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Abstract— On-board gimbal systems for camera stabilization 
in helicopters are typically based on linear models. Such 
models, however, are inaccurate due to system nonlinearities 
and complexities. As an alternative approach, artificial neural 
networks can provide a more accurate model of the gimbal 
system based on their non-linear mapping and generalization 
capabilities. 

This paper investigates the applications of artificial neural 
networks to model the inertial characteristics (on the azimuth 
axis) of the inner gimbal in a gyro-stabilized multi-gimbal 
system. The neural network is trained with time-domain data 
obtained from gyro rate sensors of an actual camera system. 
The network performance is evaluated and compared with 
measurement data and a traditional model. Computer 
simulation results show the neural network model fits well with 
the measurement data and significantly outperforms the 
traditional model. 

I. INTRODUCTION 

ON-BOARD camera systems have been widely used in 
many applications such as fire detection, law 
enforcement, television news programs, as well as 

are often supported by a firm structure, they are usually 
exposed to or operated in a mobile and dynamic 
environment. For example, in a flying aircraft, wind can 
induce high frequency vibrations into the gimbal system. In 
a marine environment, water vapor and moisture leakage are 
additional potential sources of nonlinear frictions. In a 
ground vehicle, the random shock and resonance can be very 
severe. To better control the performance of a gimbal system 
under various environments, an accurate and adaptive model 
must be developed. 

military applications. The camera is often mounted in a roll 
tube that is contained within a two-axis "inner" gimbal 
which is often mounted inside another two-axis “outer” 
gimbal. 

The outer two-axis gimbal allows the camera to be panned 
360 degrees in azimuth and over 180 degrees in elevation. 
The inner two-axis gimbal has a limited range of movement 
(a few degrees of travel), but has a much larger bandwidth 
than the outer gimbal. This higher bandwidth gives the inner 
gimbal the ability to counteract the smaller amplitude, higher 
frequency vibrations of the mounting surface (such as a 
helicopter). A typical two-axis double gimbal system is 
shown in Fig. 1. 

The system of interest in this paper is the inner gimbal 
azimuth axis system. The transfer function of such system is 
typically derived from either FEA (finite element analysis) 
or modal analysis [1]. In fact, the model of a gyro-stabilized 
gimbal system is very difficult to obtain due to its 
complicated non-symmetrical mechanical design, nonlinear 
structural dynamics, and the many torque disturbances 
involved in the system. Therefore, many nonlinear effects 
are usually not considered in a typical multi-gimbal system 
model, including the products-of-inertia, kinematic coupling, 
as well as gyroscopic effects [2]. In addition, though gimbals 

Fig. 1. The two-axis multi-gimbal system 

In this research, artificial neural network is employed to 
model the inner gimbal azimuth axis system. The torque 
disturbances and nonlinearities considered in this paper 
include the bearing friction Coulomb model effects, 
kinematic coupling effects, and cable nonlinearities. The 
neural network is trained with time-domain data obtained 
from gyro rate sensors of an actual camera system. The 
network performance is evaluated and compared with 
measurement data and a traditional linear model. With the 
nonlinear mapping ability and adaptive learning ability, the 
neural network model fits well with the measurement data 
and significantly outperforms the traditional model. 

II. THE INNER GIMBAL AZIMUCH AXIS SYSTEM 

The overall system block diagram of the inner gimbal 
azimuth axis system studied in this research is shown in Fig. 
2. The input is the voltage (in volts) to the motor/amplifier 
that controls the inner azimuth gimbal. This input drives a 
“torquer” motor which consists of a coil (attached to the 
outer gimbal) and a magnet (attached to the inner gimbal). 
The output is the relative azimuth inertial rate 
(radians/second) between the inner and the outer gimbal that 

  



 
 

 

 

 

 
 

 
 

    
  

 

  
  

  
   

   
 

            

                 

 

  

  
 

 
 

 
 

 
 

     
 

    

   

  
   

   
 

  
 

                

 

 
 

  
 

 
  

 
 

 
 

 

   
 

    

 
  

 
 

             

           

 

  

 

  

can be measured from a gyro rate sensor located on the 
payload (e.g., a camera). 

Fig. 2. The inner gimbal azimuth axis system 

The torque disturbance Td  for an inner gimbal may be 
caused by many factors such as the sliding or rubbing 
frictions from the seals and bearings, the payload unbalance, 
the gyroscopic torques from gyro rate sensors, on-board 
shaking forces, actuator and gear reactions, cable torques, 
spring torques, structural bending, actuator cogging, and 
ripple torques, etc. [1]. Due to the nonlinear and random 
nature of the above issues, torque disturbance is very 
difficult to model. 

