A Solvate of the Diacetate Salt of the Octaethyltetraphenylporphyrin Dication, H₄OETPP²⁺.2CH₃COO⁻.3CH₃COOH.-CH₂Cl₂

K. M. BARKIGIA AND J. FAJER

Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973, USA

M. D. BERBER AND K. M. SMITH

Department of Chemistry, University of California, Davis, California 95616, USA

(Received 3 March 1994; accepted 2 August 1994)

Abstract

The structure of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,-20-tetraphenylporphyrin(2+) diacetate acetic acid dichloromethane solvate, $C_{60}H_{64}N_4^{2+}.2C_2H_3O_2^{-}.3C_2H_4$ - $O_2.CH_2Cl_2$, has been determined at 200 K. The molecule is severely non-planar and adopts an S_4 saddle shape. It is the most distorted member of the OETPP series reported to date, with displacements of the β pyrrole C atoms from the plane of the four N atoms as great as 1.42 Å and acute tilts of the phenyl rings relative to the porphyrin plane. The two acetate counterions act as bidentate ligands which bond to the H atoms on opposite pairs of N atoms. The crystal lattice also contains three acetic acid molecules of solvation per porphyrin molecule, all of which are involved in hydrogen bonds to the acetate molecules. An 'innocent' molecule of CH_2Cl_2 is also present.

Comment

The diacid salts of porphyrins or their dications $(H_4 P^{2+}.2X^-)$ result from the addition of acid to metal-free porphyrin (H₂P) so that all four N atoms of the macrocycle are protonated. Previous studies of 5,10,15,20-tetraphenylporphyrins (TPP) and 5,10,15,20-tetrapyridylporphyrins (TPyP), formulated as H₄TPP²⁺.Cl⁻.FeCl₄ (Stone & Fleischer, 1968), $H_4TPP^{2+}.2C_2F_3O_2^{-}$ (Navaza, De Rango & Charpin, 1983; Scheidt & Lee, 1987) and H₂TPyP.6HCl.H₂O (Stone & Fleischer, 1968), show that the macrocycles are significantly distorted into S_4 saddle shapes. presumably because of steric repulsions between the four central H atoms that cannot be accommodated within the central pocket. An S₄ ruffled distortion was also found in the structure of the 2,3,7,8,12,13,17,18octaethylporphyrin dication in H₄OEP²⁺.2ClO₄⁻ (Barkigia, Miura, Chang & Fajer, 1988), in sharp contrast to the rigorous planarity observed for the compound $H_4OEP^{2+}.2[RhCl_2(CO)_2]^-$ (Cetinkaya, Johnson, Lappert. McLaughlin & Muir, 1974). The latter sets of results clearly demonstrate the wide range of conformations that the same porphyrin molecule can adopt. and thus point to the significant plasticity of porphyrin derivatives.

As part of our studies on conformational variations imposed by steric and/or protein constraints, and on the consequences of such distortions on the physical and chemical properties of photosynthetic chromophores, prosthetic groups and synthetic models thereof (Barkigia & Fajer, 1993, and references therein; Fajer et al., 1990), we report here the molecular structure of the diacid salt of OETPP, which crystallizes from mixtures of acetic acid and dichloromethane as H₄OETPP²⁺.2CH₃COO⁻.3CH₃COOH.CH₂Cl₂. The diacid salt determination extends previous structural characterizations of the OETPP series, which include the free base (Regev et al., 1994) and the Zn (Barkigia et al., 1990), Ni (Barkigia et al., 1993), Co and Cu (Sparks et al., 1993) derivatives, and studies of the effects of the porphyrin pocket occupancy on the conformations of the macrocycles.

H₄OETPP²⁺

Fig. 1 shows the molecular structure and numbering scheme for the H₄OETPP²⁺ macrocycle. Overall, the porphyrin molecule is quite symmetrical and closely resembles the other OETPP structures. Fig. 2 illustrates the most salient result of this determination, which is the severe S_4 deformation of the macrocycle, and further depicts the hydrogen-bonding interactions of the acetate counterions with the porphyrin. The intrinsically distorted OETPP skeleton, arising from the congestion of adjacent phenyl and ethyl substituents, is further enhanced here. The average displacement of the β pyrrole C atoms from the plane of the N atoms is 1.37 Å, compared with an average of 1.24 Å in NiOETPP, heretofore the largest in the OETPP series. The distortion is that of a saddle (Fig. 3) with the pyrrole rings displaced alternately up and down by essentially the same distances and the meso-C atoms nearly in the plane of the N atoms.

