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A B S T R A C T  
Malignant glioma cells maintain an elevated intracellular pH (pHi) within  hypoxic  ischemic 

tumor microenvironments through persistent activation of sodium proton transport (McLean 

et al., 2000). Amiloride has been reported to selectively kill human malignant glioma cell lines 

but not primary astrocytes (Hegde et al., 2004). While amiloride reduces pHi of malignant 
gliomas by inhibiting isoform 1 of sodium proton exchange (NHE1), direct acidification was 

shown to be cytostatic rather than cytotoxic. At cytotoxic concentrations, amiloride has 

multiple drug targets including inhibition of NHE1 and sodium calcium exchange. Amiloride's 

glioma cytotoxicity can be explained, at least in part, by dual inhibition of NHE1 and of Na+ 

dependent calcium efflux by isoform 1.1 of the sodium calcium exchanger (NCX1.1) , which 

increases [Ca2+]i and initiates glioma cell demise. As a result of persistent NHE1 activity, 
cytosolic free levels of sodium ([Na+]i) in U87 and C6 glioma cells are elevated 3 fold, as 

compared with normal astrocytes. Basal cytosolic free calcium levels ([Ca2+]i) also are increased 

5 fold. 2′, 4′ dichlorobenzamil (DCB) inhibits the sodium dependent calcium transporter 
(NCX1.1) much more potently than NHE1. DCB was employed in a concentration dependent 
fashion in glioma cells to selectively inhibit the forward mode of NCX1.1 at ≤1 μM, while dually 

inhibiting both NHE1 and NCX1.1 at ≥20 μM. DCB (1 μM) was not cytotoxic to glioma cells, while 

DCB (20 μM) further increased basal elevated levels of [Ca2+]i in glioma cells that was followed by 

cell demise. Cariporide and SEA0400 are more selective inhibitors of NHE1 and NCX1.1 than 

amiloride or DCB, respectively. Individually, Cariporide and SEA0400 are not cytotoxic, but in 

combination induced glioma cell death. Like amiloride, the combination of Cariporide and 

SEA0400 produced glioma cell death in the absence of demonstrable caspase activation. 
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1. Introduction 
Malignant gliomas (WHO grades 3 and 4) are the most 
prevalent primary adult brain tumors with a recurrence rate 

exceeding 90% within two years following conventional 
therapeutic modalities (Legler et al., 1999; Brandes et al., 
1999). These rapidly proliferating and infiltrating primary 

astroglial cancers outgrow their neovascularization induced 

by vasogenic endothelial growth factor (VEGF) and create 

hypoxic ischemic tumor domains containing necrotic glioma 

cells bordered by non proliferating, pseudopallisading glioma 

cells and proliferating glioma cells (Gorin et al., 2004). Glioma 

necrosis remains one of the most consistent pathological 
features predictive of glioma recurrence and a worsened 

clinical prognosis (Brandes et al., 1999; Compostella et al., 
2007). We and others reported that glioma cells survive and 

proliferate within these hypoxic ischemic tumor microenvir 
onments (Gorin et al., 2004; Korkolopoulou et al., 2007). The 

resultant extracellular acidosis in hypoxic ischemic tumor 
microenvironments is associated with glioma cell cycle arrest. 
We found that acidified glioma cells having high levels of 
nuclear cyclin D1 enter cell cycle arrest at external pH (pHext) 6.0,  

are capable of surviving prolonged acidosis, and resume 

proliferation when the pHext of the tumor microenvironment is 

normalized (Schnier et al., 2008). Not surprisingly, hypoxic 

ischemic glioma cells are reported to possess increased resis 

tance to radiation therapy and alkylating agents such as BCNU 

and temozolomide (Barker et al., 1996; Vaupel and Mayer, 2007; 
Dinca et al., 2007). Recent clinical experience treating malignant 
gliomas with bevacizumab indicates that anti VEGF therapy is 

cytostatic and can be followed by the recurrence of disseminated 

glioma initiating cells (Chamberlain and Johnston, 2009; Lamszus 

et al., 2003). Therefore, it is necessary to investigate new cytotoxic 

agents targeting these glioma initiating cells. Amiloride, an FDA 

approved diuretic, is cytotoxic to glioma cells in the micromolar 
range and previously reported to be non toxic to primary 

astrocytes (Hegde et al., 2004). In vivo, amiloride has been 

identified as killing proliferating and non proliferating perine 

crotic glioma cells in perinecrotic regions in an immunodeficient 
murine intracerebral human U87 glioma xenograft model (Gorin, 
2007). 

Surprisingly, 31P NMR studies in individuals with WHO grade 

3 and 4 gliomas reported normocidic or elevated pHtot within the 

tumors despite their increased glycolytic fluxes (Maintz et al., 
2002). We have measured the pHi of several malignant glioma 

cell lines, including human U87, U251, U118 and murine C6, and 

determined that all these glioma cell lines maintain an alkalotic 

pHi between 7.2 and 7.4 in a bicarbonate depleted environment 
(McLean et al., 2000). Their intracellular alkalosis is a conse 

quence of persistent activity of NHE1, which maintains an 

elevated intracellular pH optimized for non oxidative glycolysis 

in these highly metabolically active cancers (Gorin et al., 2004; 
Griguer et al., 2005). Inhibiting NHE1 in human malignant 
glioma cell lines in bicarbonate free media reduced their 
elevated pHi to that of normal astrocytes (6.9 7.0) (McLean 

et al., 2000). By contrast, astrocytes do not activate NHE1 while 

maintaining pHi of 6.9 7.0 in the normal brain milieu and are not 
acidified by NHE1 inhibition (McLean et al., 2000). Astrocytes and 

glioma cell lines additionally express NCX1.1 and acid sensing 
ion channels (ASICs) (Goldman et al., 1994; Amoroso et al., 1997; 
Vila Carriles et al., 2006). ASIC1a generates constitutive inward 

sodium and calcium currents in several glioma cell lines 

thought to enhance proliferation and mobility, but not alter 
their viability (Vila Carriles et al., 2006). 

