Θ f ,x = Θg,x . Note that this implies that f = g . 



The set of smooth complete orbifold maps from O to P will be denoted by C
*

∞ 
Orb

(O, P). For  O compact (without boundary), 
C

*
∞ 
Orb

(O, P) carries the structure of a smooth Fréchet manifold [4]. 

3.2. Regular and critical values 

Definition 3.2. Let * f = ( f , { f̃ x}, {Θ f ,x}) : O → P be a smooth complete orbifold map between smooth orbifolds. A point 

p ∈ P is a regular value for * f if d ̃fx(x̃) : T ̃ Ũx → T ̃ Ṽ p is surjective for all x ∈ f −1(p). Otherwise, p is a critical value for * f . 
By convention, if p ∈/ f (O), then  p is a regular value. 

x p 

Remark 3.3. Because all local lifts of an orbifold map f : O → P at x differ from one another by the action of an element 
of Γ f (x) (which acts by diffeomorphisms on Ṽ f (x)), it is clear that the notion of regular value is well defined for any of the 
four notions of orbifold map. 

4. Sard’s theorem and preimage theorem 

The local structure of a smooth orbifold is that of a quotient by a finite action by diffeomorphisms which is measure 
non-increasing. Hence the usual Sard’s theorem for manifolds [7] yields a Sard’s theorem for smooth orbifolds. 

Theorem 4.1 (Sard’s theorem for orbifolds). Let f : O → P be a (complete) smooth orbifold map. Then the set of critical values for f 
has measure 0 in P and thus the set of regular values is everywhere dense in P . 

We are ready to state our first main result which is the analogue of the so-called preimage theorem: 

Theorem 4.2 (Preimage theorem for orbifolds). Let O, P be smooth orbifolds (without boundary) with dim O ; dim P . Let  f  : O → P 
be a (complete) smooth orbifold map and p ∈ P a regular value for f . Then f −1(p) = S has the structure of a full, smooth suborb
ifold of dimension dim(S) = dim(O) − dim(P). Moreover, the local isotropy groups Γx,S = Γx,O/Gx,O where Gx,O = {γ ∈ Γx,O: 
dγ |

ker(d ̃fx(x̃)) 
= Id}. 

Proof. It suffices to work in a chart. For x ∈ S , f̃ −1(p̃) is a submanifold S̃x of Ũx of dimension dim(O) − dim(P) andx 

Tx̃ S̃x = ker(d ̃fx(x̃)), by the preimage theorem for manifolds [7]. The submanifold S̃x is Γx,O -invariant. To see this, let ỹ ∈ S̃x 

and γ ∈ Γx,O . Then  

f̃ x(γ · ỹ) = Θ f ,x(γ ) · f̃ x( ỹ) = Θ f ,x(γ ) · p̃ = p̃

since Θ f ,x(γ ) ∈ Γp,P . Thus, γ · ỹ ∈ S̃x and we have shown that S̃x is Γx,O-invariant. Thus, a neighborhood of x ∈ S can be 
∼ ˜realized as the quotient S̃x/Γx,O = Sx/(Γx,O/Ωx,O), where Ωx,O = {γ ∈ Γx,O: γ | ˜ = Id}. Since Γx,O/Ωx,O acts effectively, Sx 

we have shown that S has the structure of a full suborbifold of O with local isotropy groups Γx,S = Γx,O/Ωx,O . The 

Bochner–Cartan theorem [3,9] implies that the smooth action of Γx,O is smoothly conjugate to the linear action on Ũx 

given by the differential of the action. Since Γx,S = Γx,O/Ωx,O , the representation of Γx,S given in the last statement of 
the theorem follows. o 

More generally, as in the case for manifolds we get a preimage theorem for orbifolds with boundary. We omit the proof. 

Theorem 4.3 (Preimage theorem for orbifolds with boundary). Let X be a smooth orbifold with boundary and P a smooth orbifold 
with dim X > dim P . Let  f  : X → P be a (complete) smooth orbifold map and p ∈ P a regular value for f and for the restriction 
f |∂X . Then  f  −1(p) = S has the structure of a full, smooth suborbifold with boundary of dimension dim(S) = dim(X ) − dim(P). 
Moreover, the boundary ∂(  f −1(p)) is the intersection f −1(p) ∩ ∂X . 

Remark 4.4. By Remark 3.3, it follows that each of the results of this section also holds for any of the four notions of 
orbifold map. Specifically, because all local lifts of an orbifold map f : O → P at x differ from one another by the action of 

an element of Γ f (x) (which acts by diffeomorphisms on Ṽ f (x)), we have that Tx̃ S̃x = ker(d ̃fx(x̃)) = ker(d(ηx · f̃ x)(x̃)) for any 
ηx ∈ Γ f (x) . 

