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A facile synthesis of (tert-alkoxy)amines 

Hasan Palandoken, Chris M. Bocian, Michelle R. McCombs and Michael H. Nantz 
Abstract—Tertiary alcohols react with stoichiometric BF3ÆEt2O and N-hydroxyphthalimide to yield N-alkoxyphthalimides. Sub­
sequent hydrazinolyses afford the title compounds. 
1. Introduction 

The condensation of a ketone or aldehyde with an alk­
oxyamine (aka aminooxy) has emerged as a powerful 
means for labelling liposome, bacterial and mammalian 
cell surfaces as well as for chemoselectively ligating 
small molecule �recognition elements� onto polyfunc­
tional substrates.1 The robust oxime ether linkage 
formed in near quantitative yields in these reactions is 
ideal for applications in aqueous media; consequently, 
much effort has been devoted toward developing new, 
more efficient methods for the synthesis of alkoxy­
amines.2–4 The existing methods for the preparation of 
alkoxyamines of the type RONH2 can be divided into 
two principal approaches:5 (i) hydroxyl group displace­
ment and (ii) hydroxyl group amination. The former 
approach generally is performed using N-hydroxyph­
thalimide under Mitsunobu-like conditions2 or by using 
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N-protected hydroxylamine derivatives in nucleophilic 
substitution reactions.3 The amination approach, which 
has the advantage of retention of alcohol stereochemis­
try, requires an electrophilic reagent, such as an appro­
priately substituted oxaziridine (Eq. 1).4 

As might be expected, both the displacement and amina­
tion strategies suffer when the starting hydroxyl sub­
strate is a tertiary alcohol. Indeed, most of the few 
reported syntheses of (tert-alkoxy)amines are character­
ized by modest to low yields.4,6–8 We recently required 
access to sterically hindered alkoxyamines and, as a con­
sequence, we developed an alternative method for their 
preparation. Herein, we describe the straightforward 
conversion of tertiary alcohols 1 (Table 1) to the corre­
sponding (tert-alkoxy)amines 3 as well as conditions for 
isolation of low-molecular weight, water soluble mem­
bers of this class of compounds. 
O 
 ONH2 + ð1Þt-Bu t-Bu 

yamine 

1R 2R 
O2R

H2NNH2 
O N 

R  ONH2CH2Cl2 
EtOH O 3 

2 

https://core.ac.uk/display/19158297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table 1. Synthesis of (tert-alkoxy)aminesa 

Entry Alcohol (1) (13C NMR: R3C–OH)b Yield of 2c (%) Alkoxyamine (3) (13C NMR: R3C–ONH2)
b Yield of 3d (%) 

a Ph OH 74 ONH2 A: 85 

(δ 71.8) (δ 78.3) 

b 
Ph 

OH 22e ONH2 A: 95 

(δ 70.9) (δ 79.7) 

c 
Ph OH 

0 

Me Me 

d Me OH 

(δ 69.0) 

74 Me ONH2 
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A: 0 
B: 96 

e 80 A: 87 
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(C(1) δ 63.1, C(6) δ 71.3) (C(1) δ 63.0, C(6) δ 79.2) 
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a All reactions were performed on P1 mmol scale.
 
b Taken in CDCl3.
 
c Isolated yield from 1.
 
d Isolated yield from 2 using either Method A (aqueous work-up) or Method B (anhydrous conditions).
 
e Major product is b,b-dimethylstyrene (69%). 
f HCl salt. 
2. Results 

The simple treatment of tertiary alcohols with stoichio­
metric BF3ÆEt2O and  N-hydroxy-phthalimide in CH2Cl2 

proceeds to give the corresponding O-alkyl phthalimides 
2 in fair to good yields (Table 1, entries a, d–f). The use 
of TMSOTf or other Lewis acids to facilitate this trans­
formation was less effective. In cases where alcohol elim­
ination would provide a conjugated alkene (e.g., entries 
b and c), formation of the desired substitution product 
was minimal to nonexistent. We reasoned that N­
hydroxyphthalimide did not competitively intercept the 
putative carbenium ion formed on alcohol reaction with 
BF3 due, in part, to its poor solubility in CH2Cl2. How­
ever, our attempts at solubilizing N-hydroxyphthalimide 
using several polar and mixed solvent systems did not 
improve product yields in these facile elimination cases. 
We also noted that secondary alcohols do not afford N­
hydroxyphthalimide substitution products under the 
BF3 conditions. The reactions of cyclohexanol and 2­
dodecanol resulted only in recovered starting alcohol. 
These results suggested the possibility for a chemoselec­
tive alcohol to alkoxyamine transformation. We exam­
ined this event using 6-methylheptane-1,6-diol (entry g) 
and found that only its tertiary alcohol reacted to give 
alkoxyamine 3g. 

Cleavage of the phthalimide groups of 2a–b,e,g using 
standard hydrazinolysis conditions (Method A: excess 
hydrazine hydrate, 1:5 CH2Cl2–EtOH, rt, 12 h)9 gave 
the (tert-alkoxy)amine products in good yields.10 The 
consistent, slight 13C NMR downfield shift of the alk­
oxyamine ONH2-bearing carbon relative to starting 
alcohol is a convenient means for analyzing the transfor­
mation (see Table 1). The cleavage products of phthal­
imides 2d and 2f had appreciable solubility in water 
and this precluded their straightforward isolation. How­
ever, by adopting a non-aqueous method for phthali­
mide cleavage (Method B: methylhydrazine, CH2Cl2; 
HCl),11 we were gratified to isolate alkoxyamines 3d 



and 3f as their hydrochloride salts in good yields.10 In 
our experience, application of this method to other 
low-molecular weight phthalimides also dramatically 
improved product isolation (e.g., Eq. 2; Method A: 
7%, Method B: 98%). 
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3. Representative anhydrous hydrazinolysis (Method B) 

To a solution of N-(tert-butoxy)phthalimide 2d (1.0 g, 
4.6 mmol) in CH2Cl2 (15 mL) at 0 �C was added meth­
ylhydrazine (0.32 mL, 6.0 mmol) dropwise. The reaction 
was gradually warmed to room temperature and stirred 
for 12 h. After re-cooling to 0 �C, the reaction mixture 
was filtered to remove precipitated solids. HCl(g) then 
was bubbled through the filtrate at 0 �C for 15 min. 
The resulting slurry was stirred at 0 �C for an additional 
30 min and subsequently filtered. Concentration of the 
filtrate in vacuo afforded 3d as an off-white solid 
(0.55 g, 96%). Mp 154.0–155.4 �C; 1H NMR (CDCl3): 
d 1.43 (s, 9H), 10.57 (br s, 3H); 13C NMR (CDCl3): 
d 26.6, 83.6. 

In conclusion, we have presented a straightforward two-
step method for the transformation of tertiary alcohols 
to (tert-alkoxy)amines. The method uses inexpensive 
reagents and is amenable to large scale synthesis. 
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