Complementary to the large deviations from planarity is the near coplanarity of the phenyl groups with the porphyrin macrocycle, which has been observed previously in other TPP and TPyP diacids. The dihedral angles of the phenyl rings with the plane of the N

Fig. 1. Molecular structure of H_4OETPP^{2+} at 200 K. Probability ellipsoids are drawn at 50%, except for the H atoms, which are not to scale.

Fig. 2. Stereoscopic edge-on view of the dication and its acetate counterions illustrating the severe S_4 distortion of the macrocycle and the hydrogen bonding of the acetates to the porphyrin.

Fig. 3. Linear display of the displacements of the atoms of the macrocycle from the plane of the four N atoms. The ring order is I, II, III, IV from left to right (the horizontal axis is not to scale).

atoms range between 29.2 (2) and 34.9 (2)°. Those in $H_4TPP^{2+}.Cl^-.FeCl_4^-$ are the most acute, 21.1°, while they range from 33.0 to 35.6° in H_4TPyP^{2+} and from 30.6 to 35.7° in $H_4TPP^{2+}.2C_2F_3O_2^-.UO_2^{2+}.2C_2F_3O_2^-$.

A comparison of average bond distances in the six OETPP structures is presented in the deposited material. Particularly noteworthy in all the structures are the 'normal' distances between the *meso*-C atoms and the phenyl rings, contrary to the suggestion of Hoard (1975) that smaller dihedral angles would result in increased conjugation between the porphyrin and phenyl rings. Indeed, in the present structure, the shortest C_m — C_{φ} bond of 1.464 (7) Å occurs at C10—C43, but does not correspond to the most acute phenyl dihedral angle of 29.2 (2)° at C15. The C_m — C_{φ} distances to the other rings are 1.488 (7), 1.485 (7) and 1.481 (7) Å.

The bond angles in H₄OETPP²⁺ vary dramatically. Among those affected are the C_{α} —N— C_{α} angles which average 109.7 (5)°. They are broadened several degrees with respect to those in the MOETPP structures and are intermediate between the values in the protonated and unprotonated rings of H₂OETPP [111.0 (12) and 106.1 (11)°, respectively]. Also discernible is the average contraction of the N— C_{α} — C_{β} angles to 107.5 (5)°, which is common to protonated pyrrole rings (Hoard, 1975; Barkigia *et al.*, 1992) and in agreement with the average of 107.1 (12)° found in the protonated rings of H₂OETPP. While the C_β— C_{α} — C_m angles are constant across the remainder of the series, ranging from 127.9 (5) to 128.8 (13)°, they are opened to 130.7 (5)°

As in all the other porphyrin dications studied to date, the counterions are hydrogen bonded to the macrocycle. The O atoms O2 and O1 of one acetate flank opposite pairs of N atoms at distances of 2.707 (6) and 2.741 (6) Å, respectively, while atoms O3 and O4 of the second acetate bridge atoms N2 and N4 at distances of 2.747 (6) and 2.753 (6) Å, respectively. They are clearly acetate rather than acetic acid molecules, as evidenced by the equivalent C—O bonds in both

species. In turn, the acetates are hydrogen bonded to the three acetic acid molecules in an asymmetrical fashion, as only three of the four acetate O atoms participate in hydrogen bonds. These are strong hydrogen bonds with short $O \cdots O$ contact distances of 2.544 (7), 2.586 (6) and 2.548 (6) Å. From the disparate C—O distances, these secondary hydrogen-bonded species are clearly acetic acid molecules.

Since the diacid molecules are capped on both sides by acetates and insulated by acetic acid molecules, the shortest center-to-center distance is 11.46 Å, and the mean plane separation between these inversion-related molecules is 11.02 Å.