5. Implications of the existence of smooth map between orbifolds 

Unsurprisingly, there are obstructions (which are manifested in the local orbifold chart structure) to the existence of a 
smooth map between orbifolds. In this section, we give the main tool we will use later. To avoid cumbersome notation, the 
induced action of γ ∈ Γx on tangent vectors ṽ ∈ Tx̃Ũx will be denoted by left multiplication as well: γ · ṽ = dγx̃(ṽ) when 
convenient. 
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Let * f = ( f , { f̃ x}, {Θ f ,x}) : O → P be a smooth (complete) orbifold map. Let Kx = ker(d ̃fx(x̃)) and Nx = ker Θ f ,x ⊂ Γx,O , 

a normal subgroup. For all ṽ ∈ T ̃ Ũx and γ ∈ Nx we have x 

d ̃fx(x̃)(γ · ṽ) = Θ f ,x(γ ) · d ̃fx(x̃)(ṽ) = d ̃fx(x̃)(ṽ). 

Thus, γ · ṽ − ṽ ∈ Kx . In other words, for each γ ∈ Nx we have a linear map Aγ = (γ − I) ∈ Hom(T ̃ Ũx, Kx). Here, I denotes x 

the identity map. 
We have γ · ṽ = (I + Aγ )ṽ and thus, (γ δ) · ṽ = (I + Aγ δ)ṽ . On the other hand, we have 

(I + Aγ δ)ṽ = (γ δ) · ṽ = γ · (δ · ṽ) = γ · (I + Aδ)ṽ = γ · ṽ + γ · Aδ ṽ


= (I + Aγ )ṽ + γ · Aδ ṽ = (I + Aγ + γ · Aδ)ṽ.
 

Also, 

(I + Aγ δ)ṽ = (γ δ) · ṽ = γ · (δ · ṽ) = (I + Aγ )(δ · ṽ) = δ · ṽ + Aγ (δ · ṽ)
 

= (I + Aδ)ṽ + Aγ (δ · ṽ) = (I + Aδ + Aγ δ)ṽ.
 

Similarly, 

(I + Aγ δ)ṽ = (γ δ) · ṽ = γ · (δ · ṽ) = (I + Aγ )(δ · ṽ) = δ · ṽ + Aγ (δ · ṽ)
 

= δ · ṽ + Aγ (I + Aδ)ṽ = δ · ṽ + Aγ ṽ + Aγ Aδ ṽ


= (I + Aδ)ṽ + Aγ ṽ + Aγ Aδ ṽ = (I + Aδ + Aγ + Aγ Aδ)ṽ. 

We thus have three expressions for Aγ δ : 

Aγ δ = Aγ + γ · Aδ
 

= Aδ + Aγ δ·
 
= Aδ + Aγ + Aγ Aδ.
 

Proposition 5.1. With * f and notation as above, for each x ∈ O, there exists an Nx-invariant linear projection Ax ∈ HomNx (Tx̃Ũx, Kx). 

1 
|Nx|

Similarly, Aδ· =  

1 
|Nx|

1 
|Nx |
A − Aδ . 

δ∈Nx 
(Aγ δ − 

Therefore, 

Proof. Define the linear map A ∈ Hom(T ̃ Ũx, Kx), by  A = x 

Aγ ) = A − Aγ . Therefore, Aγ = A − γ · A. 1 
|Nx|
Aγ ·

δ∈Nx 
Aδ . Then γ · A = δ∈Nx 

γ · Aδ = 
1 

|Nx|
and thus, A is Nx-invariant. To show that A is a projection, 

γ ∈Nx γ ∈Nx 
Aγ δ· =  (Aγ δ − Aδ) = 

Aδ = A − Aδ·. Putting this together, we conclude that γ · A =
we compute 

1 1 
A2 (Aγ δ − Aγ − Aδ)Aγ Aδ == |Nx|2 |Nx|2

γ ∈Nx δ∈Nx γ ∈Nx δ∈Nx 

1 

|Nx|2
γ ∈Nx 

|Nx|(A − Aγ − A) = −A.= 

Thus, Ax = −A is the required Nx-invariant linear projection. o 

Lemma 5.2. For all ṽ ∈ ker Ax and γ ∈ Nx, γ · ˜ ˜ = Id.v = v. That is, γ |ker Ax 

Proof. Using Proposition 5.1, since Ax is a projection, the tangent space decomposes Tx̃Ũx = ker Ax ⊕ im Ax and furthermore, 
since Ax is Nx-invariant, so is this decomposition. For ṽ ∈ T ̃ Ũx and γ ∈ Nx , we have  γ · ṽ − ṽ = Aγ ṽ = (γ · Ax − Ax)ṽ . Thus, x 