Both NHE1 and ASIC1a are blocked by amiloride, and it has 

been proposed that amiloride selectively kills specific cancer 
cell types by reducing their pHi and thereby inhibiting non 

oxidative glycolysis (Tannock and Rotin, 1989; Reichert et al., 
2002; Wu et al., 2007). However, neither acidifying U87 or U118 

glioma cell lines to pHi 6.9 by bathing them in reduced pH media 

(6.8) or selectively inhibiting NHE1 with Cariporide (HOE642), 
was cytotoxic (Hegde et al., 2004). Cariporide inhibits NHE1 with 

an IC50 of 26 nM (Masereel et al., 2003), and in contrast to 

amiloride, has not been shown to inhibit ASICs or NCX1.1. The 

concentration range of amiloride (100 500 μM) capable of 
selectively killing either proliferating (pHext 7.0) or non 

proliferating human malignant glioma cell lines (pHext 6.0), 
while remaining non toxic to normal brain cell types, indicates 

that further study of its cytotoxic mechanisms of action could 

lead to the development of more potent anti cancer agents. 
An important physiological consequence of persistent 

NHE1 activity in glioma cells would be an anticipated increase 

in [Na+]i; consistent with the depolarized membrane poten 

tials reported in the human U87 glioma cell line ( 48 to + 

15 mV) (Ducret et al., 2003). This magnitude of depolarization 

in glioma cells, as compared with normal astrocytes ( 80 mV) 
(Perez Velazquez et al., 1996), is predicted to increase 

intracellular calcium influx via voltage activated plasmalem 

mal channels and sodium dependent calcium transport 
mechanisms, as we reported in stretch injured astrocytes 

(Floyd et al., 2005) and others have described in hypoxic 

cardiomyocytes following reperfusion injury (Wang et al., 
2007). However, the specific cellular mechanisms underlying 

the calcium loading of depolarized malignant glioma cells is 

beyond the scope of this investigation which is focused upon 

amiloride induced glioma demise. 
In this study, we demonstrate that malignant glioma cells 

maintain elevated levels of [Na+]i and [Ca2+]i in comparison to 

normal astrocytes. These ionic alterations could explain the 

selective killing of glioma cells by amiloride at concentrations 

that inhibit Na+ dependent H+ efflux by NHE1 and Na+ 

dependent Ca2+ efflux (“forward mode”) by NCX1.1, further 
elevating [Ca2+]i to cytotoxic levels. Selective pharmacological 
inhibition of either NCX1.1 or NHE1 is not cytotoxic to glioma 

cells. However, dual inhibition of NHE1 and the forward mode 

of NCX1.1 further elevate [Ca2+]i and precede observed glioma 

cell demise. A summary diagram of the ionic transporters, 
intracellular calcium stores, and pharmacological agents 

evaluated in this study is summarized in Fig. 1. 
2. Results 

2.1. Intracellular levels of cytosolic free sodium are elevated 
in glioma cells 

Initial basal concentrations of cytosolic free sodium [Na+]i are 3 

to 3.5 fold higher in U87 and C6 glioma cells, respectively, as 

compared with primary astrocytes (Fig. 2). Addition of the non 
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Fig. 1 – Panel A: Basal conditions of sodium-mediated exchangers and intracellular calcium stores in glioma cells. 
Panel B: {1} Inhibition of sodium-mediated proton exchange (NHE1) by Cariporide. {2} Inhibition of sodium-mediated calcium 

exchange (NCX1.1) by dichlorobenzamil (1 μM DCB) or SEA0400. {1} and {2} Dual inhibition of NHE1 and NCX1.1 by either 
amiloride, DCB (20 μM), Cariporide+DCB (1 μM), or Cariporide+SEA0400. {3} Release of calcium from endoplasmic reticulum by 

thapsigargin (TG). {4} Release of calcium from mitochondria by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP). 
{5} Extracellular calcium entry by the ionophore, ionomycin. See text for experimental details. 

 

fluorescent, reversible NHE1 inhibitor HOE694 to either of these 

two glioma cell lines (Figs. 2A, B) reduced [Na+]i at  time 0 to
concentrations comparable to that of astrocytes (~10 mM, 
Fig. 2C). Replacement of buffer without HOE694 at 5 min increased 

[Na+]i to their initially elevatedbasal levelsof 32 mM±2within20 

60 min. These NHE1 inhibitor studies demonstrate that in a 

bicarbonate free environment, elevated [Na+]i in glioma cells is 

primarily a consequence of persistent NHE1 activity that is 

associated with their elevated pHi (Fig. 1, panel  A).  

2.2. Intracellular levels of free calcium are elevated in 
glioma cells 

Basal levels of cytosolic free calcium [Ca2+]i of 400 nM and are 

5 fold higher in U87 glioma cells, as compared with primary 

astrocytes, in which we reported a [Ca2+]i of 80 nM (Fig. 3A) 
(Floyd et al., 2005). Elevated basal levels of cytosolic free 

calcium in U87 glioma cells were not altered by reduced glioma 

cell pHi from 7.4 to 6.9 with acidified HEPES media of pHext 6.8 

(Hegde et al., 2004), or by inhibiting NHE1 with non fluorescent 
HOE694 (Fig. 3A). Therefore elevated levels of [Ca2+]i in glioma 

cells, unlike [Na+]i, are not directly coupled to persistent NHE1 

activity. 

