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Abstract: Reaction kinetics on free energy surfaces with small activation barriers can be 

computed directly with the Smoluchowski equation. The procedure is computationally 

expensive even in a few dimensions. We present a propagation method that considerably 

reduces computational time for a particular class of problems: when the free energy 

surface suddenly switches by a small amount, and the probability distribution relaxes to a 

new equilibrium value. This case describes relaxation experiments. To achieve efficient 

solution, we expand the density matrix in a basis set obtained by singular value 

decomposition of equilibrium density matrices. Grid size during propagation is reduced 

from (100–1000)N to (2–4)N in N dimensions. Although the scaling with N is not 

improved, the smaller basis set nonetheless yields a significant speed up for low-

dimensional calculations. To demonstrate the practicality of our method, we couple 

Smoluchowsi dynamics with a genetic algorithm to search for free energy surfaces com-

patible with the multiprobe thermodynamics and temperature jump experiment reported 

for the protein α3D. 
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Introduction 

Activation barriers are often so large that chemical reaction kinetics can be computed within the 

framework of master equations and transition state theory.1,2 When the reaction barriers are 

comparable to kBT, this approximation is no longer valid. The populations of reactants, 

intermediates, and products cannot be assigned neatly to “states,”and diffusion processes 

contribute directly to the observed signal. Methods are required that bridge from the 

macroscopic (state) to the microscopic (atom-by-atom) view, such as stochastic dynamics on 

low-dimensional free energy surfaces.3 

For example, one can propagate individual trajectories by Langevin dynamics if the reaction 

occurs in the Kramers over-damped limit,4 as is the case for most reactions in dissipative 

environments.5 Langevin dynamics are most effective for comparison with short single 

molecule trajectories.6 Comparison with ensemble relaxation experiments requires the averaging 

of many trajectories to obtain the time-dependent probability density p(x,t) along the reaction 

coordinate x. 

Instead, one could solve directly the Fokker-Planck equation for the time-evolving probability 

density p(x,p,t), or solve the Smoluchowski equation 

 

 

  

for p(x,t) if only the position distribution is of interest. Here G(x) is the free energy of reaction, 

D(x) is the diffusion tensor, β = 1/kBT is the inverse temperature, and the bold x indicates the 

appropriate summation over partial derivatives along N reaction coordinates x = {x1
...xN}. The 

equilibrium solution 



is obtained readily. By comparison, relaxation of a nonequilibrium probability can be time 

consuming to compute even in a few dimensions for processes, such as ligand binding,7 

molecular force transduction,8 relaxation, and alignment of nanostructures,9 or protein folding,10 

where the dynamics cannot always be reduced to a single reaction coordinate. Even finite 

element methods require rather larger grid sizes,7 making such calculations expensive if one 

needs to evaluate p(x,t) very often, as for instance when fitting experimental data with an 

optimization algorithm. 

We present an efficient method that propagates the Smoluchowski equation in a few 

dimensions. The method is designed to simulate relaxation processes, in which the free energy 

surface G is suddenly switched, and the probability distribution evolves to a new equilibrium. 

It relies on singular value decomposition11,12 to produce an orthonormal basis set for the proba-

bility density p. For each propagation in time, the basis set transformation needs to be carried 

out only once. The time propagation itself occurs with a master equation-like propagator matrix 

grid typically 100–500 times smaller per dimension than a finite element grid, leading to 

savings of >104 in time for two dimensions. The reduction in basis set size makes the method 

suitable for combination with optimization algorithms that require large numbers of 

propagations. 

We illustrate the method by fitting data from fast relaxation experiments. The synthetic three-

helix bundle α3D13 has been observed to unfold by fast temperature jumps with infrared14 and 

fluorescence detection.10 Upon such a jump, the protein free energy G(x) shifts slightly, and 

protein population relaxes rapidly to the new equilibrium. α3D is a “downhill folder,”meaning 

its free energy barriers are ~kBT, thus master equations do not provide an accurate description of 

the dynamics. A genetic algorithm coupled with our singular value Smoluchowski propagation 



of p optimizes free energy surfaces by comparison with thermodynamic and kinetic 

experimental data. The optimization requires that the probability distribution be propagated in 

time up to 106 times. We confirm that a 1-D free energy surface cannot account for the observed 

dynamics except in a very trivial model, whereas a 2-D free energy surface provides an 

adequate fit that matches the intuition derived from the experiments. 