γ · ṽ − ṽ ∈ im Ax since im Ax is Nx-invariant. If we further suppose that ṽ ∈ ker Ax , then since ker Ax is Nx-invariant, we 
must have γ · ṽ − ṽ ∈ ker Ax ∩ im Ax = {0}. This implies that γ · ṽ = ṽ for all ṽ ∈ ker Ax and γ ∈ Nx . o 

Proposition 5.3. Let O, P be smooth orbifolds with dim O ; dim P . Let  * f = ( f , { f̃ x}, {Θ f ,x}) : O → P be a smooth (complete) 

orbifold map and p ∈ P a regular value for f . Then there is a faithful representation of Nx = ker Θ f ,x in Γx,S where S = f −1(p) is 
the full, smooth suborbifold given by the preimage Theorem 4.2. 

Proof. Let Kx = ker(d ̃fx(x̃)). By Theorem 4.2, Γx,S = Γx,O/Gx,O where Gx,O = {γ ∈ Γx,O: γ |Kx = Id}. Then Gx,O ∩ Nx = {Id}. 
For, if γ ∈ Gx,O ∩ Nx , then by Lemma 5.2, γ |ker Ax = Id. Also, since γ |Kx = Id and im Ax ⊂ Kx , then γ |im Ax = Id. Since 



x 
˜ ∼T ̃ Ux = ker Ax ⊕ im Ax , we conclude that γ = Id. Consider the quotient homomorphism Γx,O → Γx,O/Gx,O = Γx,S and 

restrict to the normal subgroup Nx: 

∼Nx → NxGx,O/Gx,O = Nx/(Nx ∩ Gx,O) ∼= Nx. 

From this we see that Nx is faithfully represented in Γx,S . o 

Remark 5.4. It follows that each of the results of this section also holds for any of the four notions of orbifold map by our 
previous Remarks 3.3 and 4.4, and the observation that Nx = ker Θ f ,x = ker ηxΘ f ,xη−1, for all ηx ∈ Γ f (x) .x 

6. Applications 

In this section we give some applications of our results. 

Example 6.1. Let Γ be a finite group. Suppose that O = R
n/Γ , with Γ acting linearly on Rn and P = R

n (with the trivial 
orbifold structure). Let * f = ( f , { f̃ x}, {Θ f ,x}) : O → P be a smooth (complete) orbifold map. Assume f (0) = p. Then p ∈ P 
is never a regular value. For otherwise, Γ would be forced to act effectively on 0-dimensional singleton by Proposition 5.3, 
which is impossible. 

Example 6.2. Let Γ be a finite group. Suppose that O = R
n/Γ , with  Γ acting linearly on Rn via an irreducible repre

sentation. Let P = R
k/Γ where k < n and Γ any effective action on Rk . Let  * f = ( f , { f̃ x}, {Θ f ,x}) : O → P be a smooth 

(complete) orbifold map. Assume f (0) = p. Then  p ∈ P is never a regular value. For, otherwise, Γ would be forced leave an 
(n − k)-dimensional subspace of Rn invariant by Theorem 4.2, which cannot happen by our assumption of irreducibility of 
the action of Γ on Rn . 

Example 6.3. Let * f = ( f , { f̃ x}, {Θ f ,x}) : O → R be a smooth (complete) orbifold map where O is a smooth n-dimensional 
orbifold (without boundary) and R has been given the trivial orbifold structure. Suppose p is a regular value of * f . Then 
f −1(p) = S is a full suborbifold of dimension (n − 1). For  x ∈ S , we have  Nx = Γx,O . Since  Gx,O ∩ Nx = {Id} (see the proof 

∼of Proposition 5.3), we have that Γx,S = Γx,O and thus Γx,O acts effectively on Kx = ker(d ̃fx(x̃)) = Tx̃S̃ 
x = R

n−1. Since 
ṽ ∈ ker Ax implies Γx,O · ṽ = ṽ by Lemma 5.2 and Γx,O acts effectively on Kx , we see that ker Ax ∩ Kx = {0}. This implies  

∼that Kx ⊂ im Ax and since im Ax ⊂ Kx by definition, Kx = im Ax and hence ker Ax = R. Thus we have a  Γx,O -invariant 

decomposition of the tangent space T ̃ Ũx = ker Ax ⊕ im Ax = R ⊕ Kx . In particular, again by Lemma 5.2, the  R factor of this x 

decomposition is fixed by the action of Γx,O and thus we conclude that ΣO (x), the connected component of the singular 
set of O that contains x, must be empty or have dimension dim(ΣO(x)) ; 1. 