2.3. Further elevation of cytosolic free calcium in glioma 
cells using a calcium ionophore produces glioma cell death 

Ionomycin is a bacterial ionophore that increases calcium 

influx through the plasmalemma. The addition of 5 μM 

ionomycin rapidly increased levels of cytosolic free calcium 

released from intracellular stores by thapsigargin (TG) (Fig. 3B). 
Ionomycin (5 μM) killed 54±7% of U87 glioma cells at 24 h, as 
compared with time matched controls, based upon the 

manual trypan blue exclusion assay to count dead cells. 
Using the WST assay to measure metabolically active cells, 
only 27±2% of glioma cells were viable, compared with 

controls. The ionomycin experiments demonstrated that 
directly increasing levels of free cytosolic calcium by increas 

ing calcium influx produced glioma cell demise. 

2.4. Intracellular calcium buffering and calcium efflux 

The insensitivity of elevated [Ca2+]i to NHE1 activity is not 
unexpected, given the calcium buffering by intracellular stores 

and calcium efflux mechanisms previously demonstrated in 

glioma cells and normal astrocytes (Floyd et al., 2005; Galiano 

et al., 2004). Thapsigargin (TG) inhibits calcium ATPase to 

release calcium from TG sensitive stores in the endoplasmic 

reticulum. Incubating U87 glioma cells and astrocytes with TG 

(1 μM) caused calcium release from ER stores, reflected by an 

increase in cytosolic calcium (Fig. 3C). A significant amount of 
cytosolic free calcium is released by TG sensitive ER stores in 

glioma cells, as compared with astrocytes. Calcium release 

from ER stores was consistently observed in gliomas but not 
astrocytes. However, quantification of subsequent cytosolic 

free calcium concentrations, even with loading of low affinity 

Fura FF, was hampered, in part by variable activation of store 

operated calcium entry throughout the polyploid glioma cell 
populations (Spassova et al., 2004; Kwan et al., 2008). 
Importantly, [Ca2+]i released from ER stores additionally 

increased the already elevated levels of cytosolic free calcium, 
which returned to basal levels within 400 s (Fig. 3C). 

FCCP (carbonyl cyanide p trifluoromethoxyphenyl hydra 

zone) collapses the mitochondrial transmembrane potential 
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Fig. 2 – Intracellular cytosolic free sodium concentrations in 

two glioma cell lines (A) C6 and (B) U87, and (C) primary rat 
astrocytes treated with a reversible, non-fluorescent NHE1 

inhibitor, HOE694 (100 μM), at time 0 for 5 min followed by 

washout. The first data point in each graph represents basal 
[Na+]i for each cell type. 
(ψm) causing the release of calcium from mitochondrial stores 

(Vali et al., 2000; Chalmers and Nicholls, 2003). In normal 
astrocytes and other normal cell types, collapse of the trans 

membrane mitochondrial potential does not demonstrably 

increase [Ca2+]i (Kahlert et al., 2001). In U87 glioma cells, FCCP 

caused a large increase in [Ca2+]i and a negligible [Ca2+]i increase 

in normal astrocytes (Fig. 3C). Like TG, FCCP induced increase in 

[Ca2+]i was transient and returned to near basal levels. 

2.5. Sodium-dependent calcium efflux by NCX1.1 is 
inhibited selectively by DCB 

DCB is an amiloride analog whose C2 dichloroaryl side chain 

greatly enhances its inhibition of NCX1.1≫ NHE1, and DCB is 
widely employed as an inhibitor of sodium mediated calcium 

transport. Glioma cells and astrocytes express NCX1.1, there 

fore it is necessary to examine the concentration dependent 
inhibition of the forward and reverse modes of NCX1.1 stably 

transfected into Chinese hamster ovary (CHO) cells. CHO cells 

lack the ion transporters and calcium channels that partici 
pate in the glutamate glutamine cycle of astroglial cell types 

and which confound measurements of sodium calcium 

transport in glioma cells (Ishiuchi et al., 2007; Handfield 

Jones et al., 1988; Deitmer et al., 2003). Whole cell patch 

electrophysiological recordings of CHO cells stably transfected 

with NCX1.1 demonstrate an IC50 of 9 nM for DCB to prevent 
sodium dependent calcium efflux (“forward mode”, Fig. 4A). 
Furthermore, these whole patch studies demonstrate that 
DCB is a much less effective inhibitor of sodium dependent 
calcium influx (“reverse mode”) by NCX1.1 (IC50 22 μM, Fig. 4B). 
These electrophysiological findings permitted us to employ 

low concentrations of DCB (≤1 μM) to selectively block the 

forward mode of NCX1.1. Compounds such as SEA0400 can be 

employed to preferentially block the reverse mode of NCX1.1 

with nanomolar potencies under the observed glioma condi 
tions of elevated [Na+]i (Iwamoto, 2004). Higher concentrations 

of DCB (≥20 μM) were employed to inhibit NHE1 (Hegde et al., 
2004), the forward mode of NCX1.1, and partially inhibit the 

reverse mode of NCX1.1 (Fig. 1, panel B). 

2.6. Inhibition of the forward mode of NCX1.1 by low 
concentration DCB maintains elevated Ca+i following release 
from intracellular stores, but does not initiate glioma cell death 

The objective of the following studies was to determine 

whether the transient increase in levels of cytosolic calcium 

released from intracellular stores was being moderated by the 

forward mode of NCX1.1. DCB (1 μM) was added 90 100 s prior 
to the addition of thapsigargin so that there was an 

insufficient time for inhibition of the forward mode of 
NCX1.1 to increase basal levels of cytosolic free calcium prior 
to the addition of TG. DCB (1 μM) prevented the restoration of 
[Ca2+]i to basal elevated levels in U87 glioma cells following 

release from ER stores with TG (Fig. 3C). Significantly, DCB 

(1 μM) was not cytotoxic to glioma cells nor was SEA0400 

(1 μM), which preferentially blocks the reverse mode of NCX1.1 

with an IC50 of 78 nM in the presence of elevated [Na+]i 
(Table 1) (Lee et al., 2004). Inhibition of NCX1.1 by 1 μM DCB did 

not significantly increase glioma cell death (Table 1, % trypan 

blue), as compared with time matched, vehicle treated con 

trols. However, low concentration DCB was observed to 

possess a modest anti proliferative effect as determined by 

the WST assay (% viable cells<(100 % dead cells)) (Table 1). 