Method 

Consider a free energy G(x,d) dependent on a perturbation parameter d. d could be the 

temperature, an applied force, or some other external variable. The perturbation is switched on 

at time t = 0, so the surface switches from G(x,0) to G(x,d). The idea is illustrated in Figure 1: 

the probability density starts out at equilibrium on the surface G(x,0), and will evolve after the 

jump to a new equilibrium on the surface G(x,d). 

To construct a set of basis functions for propagating p in time, consider the set of density 

operators that solve eq. (1) at equilibrium for different values of d, 

peq(x,d) = p0(d)e-βG(x,d) (3) 

An optimal basis can be constructed by using singular value decomposition of this set. Let 

Gi = G(x,di) be one of n free energy surfaces where di= d(i-1)/(n-1). i = 1 corresponds to the 

surface before the perturbation is turned on, i = n corresponds to the free energy surface after the 

perturbation is fully turned on. To each Gi belongs a peq(x,di), as shown in Figure 1. After discre-

tizing the n different peq (x,di), onto a suitable sampled coordinate grid xj, j = 1...m/N we can 

group the n vectors into a m X n matrix peq.t We then singular value decompose  peq as 

 

 

The matrix pSVD has n orthonormal basis vectors pSVD i=1...n(xj
=1...m) as columns. The n X n  



matrix w contains singular values to judge the importance of the basis vectors in pSVD. The n  

X n matrix a1 contains the orthonormal expansion coefficients of peq in terms of the basis  

vectors pSVD. 

The key savings is that n « m because the density operator tends to be much smoother than the 

coordinate grid required to converge integration of eq. (1). This is particularly true in relaxation 

experiments, where the surface G(x) is generally perturbed only by a small amount d. 

Furthermore, the matrix w provides an objective means for a cutoff to reduce basis set size. As d 

 0, all but the first two singular values wi rapidly approach zero. When fitting data with a 

signal-to-noise range SR, one needs to keep only singular values wi > wmax/SR. 

Expanding the density operator in terms of the singular value basis, 

 

The advantage of eq. (6) is that it reduces a large continuum propagation problem back to a 

very small master equation propagation. Instead of propagating state populations, the master 

equation propagates expansion coefficients of p in a small orthonormal basis. The matrix Gij, is 

expensive to calculate, but only needs to be computed once. The actual propagation over many 

                                                      
1 The simplest grid would just be evenly spaced as shown in Figure 1. Importance-sampled grid or finite element grid are superior. Whichever 
way the coordinates are sampled and whatever the dimension N of the grid is, all the coordinates can simply be arrayed into a vector of length m 
into one of the columns of the matrix peq. 



small time steps is inexpensive, and a back-calculation of p(x,t) is only necessary at times t 

where a signal must be evaluated for comparison with data. 

[Insert Figure 1] 

Finally, there are practical considerations to optimize performance. To speed up the 

calculation, eq. (1) should be reduced to a form without exponentials, such as 

 

The derivatives of G can be evaluated analytically if possible, together with the functions 

G(x,d) and D(x,d). In eq. (6), a large dynamic range wj/wi can cause stiffness problems for the 

differential equation solver. For typical SR ≤ 100 encountered in experimental kinetics data, one 

should either select only n' < n basis functions with wi/wmax > 0.01 for the basis, or redo the 

singular value decomposition with a smaller n so wmin/wmax > 0.01. With that truncation of basis 

set size, we found that even a simple Runge-Kutta integrator is adequate. Mapping mN position 

data from an evenly spaced grid sequentially into the row dimension of matrix peq performs well 

for 1–3 dimensions. For higher dimensions, a smarter mapping is needed. For example, the 

pyramidal algorithm15 decomposes the free energy surface into wavelets and retains only those 

high frequency wavelet coefficients where rapid variation G(x,d) warrants it. Another alternative is 

to importance-sample the grid using –lnG(x) because the reduction to a master eq. (6) does not rely 

on any particular grid spacing or sampling. 

Results and Discussion 

Equation (6) couples the advantages of simple master equation propagation with the ability to 

calculate relaxation dynamics after switching an arbitrarily-shaped free energy surface at t = 0. 