The additional molecule of solvation, CH_2Cl_2 , found in the crystal appears to be 'innocent', as it is well separated from the remainder of the atoms. Its closest contact involves atom Cl1 and an inversion-related Cl1 atom at a distance of 7.07 Å.

Traditionally, it has been assumed that the large optical red shifts observed for meso-tetraarylporphyrin dications are due to increased conjugation of the aryl rings with the porphyrin because of their increased coplanarities (Stone & Fleischer, 1968; Hoard, 1975). However, the entire OETPP series and several other saddle-shaped porphyrins with varying degrees of porphyrin-aryl ring dihedral angles also exhibit significant bathochromic optical shifts (Barkigia, Chantranupong, Smith & Fajer, 1988; Renner, Cheng, Chang & Fajer, 1990; Bhyrappa, Krishnan & Nethaji, 1993; Barkigia et al., 1993). It is likely, therefore, that the saddle distortions of the diacid salts contribute at least in part to the observed red shifts. Molecular-orbital calculations do indeed predict such shifts because of the destabilization of the porphyrin π system caused by the conformational distortions (Barkigia, Chantranupong, Smith & Fajer, 1988; Barkigia et al., 1993; Sparks et al., 1993).

Experimental

Crystal data	
$C_{60}H_{64}N_4^{2+}.2C_2H_3O_2^{-}.$ $3C_2H_4O_2.CH_2Cl_2$ $M_r = 1224.4$ Triclinic $P\overline{1}$ a = 13.684 (5) Å b = 20.294 (5) Å c = 13.090 (4) Å $\alpha = 98.64 (2)^{\circ}$ $\beta = 107.98 (3)^{\circ}$ $\gamma = 91.06 (2)^{\circ}$ $V = 3410.2 Å^3$ Z = 2 $D_x = 1.192 \text{ Mg m}^{-3}$	Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 17-25^{\circ}$ $\mu = 1.318$ mm ⁻¹ T = 200 K Irregular block 0.66 × 0.26 × 0.20 mm Green Crystal source: from acetic acid/CH ₂ Cl ₂ solution

Data collection

Enraf-Nonius CAD-4 diffractometer 6743 observed reflections $[F_o > 3\sigma(F_o)]$