2.7. Inhibition of NHE1 by Cariporide does not initiate 
glioma cell death while dual inhibition of NCX1.1 and NHE1 
by DCB produces caspase-independent glioma cell death 

The objective of the following studies was to determine whether 
dual inhibition of NHE1 and NCX1.1 contributed to amiloride's 

cytotoxic effects, as measured using the trypan blue exclusion 

assay. Additionally, the viabilities of treated cells, as compared 

with time matched controls, were measured using the WST 

tetrazolium assay to assess whether any of these agents had 
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Fig. 3 – (A) Levels of cytosolic free calcium [Ca2+]i in U87 glioma cells maintained at pHext 7.4 or 6.8 in the presence or absence of the 

NHE inhibitor HOE 694 (100 μM). Basal [Ca2+]i in astrocytes is between 50 and 80 nM as previously reported [26]. (B) Thapsigargin 

(TG) followed by ionomycin-induced 340/380 ratio changes in U87 glioma cells loaded with Fura-2. TG initiated calcium release 

from ER while the ionophore, ionomycin by increased calcium influx and produced a larger and persistent elevation in the 340/380 

ratio. (C) Thapsigargin (TG) and FCCP-induced 340/380 ratio changes in primary rat astrocytes and in U87 glioma cells loaded 

with Fura-2. TG or FCCP triggered calcium release in glioma cells from the ER or mitochondria, respectively, as evidenced by an 

initial 2-fold increase in the 340/380 ratio in a representative study. A modest increase in the 340/380 ratios was observed in 

primary astrocytes following these treatments. Upper and lower lines represent a typical experiment with U87 glioma cells or 
primary astrocytes, respectively. (D) Persistent elevation of the 340/380 ratio of Fura-2 in U87 cells pretreated with DCB (1 μM) 90 s 

prior to the addition of thapsigargin (10 μM). DCB (1 μM) blocked sodium-dependent calcium efflux (“forward mode”) of  NCX1.1  in  

U87 glioma cells to prevent moderation of elevated cytosolic calcium shown in B and C. 

 

significant cytostatic activities independent of their cytotoxic 

activities. U87 glioma cell death and total live cell numbers were 

not affected by NHE1 inhibition by Cariporide (HOE642); a more 

stable NHE1 inhibitor than the non fluorescent HOE694 used for 
the fluorescence studies (Table 1). At higher concentrations of 
DCB (20 μM) there was a marked 4 fold increase in glioma cell 
death and a significant decrease in viable cells (Table 1). 
Amiloride or 20 μM DCB demonstrated comparable cytotoxi 
cities when tested in U87, U251 and U118 human glioma cell line 

lines (Table 1). Previously, all three human cell lines had been 

shown by us to maintain elevated pHi resulting from persistent 
activation of NHE1 (McLean et al., 2000). 

2.8. Treatment with both SEA400 and Cariporide or DCB 
and Cariporide produces caspase-independent glioma cell death 

The amiloride and DCB cytotoxicity data suggested that 
dual inhibition of NHE1 and the forward mode of NCX1.1 
maintained elevated [Ca2+]i. Low  concentration DCB  (1  μM) 
combined with 100 μM Cariporide killed 39 ± 4% of U87 

glioma cells after 48 h when compared with time matched 

controls (Table 1). A similar number of viable cells (35 ± 3%) 
were detected following this treatment using the WST 

live cell assay. The magnitude of glioma cell death pro 

duced by 100 μM Cariporide + 1 μM DCB  were  not altered  by
pre incubation with the pan caspase inhibitor zVAD.FMK 

(34 +/ 2%). 
Both amiloride and DCB reportedly inhibit ASIC2A at higher 

concentrations (Page et al., 2007), so that it was useful to 

employ other agents that inhibited either NHE1 (Cariporide) or 
NCX1.1 (SEA0400), but did not inhibit ASIC. Neither Cariporide 

nor SEA0400 individually caused glioma cell death, but in 

combination they were cytotoxic to glioma cells (Table 1). The 

cytotoxic effects of Cariporide+SEA0400 were not affected by 

pre incubation with the pan caspase inhibitor zVAD.FMK 

(Table 1). 
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Fig. 4 – Representative whole-cell voltage clamp data used to 

determine the IC50 for inhibition of NCX1.1 by DCB. The graph 

depicts the data plot and the curve-fit line calculated used to 

determine the IC50 for inhibition of both the (A) forward and 

(B) reverse modes of NCX1.1. 
2.9. Treatment with Amiloride or DCB kills glioma cells 
without increased caspase activation and produces nuclear 
morphology inconsistent with apoptosis 

Immunoblot analyses showed that treatment of normal 
primary astrocytes or U87 glioma cells with amiloride 