Example 6.4. As an application of Example 6.3 we conclude that if * f : O → R is a smooth (complete) orbifold map and 
p ∈ R is a regular value, then f −1(p) cannot contain any isolated points in the singular set of O. 

A generalization of K. Borsuk’s so-called no retraction theorem [2,7] states that there is no smooth map from a compact 
manifold with boundary to its boundary that leaves the boundary fixed. We prove an analogue of this result for orbifolds. 
The following example shows that some extra assumptions are necessary in the orbifold case. 

Example 6.5. Let X be the compact 1-orbifold with boundary of type (c) given in Section 2.1. Then a smooth (complete) 
orbifold map * f : X → ∂X with * f |∂X = Id is given by the constant map x  → 1 = ∂X . 

Theorem 6.6. Let X be a smooth n-dimensional compact orbifold with boundary ∂X and assume that the interior, int X , does not 
have any codimension 1 singular strata. Then there is no smooth (complete) orbifold map * f : X → ∂X with * f | = Id.∂X 

Proof. Suppose such * f exists. By Sard’s theorem there exists a regular value p ∈ ∂X . Furthermore, since the singular set 
of an orbifold is nowhere dense, we may further assume that p is not in the singular set of ∂X . Therefore, by Theorem 4.3, 
f −1(p) = S is a full, smooth 1-orbifold with boundary and ∂S = S ∩ ∂X = {p} since * f |∂X = Id. Because ∂S consists of 
a single point, there must be a connected component Sc of S isomorphic to a compact 1-orbifold of type (c). Consider 
the unique point z ∈ Sc ∩ int X where Γz,Sc = Z2. Arguing as in Example 6.3, we can conclude that Γz,X = Γz,Sc = Z2 and 

that we have a Z2-invariant decomposition of the tangent space T ̃ Ũ z = R
n−1 ⊕ R which leaves the Rn−1 factor fixed. This z 

implies that the dimension of the singular stratum containing z has codimension 1. By assumption, no such points z ∈ X 
exist and we have our desired contradiction. o 

Corollary 6.7 (No retraction theorem for orbifolds). Let X be a smooth compact orbifold with boundary ∂X . Assume the singular set 
of X has codimension greater than 1. Then ∂X is not a smooth orbifold retract of X . 



Fig. 2. An orbifold X with only codimension 1 strata that does not retract to ∂X . 

Remark 6.8. Orbifolds can be regarded as rational homology manifolds and Corollary 6.7 provides a nice subclass of such 
rational homology manifolds for which a Borsuk no retraction result holds. 

In light of Example 6.5, one might suspect that the existence of codimension 1 strata is enough to guarantee a retraction 
to the boundary. The following two examples show that this is not the case. 

Example 6.9 (A pair of pants with mirror). See Fig. 2. 

Example 6.10 (A knot complement). Consider the closed 3-ball D3 and let K denote any embedded tubular neighborhood of 
a knot in the interior of D3. The boundary of D3 − K is the disjoint union S2 U T 2 of a 2-sphere and 2-torus. Consider the 
3-orbifold with boundary X whose underlying topological space is D3 − K where we consider the S2 (topological) boundary 
component as a Z2 mirror. Thus, as an orbifold ∂X . = Z2 and H1(X , Z) =∼ Z since X= T 2 Because H1(∂X , Z) ∼ is a knot 
complement, there can be no retraction r : X → ∂X by elementary homology considerations. 

Elaborating on the ideas in the proof of Theorem 6.6, we can give hypotheses that guarantee that the preimage of a 
regular value is, in fact, a 1-manifold (an orbifold with trivial orbifold structure). 

Theorem 6.11. Let X be a smooth n-dimensional orbifold with boundary and P a smooth orbifold with dim P = n − 1. Suppose 
that p ∈ P is a regular value for a smooth (complete) orbifold map * f : X → P . This will happen, for example, if * f is surjective. Let 
S = f −1(p). Suppose further that for x ∈ S , Γx,X has no index 2 subgroups acting on Rn as Rn−1 ⊕ R with trivial action on the R 
factor. Then S is a compact 1-manifold with an even number of boundary points. 

Proof. As before, by Theorem 4.3, S is a compact 1-orbifold and thus is a disjoint union of 1-orbifolds of types (a)–(d). The 
goal is to show that cases (c) and (d) do not occur. To this end, suppose a component C of S is of type (c) or (d) and choose 
one of the points z ∈ C where Γz,C = Z2. At this point, the kernel Gz,X of the quotient homomorphism Γz,X → Γz,C has 
index 2 and acts on Rn = Rn−1 ⊕ R trivially on the R factor. By assumption, no such points z ∈ X exist and we have our 
desired contradiction. We conclude, therefore, that S is a compact 1-manifold with an even number of boundary points. o 
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