$C_{60}H_{64}N_4^{2+}.2C_2H_3O_2^{-}.3C_2H_4O_2.CH_2Cl_2$

ω -2 θ sc	ans	F	$R_{int} = 0.022$		C45	0.2611 (5)	0.8112	(3) -0.1793 (5)	0.041 (2)
Absorpt	ion correction.	A			C46	0.2919 (5)	0.8606	(3) -0.2254(5)	0.046 (2)
Ausoipi		,	max = 00		C47	0.3933 (5)	0.8853	(3) -0.1904 (6)	0.049 (2)
analy	tical	n	$i = -15 \rightarrow 15$		C48	0.4655 (5)	0.8610	(3) -0.1049 (5)	0.041 (2)
$T_{\min} =$	$= 0.613, T_{max} =$	= k	$x = -22 \rightarrow 22$		C49	0.9526 (4)	0.7844	(3) 0.1085 (5)	0.032 (2)
0.786		1	$= -14 \rightarrow 14$		C 50	0.9368 (5)	0.8317	(3) 0.0385 (5)	0.040 (2)
12 020		tions ?	atom dond moffee	+:	C 51	1.0125 (6)	0.8471	(4) -0.0038(6)	0.054 (3)
13 038 1	measured reflec	suons 3	standard reflec	nons	C 52	1.1040 (5)	0.8167	(4) 0.0216 (6)	0.051 (3)
10 077 i	independent		frequency: 60	min	C 53	1.1192 (4)	0.7682	(4) 0.0869 (6)	0.045 (2)
reflec	tions		intensity deca	v: within	C 54	1.0448 (4)	0.7517	(3) 0.1313 (5)	0.039 (2)
			counting st	tistics	C 55	0.9320 (4)	0.6848	(3) 0.5871 (5)	0.030 (2)
			counting su	uisues	C 56	1 0139 (5)	0.6478	(3) 0.5702 (5)	0.041(2)
D <i>C</i>					C 57	1 0890 (5)	0.6310	(3) 0.6597(6)	0.048 (3)
Refinem	ent				C 58	1.0861 (5)	0.6501	(4) 07640(6)	0.049 (3)
Dofinor	ont on F	L	I atom paramet	are not	C 59	1.0058 (5)	0.6844	(4) 07796(5)	0.052(3)
Reinleit		Г	1-atom paramet		C 60	0.0284 (5)	0.0044	$\begin{array}{c} (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (5) \\$	0.032(3)
R = 0.0	95		refined		01	0.7125 (3)	0.8850	(2) 0.2801(4)	0.035(2)
wR = 0	.119	и	$v = 4F_o^2 / [\sigma^2 (F_o^2)]$)	02	0.7125(3)	0.8565	(2) 0.2001(4) (2) 0.4351(4)	0.040(2)
$S = 3.1^{\circ}$	7		$+ (0.05F^2)^2$	1	C 61	0.7003(4)	0.8085	(2) 0.4331(4) (3) 0.3780(6)	0.045(2)
5 = 5.1	, ,	($\Lambda (-) = 0.01$	5	C 61	0.7182(3)	0.0703	(3) 0.3703(0)	0.055(2)
6/43 re	nections	(Δ/σ _{max} = 0.01	J 2 _ 3	02	0.7404 (7)	0.9703	(4) $0.4515(0)(2)$ $0.1599(4)$	0.004(3)
784 par	ameters	Δ	$\Delta \rho_{\rm max} = 0.90 \ {\rm e}$	A_3	03	0.3021(3)	0.0310	(2) 0.1366(4) (2) 0.2085(4)	0.040(1)
-		4	$\Delta \rho_{\rm min} = -0.96$	e Å ⁻³	04	0.7304 (3)	0.0190	(2) 0.2063 (4) (2) 0.1708 (5)	0.043(1)
			- / um		C 63	0.0383(3)	0.5958	(3) 0.1708(3)	0.040 (2)
Table 1	Fractional	atomic co	ordinates and	aquivalant	04	0.0181 (5)	0.5222	(3) $(.1391(7))$	0.063(3)