(250 μM) or DCB (20 μM) did not significantly increase activa 

tion of caspases 3 or 7 (Fig. 5). As a positive control for 
apoptosis, Staurosporine (10 μM) activated caspase 7 in astro 

cytes and U87 glioma cells, while activating caspase 3 in 

glioma cells. Treating glioma cells with either amiloride or 
20 μM DCB, while cytotoxic, did not produce typical apoptotic 

changes in nuclear morphology in U87 glioma cells stained 
with Hoechst 33342. Staurosporine treatment, as a positive 

control, produced the expected morphologic changes ob 

served in apoptotic cells (Fig. 1S). 
3. Discussion 

In this study, [Na+]i is elevated more than 3 fold in U87 and C6 

glioma cells as compared with normal astrocytes. This marked 

elevation in [Na+]i appears to primarily depend upon persis 

tent NHE1 activity and is sufficient to depolarize glioma cells 

in hypoxic ischemic tumor regions where Na/K ATPase 

activity is limited by non oxidative glycolysis (Gorin et al., 
2004; Erecinska et al., 1993). These ionic measurements are 

consistent with reported U87 glioma membrane potentials of 
( 48 to +15 mV) (Ducret et al., 2003), as compared with 78 mV 

recorded in normal astrocytes (Perez Velazquez et al., 1996). 
This magnitude of depolarization is sufficient to increase 

[Ca2+]i in glioma cells as a consequence of activating voltage 

dependent calcium channels, calcium dependent, store oper 
ated channels (SOC) (Hartmann and Verkhratsky, 1998; Kovacs 

et al., 2005), and can activate calcium loading by reversal of the 

sodium calcium transport (NCX 1.1), as we reported in stretch 

injured, depolarized astrocytes (Floyd et al., 2005). Here, we 

identified that [Ca2+]i is increased by more than 5 fold and 

associated with elevated [Na+]i in U87 glioma cells as compared 

with normal astrocytes. The ionic imbalances identified in 

malignant glioma cells in a bicarbonate depleted environment 
present an opportunity for novel drug targeting strategies by 

analyzing the cytotoxic consequences of markedly augmented 

[Na+]i and [Ca2+]i in glioma cells.
 
We evaluated a mechanistic model where persistently
 

elevated cytosolic calcium in glioma cells is buffered by the 

endoplasmic reticulum and mitochondria and additional 
increases in cytosolic calcium are moderated by sodium 

dependent calcium efflux through NCX1.1 (Fig. 1, panel A). 
Ionomycin, a bacterial ionophore, produces a much greater 
and persistent increase in cytosolic calcium when compared 

with increased [Ca2+]i released from the ER by thapsigargin in 

the same cell population (Fig. 3B). Direct glioma cytotoxicity by 

ionomycin appears to arise by overwhelming intracellular 
calcium buffering and sodium mediated calcium efflux by 

NCX 1.1 (Fig. 1, panel B). Inhibiting NHE1 with the reversible 

non fluorescent inhibitor, HOE694, reduced [Na+]i, but did not 
demonstrably alter elevated levels of [Ca2+]i because of (1) 
intracellular calcium buffering and (2) sodium dependent 
calcium extrusion by NCX1.1 forward transport. Increased 

intracellular calcium buffering by the ER in glioma cells is 

demonstrated by the increased release of cytosolic free 

calcium from TG sensitive ER stores in glioma cells, as 

compared with astrocytes. Similarly, increased mitochondrial 
calcium buffering in glioma cells is shown by increased 

cytosolic free calcium following collapse of the transmito 

chondrial membrane potential (ψm) using FCCP. Mitochondria 

of several glioblastoma cell lines have been reported to 

sequester millimolar quantities of [Ca2+]i (Hartmann and 

Verkhratsky, 1998). In contrast, normal primary astrocytes 

have 5 fold lower levels of [Ca2+]i than the U87 and C6 glioma 

cells, and do not demonstrate an observable increase in 

cytosolic free calcium following mitochondrial depolarization. 
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Table 1 Treatment summary of cytotoxicities and cell viabilities for human malignant glioma cell lines. Cell death is 
expressed as a percentage of trypan blue positive cells per total cell count. Viable cell number is expressed as a percentage of 
the absorbance compared with time-matched, untreated controls utilizing a tetrazolium-based live cell assay (WST), which 
was standardized to cell number for each cell line. Asterisks (*) or (**) indicates statistical significance at p < 0.05 or p<0.005, 
respectively. Abbreviations: NHE1: sodium proton exchanger, isoform 1; NCX1: sodium calcium exchanger, isoform 1.1. 

Inhibition U87 U251 U118 

Treatment after 48 h NHE NCX Cell death 
(SE) 

Viable cells 
(SE) 

Cell death 
(SE) 

Viable cells 
(SE) 

Cell death 
(SE) 

Viable cells 
(SE) 

Control 3 (0.32) 100 (2.3) 6 (1.5) 100 (0.89) 5 (2.1) 100 (1.9) 

Dual NHE1 + NCX inhibitors 

Amiloride (500 μM) + + 47** (2.7) 16** (3.3) 56** (4.1) 28** (2.3) 63** (5.2) 28** (4.6) 
DCB (20 μM) + + 22** (2.1) 12** (0.9) 34** (3.6) 38** (1.7) 44** (2.7) 37** (1.1) 

NCX inhibitor 
DCB (1 μM) + 6 (1.5) 89* (1.2) 8 (1.9) 95 (0.76) 11 (3.8) 81* (5.1) 
SEA400 (1 μM) + 5 (0.86) 96 (2.2) 2 (1.5) 95 (3.2) 3 (2.2) 102 (1.9) 

NHE1 inhibitor 
Cariporide (100 μM) + 2 (0.43) 102 (1.6) 4 (0.59) 98 (2.8) 4 (1.2) 99 (3.8) 

NHE1 + NCX inhibitor 
Cariporide (100 μM) + DCB (1 μM) + + 39** (4.2) 35** (3.0) 
Cariporide (100 μM) + DCB (1 μM) + zVAD. 
FMK(200 μM) 

+ + 34** (1.9) 47** (2.8) 

Cariporide (100 μM) + SEA400 (1 μM) + + 15* (3.0) 82* (4.5) 17* (3.5) 69* (2.6) 25* (3.6) 77* (3.1) 
Cariporide (100 μM) + 

SEA400(1 μM) + zVAD.FMK(200 μM) 
+ + 18* (3.1) 87* (1.2) 21* (4.4) 87* (1.9) 20* (2.9) 82* (4.2) 
This increased intracellular buffering in glioma cells is 

demonstrated by the higher release of cytosolic free calcium 

from TG sensitive ER stores and calcium release from FCCP 

responsive mitochondrial stores. Basally elevated levels of 
[Ca2+]i in glioma cells are associated with increased intracel 
lular buffering as compared with normal astrocytes. 