Low barrier dynamics can be computed exactly for simple diffusion processes, without resorting 



to transition state models. In effect, the master eq. (6) propagates orthogonal components of the 

density matrix instead of states. 

[Insert Figures 2 and 3] 

To demonstrate the utility of this approach, we applied it to a biophysical problem that 

requires calculation of many thermodynamic and kinetic data points to fit experimental data (Fig. 

2). The Gai lab and we recently showed that fluorescence- and infrared-detected folding 

relaxation kinetics of the three-helix bundle protein α3D have very different temperature 

dependences.10 In that experiment, the protein solution was subject to a small temperature jump, 

and the protein population evolved on the free energy landscape towards a new equilibrium. The 

infrared-detected rate was nearly temperature-independent between 327 and 344 K, whereas the 

fluorescence-detected rate slowed down by more than a factor of 3 when the temperature was 

raised over the same range (Fig. 2A). When the protein thermally unfolded, infrared and 

fluorescence measurements yielded different unfolding curves in the 275–372 K range (Fig. 2B). 

No satisfactory 1-D fit was obtained by trial-and-error with Lange-vin dynamics and a diffusion 

coefficient fixed at 0.05 nm2/ns,10 the value for free diffusion of two small helices in solution.16 

We speculated that at least a 2-D surface would be required to fit the data. 

Our goal here was to sample 1-D and 2-D model free energy surfaces and signal functions 

more exhaustively than was possible by Langevin dynamics. We combined our Smoluchowsi 

propagator with a genetic algorithm that evolved a family of up to 100 free energy surfaces. The 

genetic algorithm mutated and combined the free energy surface parameters for up to 3000 

generations, selecting those surfaces that best reproduced the experimental data summarized in 

Figure 2. The experimental kinetics data contained 8 traces to be fitted (one for each rate 



coefficient in Fig. 2A). Thus ~106 propagations of the probability function/density matrix in 1-D 

or 2-D were required during optimization. 

[Insert Figure 4] 

Each free energy surface was encoded as a sum of k Gaussians dimples of variable depth 

Ai(d), variable anisotropic width σi(d) and position xi(d): 

 

(The bold vectors in the exponent stand for a sum of squares over N coordinates.) Because 

only the relative well-depths and the barriers between wells are physically significant, we re-

stricted the Gaussian wells to a minimum depth such that the normalized equilibrium density, 

given by eq. (2), approached zero at the edges of the sampling grid. In this study, we kept the 

diffusion coefficient coordinate-independent, but allowed its average value to vary. 

To compute signals from p(x,t) and peq(x), the genetic algorithm also had to adjust signal 

functions Si(x) that describe how the infrared, thermal fluorescence, and kinetics fluorecence sig-

nals vary along the reaction coordinate. The signal functions Si(x) were chosen to be sigmoids 

with height h, width r, slope m, and switching at position xo. In 1-D, 

 

We choose baseline sigmoids because they can represent both a gradual and a sudden shift in 

signal along the reaction coordinate. The signals Si(t) (Fig. 2A) or Si(T) (Fig. 2B) were obtained 

by integrating the time-evolving population distribution p(x,t) or equilibrium population 

peq(x,T) over the signal function as 

 



In two dimensions, the sigmoid was directed along a vector c defined by c1x1 + c2x2 = 0, 

and a plane m1x1 + m2x2 was allowed to tilt with two slopes m1 and m2. The signal functions 

were truncated to S ≥ 0 in both 1-D and 2-D simulations. 

Within constraints to prevent physically unrealistic functions (e.g. Ai < 0), the genetic 

algorithm pikaia17 evolved a family of free energy surfaces and signal functions to higher 

fitness to match the thermodynamic and kinetic signals summarized in Figure 2. In the genetic 

algorithm, a complete set of parameters such as mi or Ai describing one free energy surface and 

its signal functions formed the ‘genes’ of one population member. Genes were subject to 

random mutation (change of value), or cross-over (exchange among population members). The 

fitness of population members in the genetic algorithm was determined by a weighted least 

squares comparison to the experimental data. Specifically, we maximized the fitness function 

 

where Oi are the experimental data, Si are the calculated signals, and σi are the relative 

uncertainties in the experimental data. Thermodynamic data points were fitted directly as shown 

in Figure 2A. Points from raw kinetic data traces such as Figure 2 in ref. 10 were fitted directly, 

and Figure 2B shows the resulting rate coefficients. 