Table 1	. Fractional		orumates and	equivatent	05	0.7827(4)	0.9768	(2) 0.2037(4)	0.064 (2)
	isotropic dis	placement	t parameters (I	4 ²)		0.7126 (4)	0.9202	(3) U.U3/1 (4)	0.075 (2)
	· ·		•	•	C65	0.7679(6)	0.9648	(4) 0.09/9(/)	0.048 (3)
	$U_{eq} =$	$(1/3)\sum_i\sum_i U$	$J_{ii}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_i.$		C66	0.8349 (6)	1.0133	(4) 0.0662 (6)	0.062 (3)
	*4	.,,.,	<i>s</i> , , , ,		07	0.3785 (4)	0.5739	(2) 0.1013 (4)	0.062 (2)
	x	у	Z	U_{eq}	08	0.3117 (4)	0.6646	(3) 0.0554 (6)	0.107 (3)
N1	0.6719 (3)	0.7228 (2)	0.4160 (4)	0.029 (1)	C67	0.3017 (5)	0.6098	(4) 0.0657 (6)	0.045 (3)
N2	0.5205 (3)	0.7605 (2)	0.2182 (4)	0.024 (1)	C68	0.1990 (6)	0.5735	(4) 0.0459 (7)	0.074 (3)
N3	0.6874 (3)	0.7748 (2)	0.1227 (4)	0.024 (1)	09	0.8719 (4)	0.5390	(2) 0.2159 (5)	0.081 (2)
N4	0.8398 (3)	0.7384 (2)	0.3169 (4)	0.026(1)	O10	0.9839 (4)	0.6233	(3) 0.2678 (6)	0.105 (3)
C1	0.7482 (4)	0.6863 (3)	0.4718 (5)	0.028 (2)	C69	0.9655 (5)	0.5656	(4) 0.2456 (6)	0.052 (3)
C2	0.7006 (4)	0.6336 (3)	0.5047 (5)	0.031 (2)	C70	1.0458 (6)	0.5162	(5) 0.2482 (10)	0.106 (5)
C3	0.5956 (4)	0.6418 (3)	0.4727 (5)	0.034 (2)	C1S	0.2965 (8)	0.1081	(6) 0.3353 (11)	0.138 (6)
C4	0.5787 (4)	0.6998 (3)	0.4200 (4)	0.030 (2)	Cll	0.2027 (4)	0.0452	(2) 0.2477 (3)	0.187 (2)
C5	0.4887 (4)	0.7327 (3)	0.3789 (4)	0.025 (2)	C12	0.2931 (3)	0.1753	(3) 0.2645 (5)	0.239 (3)
C6	0.4745 (4)	0.7719 (3)	0.2970 (5)	0.027 (2)					
C7	0.4096 (4)	0.8266 (3)	0.2744 (5)	0.027(2)					0
C8	0.4138 (4)	0.8436 (3)	0.1783 (5)	0.027 (2)	Ta	ble 2. Sele	ected geon	netric parameters	(A, °)
C9	0.4816 (4)	0.7995 (3)	0.1396 (5)	0.025 (2)			1 275 (()	NI CA	1 2(0 /7)
C10	0.5057 (4)	0.7918 (3)	0.0420 (5)	0.025 (2)			1.373 (0)	NI-C4	1.308 (7)
C11	0.5991 (4)	0.7660 (3)	0.0338 (4)	0.025 (2)	N2C0		1.339(7)	N2	1.373(7)
C12	0.6247 (4)	0.7335 (3)	-0.0584(5)	0.027(2)	N3-CTI		1.381 (7)	N3-C14	1.377(7)
C13	0.7299 (4)	0.7275 (3)	-0.0245(5)	0.028(2)	N4-C16		1.379(7)	N4	1.368 (7)
C14	0.7697 (4)	0.7562 (3)	0.0882 (5)	0.026(2)	0102		1.428 (7)	C3C4	1.439 (8)
C15	0.8730 (4)	0.7698 (3)	0.1590 (5)	0.025(2)	C6-C7		1.443(7)	(8-(9	1.451 (7)
C16	0.8983 (4)	0.7730 (3)	0.2708 (5)	0.025 (2)			1.429 (8)	C13-C14	1.430 (8)
C17	0.9851 (4)	0.8058 (3)	0.3591 (5)	0.027(2)	C16C17		1.443(7)	018-019	1.432(7)