The intracellular release of calcium from ER or mitochon 

drial stores of U87 glioma cells caused transitory elevations in 

[Ca2+]i with restoration to near basal levels within 400 s. 
Significantly, restoration of basal levels of [Ca2+]i following 

TG treatment was prevented by inhibiting sodium dependent 
calcium efflux (forward mode) by NCX1.1 (Fig. 1, panel A). The 

whole cell patch recordings of CHO cells transfected with 

NCX1.1 determined that DCB is a nanomolar inhibitor of the 
Astrocytes 

DMSO Amil. DCB DMSO

csps-7 

csps-3 

actin 

Fig. 5 – Immunoblots of U87 glioma cells and primary astrocytes
(arrowheads) following drug or vehicle (0.1% DMSO) treatments. 
demonstrate caspase activation in glioma cells and astrocytes un
forward mode of NCX1.1 and a micromolar inhibitor of the 

reverse mode. To our knowledge, this is the first report 
quantifying these large differences between inhibition of the 

forward and reverse modes of NCX1.1 by DCB in an intact cell 
and validated the use of DCB at low concentrations in glioma 

cells to selectively inhibit the forward mode of NCX1.1. Neither 
≤1 μM of DCB nor the use of selective nanomolar inhibitors of 
the reverse mode of NCX1.1, SEA0400 (Table 1) or KB R79433 

(Hegde et al., 2004), evoked glioma cytotoxicity. These 

pharmacological data coupled with the fura 2 measurements, 
demonstrated that inhibiting only the forward mode of 
NCX1.1 was not sufficient to explain the glioma cytotoxicity 

observed using higher concentrations of either amiloride or 
DCB (Table 1). 
 

U87 Astro. U87 

Amil. DCB Staurosporine 

 demonstrate changes in levels of cleaved caspases 3 and 7 

Staurosporine (10 μM) was included as a positive control to 

dergoing apoptosis. 



 

Amiloride is a more potent inhibitor of sodium proton 

transport (NHE1) than of sodium calcium transport (NCX1.1), 
but at higher concentrations (≥250 μM) demonstrates inhibi 
tion of both transporters (Rogister et al., 2001). Conversely, 
DCB inhibits NCX1.1≫ NHE1, but at higher concentrations 

(≥20 μM), inhibits both modes of NCX1.1 and NHE1 in U87 

glioma cells(Hegde et al., 2004). Consistent with a model 
comprised of dual inhibition of NCX1.1 and  NHE1, low
concentration DCB (≤1 μM) inhibits the forward mode of 
NCX1.1, yet is not cytotoxic to glioma cells until achieving 

concentrations (≥20 μM) which also inhibit NHE1 (Fig. 1, panel 
B). Previously we reported that 50 μM of amiloride inhibits 

NHE1 yet does not kill glioma cells until reaching concentra 

tions that dually inhibit NCX1.1 and NHE1 (Hegde et al., 2004). 
Employing 1 uM SEA0400 blocked both modes of NCX1.1 and 

coupled with the NHE1 inhibitor Cariporide, caused glioma cell 
death while neither agent alone was cytotoxic (Table 1). 
Analogously, low concentration DCB (1 μM) blocked the 

forward mode of NCX1.1 and when coupled with Cariporide 

also triggered cell demise. These drug combinations, like 

amiloride and 20 μM DCB, were comparably cytotoxic in the 

presence or absence of pan caspase inhibitors. 
Neither the NHE1 inhibitor, Cariporide, or either of the 

NCX1.1 inhibitors, SEA0400 or DCB (1 μM) were individually 

cytotoxic to the U87, U251 or U118 human glioma cell lines, 
which had been previously shown to persistently activate 

NHE1 and maintain basally elevated pHi (McLean et al., 2000). 
However, dual inhibition of NHE1 and NCX1.1 by Cariporide+ 

SEA0400 or Cariporide+DCB (1 μM) was cytotoxic to these 

glioma cell lines. Dual blockade of NHE1 and NCX1.1 using 

different inhibitors in the three glioma cell lines demonstrates 

a consistent pattern of cytotoxic potencies (Table 1). Amiloride 

or high concentration DCB (20 μM) are consistently more 

cytotoxic than either Cariporide+SEA0400 or Cariporide+ 

DCB (1 μM). The additional cytotoxicities of amiloride or 
20 μM DCB may result from their enhanced inhibitor 

potencies of the ionic transporters or indicate the possibility 

of additional drug targeting. Furthermore, amiloride appears 

to have additional cytostatic activity as its reduction of 
viable cells exceeds the dead cell counts after 24 h in these 

glioma cell lines (Table 1). 
The caspase independent glioma cell demise triggered by 

dual inhibition of NHE1 and NCX1.1 is supported by the 

absence of observed caspase 3 or 7 activation associated with 

drug treatment. Additionally, the nuclei of these dying glioma 

cells did not adopt an apoptotic morphology (Fig. 1S). These 

data support our prior observations that amiloride induced 

glioma cell death did not activate PARP or Annexin V using 

FACS analyses (Hegde et al., 2004). Several types of non 

apoptotic cell death including autophagy and paraptosis have 

been described that are relevant to cancer therapeutics 

(Constantinou et al., 2009), and we are currently investigating 

glioma cell death mechanisms triggered by these agents. 
The precise intracellular mechanism(s) by which dual 

inhibition of NHE1 and NCX1.1 produces selective glioma cell 
death is unknown at this time. Dual inhibition of NHE1 and 