Figure 2 shows the calculated rates and thermodynamic traces of the fittest free energy 

surfaces from both the 1-D and 2-D simulations. At a first glance, the 1-D fit (dotted curves) 

appears to be slightly better than the 2-D fit (solid lines), but the 1-D fit was unsatisfactory from 

a physical point of view: the 1-D fit allows no interconversion of the folded and unfolded 

populations on the experimentally observed time scale of <10 μs. 

Figure 3 illustrates the problem with the 1-D surface: the free energy barriers are up to 12 kBT in 

height, requiring k ≈ (1 s)-1 folding times, 105 times slower than the experimental rates in Figure 2. 



The real experiment showed no evidence for a 1 s phase. The fast calculated phase that actually 

matches the experimental rates in Figure 2 came from diffusion of sub-populations that slightly 

shift within wells as the well positions and curvatures change. When we guarded against this 

solution by constraining the diffusion coefficient to be greater than 0.004 nm2/ns, the genetic 

algorithm could not find a 1-D solution that fit the data in Figure 2. D ≥ 0.004 nm2/ns yields 

folding speed limits in the ≤1 μs range, the diffusional contact time measured by protein and 

peptide dynamics experiments.16,18–20 Our result here confirms the trial-and-error based conclusion 

in ref. 10, that physically reasonable diffusion coefficients cannot yield a 1-D solution. 

In contrast, we were able to obtain a physically satisfactory 2-D free energy surface. Figure 4 

shows the fittest 2-D free energy surface and equilibrium probability density at two tempera-

tures. The fitted signals displayed in Figure 2 (solid lines) reproduce the experimental trends. 

The 2-D free energy surface supports a large population transfer between the native and 

unfolded states over low barriers. It has several shallow local minima at low temperature (313 

K), through which α3D can nearly fold downhill from U to N. The 2-D surface reproduced the 

experimental trends with a fitted diffusion coefficient of 0.004 nm2/ns, 20 times closer to the 

range expected for contact formation in a helix bundle than the 1-D surface. This is still about 

10 times less than the 0.05 nm2/ns diffusion coefficient expected for freely diffusing helices. It 

is possible that a complete description of the α3D folding dynamics will require either a rougher 

free energy surface (more local minima than shown in Figure 4), or additional reaction 

coordinates (more than the 2 in Figure 4). 

The computations for Figure 4 required approximately 3 CPU hours on a 40 processor (3 

GHz) Linux cluster. For this particular example, n = 3 basis functions were kept, compared to a 

grid with m = 62,500 total points in 2-D, reducing propagation time by about a factor of 104. 



The same genetic algorithm optimization on the full grid would thus have been impractical with 

the computational resources utilized here. 

The surface in Figure 4 is not a unique solution, but it is representative of the family of free 

energy surfaces compatible with the experimental data. One nice feature of the Smoluchowski-

genetic algorithm approach is that the free energy and signal functions are easily refined further 

as additional experimental data become available. A direct comparison with low-dimensional 

free energy surfaces from Markov modeling of molecular dynamics simulations21–23 is possible, 

but will require one additional major step. Our reaction coordinates in Figure 4 are really 

defined through the signal functions Si(x). Signal functions for the same variables would have to 

be computed from molecular dynamic simulation, so the two sets of free energy surfaces can be 

mapped onto one another. 

Conclusions 

Singular value decomposition of equilibrium density matrices provides a robust orthonormal 

basis set for propagating the non-equilibrium density matrix with the Smoluchowski equation. A 

large number of spatial grid points is reduced back to a small master equation propagation that 

can be integrated stably. The number of basis functions and dynamic range of singular value 

coefficients wmax/wmin can be adjusted to match the experimental signal-to-noise ratio. Simulation 

of relaxation experiments with small perturbations (e.g. temperature jumps) is about 100X faster 

per degree of freedom than grid or finite element methods. A genetic algorithm exploration of 

free energy surfaces and signal functions confirmed that the folding/unfolding kinetics and 

thermal melts of the designed three-helix bundle α3D require at least a 2-D free energy surface to 

be modeled with a realistic diffusion coefficient and large population transfer from the native to 

the unfolded well. 
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