C18	0.9788 (4)	0.7871(3)	0.4542(5)	0.027(2)	C2_C3		1.388 (8)	C/C8	1.370 (8)
C19	0.8889 (4)	0.7424(3)	0.4260 (5)	0.025(2)	C12—C13		1.384 (7)	C17C18	1.381 (8)
C20	0.8540 (4)	0.7048 (3)	0.4923 (5)	0.029 (2)	C4—C5		1.407 (7)	CSC6	1.398 (7)
C21	0.7498 (5)	0.5749 (3)	0.5511 (6)	0.045(2)	C9_C10		1.403 (8)	C10C11	1.419 (7)
C22	0.7567 (9)	0.5203 (5)	0.4644 (9)	0.109 (5)	C14—C15		1.425 (7)	CISCI6	1.386 (7)
C23	0.5117 (5)	0.5927 (3)	0.4749 (6)	0.047(2)	C19—C20		1.416(7)	C20C1	1.421 (7)
C24	0.4535 (6)	0.5560 (4)	0.3654 (7)	0.072(3)	C5-C37		1.488 (7)	C10C43	1.464 (7)
C25	0.3606 (5)	0.8652 (3)	0.3515 (6)	0.044(2)	C15-C49		1.485 (7)	C20C55	1.481 (/)
C26	0.4435(7)	0.0052(3)	0.4521(7)	0.082(4)	N1		2.707 (6)	N2—O3	2.747 (6)
C27	0 3725 (4)	0.9041 (3)	0 1326 (5)	0.039(2)	N301		2.741 (6)	N404	2.753 (6)
C28	0.4515 (6)	0.9627 (4)	0.1520(3)	0.037(2)	01-05		2.544 (7)	0307	2.586 (6)
C29	0.5498 (5)	0.7043(3)	-0.1680(5)	0.039(2)	0409		2.548 (6)		
C30	0.5490(3)	0.6430 (4)	-0.1600(3)	0.085(4)	N1C1	C2	108.2 (5)	N1C4C3	107.5 (5)
C31	0.7892 (5)	0.6884(3)	-0.0895(5)	0.043(2)	N2C6	C7	107.5 (5)	N2-C9-C8	106.6 (5)
C32	0.8098 (8)	0.6222 (4)	-0.0642 (8)	0.094 (5)	N3-C11-	-C12	108.2 (5)	N3-C14-C13	107.6 (5)
C33	1.0620 (4)	0.8585 (3)	0.3540 (5)	0.037(2)	N4-C16-	-C17	106.6 (5)	N4-C19-C18	107.7 (5)
C34	1.0196 (7)	0.9251 (4)	0.3467 (9)	0.091 (4)	C1	C4	109.5 (4)	C6-N2-C9	110.3 (4)
C35	1.0433 (4)	0.8171 (3)	0 5665 (5)	0.040 (2)	C11_N3_	-C14	108.8 (5)	C16-N4-C19	110.2 (4)
C36	0 9898 (7)	0.8692 (4)	0.6217 (6)	0.079 (3)	C1C24	C3	107.0 (5)	C2C3C4	107.7 (5)
C37	0 4030 (1)	0 7253 (3)	0.4261 (5)	0.029 (2)	C6C7	C8	107.5 (5)	C7-C8-C9	107.6 (5)
C38	0.4198 (5)	0 7396 (4)	0.5380 (5)	0.049 (2)	C11-C12	-C13	107.0 (5)	C12-C13-C14	108.0 (5)
C 30	0 3416 (5)	0.7322(4)	0.5500 (5)	0.058 (3)	C16-C17	-C18	107.9 (5)	C17-C18-C19	107.4 (5)
C40	0.2420 (5)	0.7322(4)	0.5100 (6)	0.056(3)	C2	C20	130.7 (5)	C3-C4-C5	131.2 (5)
C41	0.2725(3)	0.6964 (4)	0.3107(0)	0.030 (3)	C5	C7	129 8 (5)	012-02-02	131 1 (5)
C42	0.2270 (4)	0.0904(4) 0.7041(2)	0.4012 (0)	0.049(3)			130.8 (5)	CI3_CI4_CI5	1310(5)
C42	0.3022 (4)	0.2170 (2)	_0.0535 (5)	0.037(2)	CIS_CIA		131 4 (5)		129 3 (5)
C44	0.3300 (4)	0.0127(3) 0.7877(3)	-0.0333(3) -0.0924(5)	0.030 (2)	C4-C5-	C6	123.9 (5)	C9-C10-C11	122.2 (5)
	NALA NO 171	0.1011131	0.07671.77	V.V.J. 16J					