NCX1.1 in glioma cells reduces pHi and could activate ASICs 

with the increased calcium influx additionally increasing high 

basal [Ca2+]i. Alternatively, further elevations in calcium 

release from thapsigargin sensitive ER stores in glioma cells 
have been reported to activate store operated calcium (SOC) 
channels that could augment calcium influx and increase [Ca2+]i 
to cytotoxic levels when the forward mode of NCX1.1 is 

inhibited (Kovacs et al., 2005). These pharmacological studies 

indicate that sodium dependent proton and calcium efflux by 

ionic transporters assist malignant glioma cells to survive in 

hypovascularized, acidotic tumor microenvironments and 

potentially represent important pharmacological targets. 
4. Experimental procedures 

4.1. Glioma cell lines and primary astrocyte cultures 

Human U87 and rat C6 glioma cell lines were obtained from the 

American Tissue Culture Collection. Primary rat astrocytes 

were isolated from the cerebral cortices of neonatal Sprague 

Dawley rats (1 2 days old) as described in detail elsewhere 

(Floyd et al., 2005). Briefly, cortices were cleaned of meninges 

and white matter, mechanically disseminated, and incubated 

with papain for 30 min. Astrocyte culture purity was charac 

terized as 98% using GFAP immunocytochemistry as described 

previously (Amruthesh et al., 1993). Glioma cells and astrocytes 

were grown on rat tail collagen coated coverslips in DMEM 

supplemented with 10% fetal bovine serum (Hyclone), 1% L 

glutamine (200 mM, Gibco), 100 U/ml penicillin and 100 mg/ml 
streptomycin (Gibco) as detailed in Hegde et al. (2004). 

4.2. Cytosolic free sodium and calcium determinations 

[Na+]i and [Ca2+]i were determined using either SBFI AM or 
Fura 2 AM, respectively, as described previously (Floyd et al., 
2005). Glioma cells were grown on collagen coated coverslips 

at 37 °C. Cells were washed and then loaded with SBFI AM or 
Fura 2 AM at RT to control esterase activity and reduce non 

specific dye uptake by intracellular organelles and then 

imaged at 37 °C as described in detail elsewhere (Floyd et al., 
2005). Cells were rinsed twice and then loaded in HEPES 

buffered saline with 5 μM Fura 2 AM (60 min) or 20 μM SBFI 
AM+0.1% pluronic acid (90 min) at room temperature (20 

22 °C) and rinsed before imaging. During the experiments, 
cells were perfused (flow rate 5 ml/min) with 37 °C HEPES 

buffered saline and bath temperature monitored and main 

tained with a Peltier controlled open incubation system 

(Harvard Apparatus, Holliston, MA). 
Intracellular imaging was conducted on a high speed 

imaging system with excitation light provided by a xenon 

arc lamp coupled to a Polychrome IV scanning monochroma 

tor (Till Photonics, Grafelfing, Germany) that can alternate 

excitation wavelengths. Excitation light was delivered to cells 

via fiber optics through the epifluorescence port of a Nikon 

E600 microscope coupled to a Nikon Fluor 60× water immer 
sion lens. The detector was an Orca II ER CCD digital camera 

(Hamamatsu USA, Bridgewater, NJ) that is computer con 

trolled by C Imaging SimplePCI software (Compix, Cranberry 

Township, PA). For in vitro ionic measurements, individual cell 
values from a microscope field (4 7 cells/field) were averaged 

for each experimental condition. Each experimental condition 

was repeated a minimum of 3 times totaling 12 21 cells/ 
condition (Floyd et al., 2005). 



Calibration of SBFI fluorescent emission to [Na+]i was 

performed using the method described previously (Floyd et al., 
2005). Cells were perfused with HR containing 3 μM gramicidin,  

100 μM ouabain, and sodium concentrations of 0, 30, or 50 mM. 
Data were compared to a standard curve generated by perfusing 

another set of cells with the aforementioned ionophores in the 

presence of varying buffer containing sodium (0, 10, 30, 50, 70, and 

100 mM). Calibration of Fura 2 with [Ca2+]i utilized the ratiometric 

method described elsewhere (Grynkiewicz et al., 1985). Rmin and 

Rmax values (340/380 excitation with 505 nM emission) were 

determined by perfusing cells with HR plus 10 μM ionomycin and 

either 10 mM EGTA or 5 mM calcium, respectively. 
CHO cells stably transfected with NCX1.1 was a kind gift from 

John Reeves (Reeves and Condrescu, 2003). CHO cells were 

transfected with the mammalian expression vector pcDNA3 

containing the open reading frame for the bovine cardiac Na+/ 
Ca2+ exchanger (NCX1.1; accession number LO6438) with 

functional recombinants selected using ionomycin. Stable 

transfectants were maintained in the presence of the antibi 
otic G418. 

4.3. Measurement of NCX1.1 exchange current 

Whole cell current recordings were performed as described 

elsewhere (Chen and Yau, 1994) using an Axopatch 200B 

amplifier. Currents were digitally filtered at 1 kHz and 

digitized at 2 kHz using Digidata 1320 digitizer and pClamp8 

software (Axon Instrument/Molecular Device). Borosilicate 

glass electrodes were pulled by PP 830 Puller (Narashige Co.), 
and have a resistance of 1.5 2.0 MΩ when filled with the 

pipette solution. To record the NCX 1.1 exchanger activity, the 

clamped whole cell was moved to the mouth of a set of 
capillary tubes which were controlled by SF 77 solution 

exchanger (Warner Instruments) and pClamp8 software. The 

cell was exposed to the control solution and work solution 

sequentially to monitor the exchanger currents, the clamping 

potential is 0 mV. 

4.3.1. Forward mode NCX1.1 
For inward sodium current recording, the pipette solution 

contained (in mM) 120 LiCl, 20 tetramethylammonium chloride 

(TEA Cl), 5 KCl, 2 MgCl2, 8  D glucose, 10  HEPES, 2 nitrilotriacetic  

acid (NTA), and 0.346 CaCl2 (20 μM free Ca2+), pH 7.2; the bath 

control solution contained (in mM) 145 LiCl, 1 MgCl2, 10  D 

glucose, 10 HEPES, and 1 EGTA, pH 7.4; and the bath work 

solution contained (in mM) 145 NaCl, 1 MgCl2, 10  D glucose, 10 

HEPES, and 1 EGTA, pH 7.4. 

4.3.2. Reverse mode NCX1.1 
For outward current recording, the pipette solution contained 

(in mM) 120 NaCl, 5 KCl, 2 MgCl, 8 D glucose, 20 tetramethy 

lammonium chloride (TEA Cl), 4.28 CaCl2, 5 EGTA, and 10 

HEPES, pH 7.2; the bath control solution contained (in mM) 145 

LiCl, 1 MgCl2, 10  D glucose, 0.5 EGTA, and 10 HEPES, pH 7.4; 
and the bath work solution contained (in mM) 145 LiCl, 1 

MgCl2, 10  D glucose, 1 CaCl2, and 10 HEPES, pH 7.4. For inward 

current recording, the pipette solution contained (in mM) 120 

LiCl, 20 TEA Cl, 5 KCl, 2 MgCl2, 8  D glucose, 10 HEPES, 2 

nitrilotriacetic acid (NTA), and 0.346 CaCl2 (20 μM free Ca2+), 
pH 7.2; the bath control solution contained (in mM) 145 LiCl, 1 
MgCl2, 10  D glucose, 10 HEPES, and 1 EGTA, pH 7.4; and the 

bath work solution contained (in mM) 145 NaCl, 1 MgCl2, 10  D 

glucose, 10 HEPES, and 1 EGTA, pH 7.4. 
For drug application, DCB was prepared as stock solutions 

in DMSO stored at 30 °C. Upon use, the stock solutions were 

diluted to certain concentrations by bath control or work 

solutions. To test the drug effects, sodium currents in the 

absence of drugs were first recorded, and immediately 

followed by a recording in the presence of certain concentra 

tions of drugs. All experiments were conducted at the room 

temperature. Data analysis normalized the current under drug 

treatment conditions to that in the absence of drugs. The 

normalized value was fitted to a Langmüir function to 

estimate the half inhibition concentration (IC50). All data 

points come from the average of 3 5 independent recordings. 
The data are presented by mean±standard deviation (SD). 

4.4. Viable cell number and cytotoxicity determination 

96 well plates were initially seeded with 104 U87 cells in media 

described earlier and allowed to adhere for 24 h. Stock drug 

concentrations were dissolved in DMSO and added to the 

media with a final vehicle concentration of 0.1% DMSO. 
Following treatment, 10 μl of water soluble tetrazolium (10% 

v/v, WST, Roche) was added, the plate shaken for 5 s, and read 

on a plate reader 3 h after the addition of tetrazolium dye. 
Viable cell numbers, measured as absorbance values, were 

normalized using control curve determined for each cell type. 
Cells were removed by gentle rinsing with PBS following 

absorbance determinations. Trypan blue was added to cell 
suspension (10% v/v) and after 5 min an aliquot was trans 

ferred to a manual hemacytometer for cell counting. 

4.5. Nuclear morphology cell death studies 

Treated and stage matched, vehicle treated cells were evalu 

ated for cell death in the presence of zVAD FMK (20 μM), a pan 

caspase inhibitor, and the results were averaged from at least 
six experiments. The nuclei of treated and untreated glioma 

cells were stained with 10 μM Hoechst 33342 (Sigma) for 
30 min and visualized on a Nikon E600 fluorescent 

microscope. 

4.6. Immunoblotting 

Cells in six well plates were lysed with 300 μl Laemmli buffer 
(0.03 M Tris HCl, 0.02% SDS, 0.5 M β mercaptoethanol, 7% 

glycerol, and 0.01% bromophenol blue) and boiled for 10 min at 
90 °C. The lysates were fractionated by molecular weight using 

dodecyl sulfate polyacrylamide gel electrophoresis, trans 

ferred to nitrocellulose (Bio Rad Laboratories), blocked for 1 h 

in TBS Triton containing 5% dried milk, and blotted with the 

antibodies indicated in the figures. Horseradish peroxidase 

conjugated secondary antibodies and SuperSignal detection 

reagents (West Femto and West Pico from Pierce and Thermo 

Scientific, respectively) were used for detection, and chemilu 

minescent images were captured using an Alpha Innotech 

imaging station. Mouse anti β actin AC 15 was purchased 

from Sigma. Rabbit anti cleaved caspase 3 and rabbit anti 
cleaved caspase 7 were purchased from Cell Signaling 



Technologies. Horseradish peroxidase conjugated goat anti 
mouse IgG and horseradish peroxidase conjugated goat anti 
rabbit IgG were from Zymed and Pierce, respectively. 

4.7. Statistical analysis 

Data in Table 1 are presented as mean±standard error of the 

mean (SEM). Statistical significance was determined for cell 
number and cytotoxicity using one way analysis of variance 

and Bonferroni's test for multiple pairwise comparisons using 

SigmaStat software version 2.00 (SPSS Science Inc, Chicago, IL). 
Supplementary materials related to this article can be 

found online at doi: 10.1016/j.brainres.2010.09.059. 
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