C14-C15-C16	122.2 (5)	C19-C20-C1	122.7 (5)
N1-C1-C20	121.4 (5)	N1-C4-C5	121.4 (5)
N2-C6-C5	122.5 (5)	N2-C9-C10	122.3 (5)
N3-C11C10	120.9 (5)	N3-C14-C15	121.2 (5)
N4C16C15	121.9 (5)	N4-C19-C20	122.9 (5)

The central H atoms, HN1, HN2, HN3 and HN4, were located from a difference Fourier map using the data with $\sin\theta/\lambda < 0.5 \text{ Å}^{-1}$. The H atoms of the CH₂Cl₂ molecule of solvation and the acid protons of the three acetic acid molecules were not included in the model. Scattering factors for the non-H atoms were taken from Cromer & Mann (1968) and Cromer & Liberman (1970), and those for the H atoms from Stewart, Davidson & Simpson (1965). Anomalous terms for the Cl atoms were taken from Cromer (1974). The high final *R* value is attributed to the high thermal motion of some of the atoms of the solvent molecules and the marginal quality of the crystal, which was the only one in the sample.

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: CRYSNET (Berman, Bernstein, Bernstein, Koetzle & Williams, 1976). Structure solution: SHELXS86 (Sheldrick, 1985). Molecular graphics: ORTEPII (Johnson, 1976) and GENPLOT (Computer Graphics Service, 1989).

This work was supported by the Division of Chemical Sciences, US Department of Energy, under contract DE-AC02-76CH00016 at BNL, and by National Science Foundation grant CHE-93-05577 at the University of California.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and comparison distances and angles in a series of OETPP's, and also a packing diagram and a view of the hydrogen bonding of the acetic acid molecules to the acetates have been deposited with the IUCr (Reference: BK1046). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Barkigia, K. M., Berber, M. D., Fajer, J., Medforth, C. J., Renner, M. W. & Smith, K. M. (1990). J. Am. Chem. Soc. 113, 8851–8857.
- Barkigia, K. M., Chantranupong, L., Smith, K. M. & Fajer, J. (1988). J. Am. Chem. Soc. 110, 7566–7567.
- Barkigia, K. M. & Fajer, J. (1993). The Photosynthetic Reaction Center, Vol. 2, edited by H. Deisenhofer & J. R. Norris, pp. 513– 539. San Diego: Academic Press.
- Barkigia, K. M., Miura, M., Chang, C. K. & Fajer, J. (1988). Am. Chem. Soc. Div. Inorg. Chem. Abstract 0305.
- Barkigia, K. M., Renner, M. W., Furenlid, L. R., Medforth, C. J., Smith, K. M. & Fajer, J. (1993). J. Am. Chem. Soc. 115, 3627– 3637.
- Barkigia, K. M., Thompson, M. A., Fajer, J., Pandey, R. K., Smith, K. M. & Vicente, M. G. H. (1992). New J. Chem. 16, 599–607.
- Berman, H. M., Bernstein, F. C., Bernstein, H. J., Koetzle, T. F. & Williams, G. J. B. (1976). CRYSNET. Informal Report BNL21714. Brookhaven National Laboratory, Upton, USA.
- Bhyrappa, P., Krishnan, V. & Nethaji, M. (1993). J. Chem. Soc. Dalton Trans. pp. 1901–1906.
- Cetinkaya, E., Johnson, A. W., Lappert, M. F., McLaughlin, G. M. & Muir, K. W. (1974). J. Chem. Soc. Dalton Trans. pp. 1236–1243.
- Computer Graphics Service (1989). GENPLOT. Computer Graphics Service, Ithaca, New York, USA.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 149–151. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
 - Cromer, D. T. & Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
 - Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
 - Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
 - Fajer, J., Barkigia, K. M., Gudowska-Nowak, E., Zhong, E., Smith, K. M. & Newton, M. D. (1990). *Reaction Centers of Photosynthetic Bacteria*, edited by M. Michel-Beyerle, pp. 367–376. Berlin: Springer-Verlag.
 - Hoard, J. L. (1975). Porphyrins and Metalloporphyrins, edited by K. M. Smith, pp. 317–380. Amsterdam: Elsevier.
 - Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
 - Navaza, A., De Rango, C. & Charpin, P. (1983). Acta Cryst. C39, 1625-1628.
 - Regev, A., Galili, T., Medforth, C. J., Smith, K. M., Barkigia, K. M., Fajer, J. & Levanon, H. (1994). J. Phys. Chem. 98, 2520-2526.
 - Renner, M. W., Cheng, R. J., Chang, C. K. & Fajer, J. (1990). J. Phys. Chem. 94, 8508–8511.
 - Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bonding (Berlin), 64, 1-70.
 - Sheldrick, G. M. (1985). Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford Univ. Press.
 - Sparks, L. D., Medforth, C. J., Park, M.-S., Chamberlain, J. R., Ondrias, M. R., Senge, M. O., Smith, K. M. & Shelnutt, J. A. (1993). J. Am. Chem. Soc. 115, 581–592.
 - Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- Stone, A. & Fleischer, E. B. (1968). J. Am. Chem. Soc. 90, 2735-2748.