The Dahl model is one of the most commonly used 
dynamic friction model for ball bearings. As shown in Fig. 
2, the relationship between the torque on the bearing (y-axis) 
and the bearing angle (x-axis) is highly nonlinear with 
hysteresis: 

dTB = γ [T − T ⋅ sgn(θ.)]β   (1)  
dθ s B 

γ = s 
  (2)  T − Tps 

where TB  is the torque on the bearing, 8 is the bearing 

angle, s = slope at reversal (reversal of torque TB  direction), 

T  is the maximum Dahl friction torque, T  is the value of s p 

torque at turnaround or reversal, and p (values range 2 0) is 
the parameter that determines the shape of the stress-strain 
curve (i.e., torque vs. angle curve) [3]. 

Fig. 2. Dahl Friction Model Example (torque vs. angle) ([1]) 

III. THE NEURAL NETWORK MODEL 

In this section, a multi-layer feedforward artificial neural 
network (ANN) for modeling the inner gimbal azimuth axis 

system is discussed. The ANN model (shown in Fig. 3) has 
an input layer, an output layer, and one hidden layer. The 
inputs of neural network include the current and delayed 
inputs, as well as the delayed outputs of the inner gimbal 
azimuth axis system. That is, the neural network model is a 
multi-input, single-output system. The activation function 
for each hidden neuron is chosen as the hyperbolic tangent 
function: 

1− e− x 

f (x) =   (3)  
1+ e−x 

Fig. 3. The neural network model 

The weights (including biases) of the hidden layer are 
initialized using the Nguyen-Widrow method [4]. The 
principle of this method is to approximate a nonlinear 
function as a union of piece-wise linear segments; and each 
of these segments is attributed by a neuron in the first layer 
of the network. It has been shown that the Nguyen-Widrow 
method can significantly reduce neural network training time 
on a large number of different problems [4]. The weights 
and bias of the output layer are initialized at random. All the 
weights are updated using the Levenberg-Marquardt 
algorithm to minimize the following objective function: 

1 N 
2 1 N 

2J = �[e(i)] = �[d (i) − y(i)] (4)
2N i=1 2N i=1 

Batch learning approach employed in this study, where d is 
the desired output and y is the output of neural network; e is 
the output error;  i is the index of training pair; and N is the 
batch size. 

W( k +1) = W( k ) + ΔW  (5)  
T −1 TΔW = ( J J + μI ) J e   (6)  a a a 

where J  is the first order derivative of the error function a 
with respect to the neural network weight (also called the 

∂e
Jacobian matrix) ; μ  is a learning parameter, and k is

∂W 
the index of iterations. 

IV. SIMULATION RESULTS 

In this section, the performance of the neural network 

 



 
 

 

 

  
  

  
 

 
  

  
  

   
  

 
 

 

 
 

 
 

 
 

 
 

    

    
 

 

         

 
  

 
 

  
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

  
 
 

model is evaluated and compared with the true measurement 
data and a traditional model. The training data and testing 
data are obtained from the time history measurement of a 
camera system developed by Axsys Technologies (a division 
of General Dynamics Advanced Information Systems), with 
the sampling frequency of 2500Hz. 

First, the system response to a random input signal is 
recorded and then used to train the neural network model 
(20,000 training pairs). Then the trained neural network 
model is tested on various input signals and compared with 
the true system output data obtained from measurement. Fig. 
4 shows the neural network output and the system output to 
a low frequency (5Hz) signal, where the solid line represent 
the neural network output and the dashed line is for the true 
system response. 

Fig. 5. The neural network output and system response to a 
"multi-frequency" sinusoidal signal 

Fig. 6. The neural network output and system response to a 
"chirp" signal 

Fig. 4. The neural network output and system response to a 
5Hz sinusoidal signal 

Fig. 5 illustrates the neural network output and the system 
output to a "multi-frequency" sinusoidal signal (A = 0.5): 

x(t) = A[sin (107t) + sin ( 307t) + sin( 407t)   (7)  
+ sin ( 607t) + sin( 807t) + sin(1007t)] 

Finally, the neural network performance is tested using a 
"chirp" signal which has widely been used for system 
identification:

 
 

]
 
 
(

where ω = 0 Hz (DC), ω = 1250 Hz (the highest 1 2
frequency signal that satisfies the Nyquist sampling theorem 
for the sampling rate of 2500 Hz), 0 : t : M (where M is the 
time period). The result is shown in Fig. 6; the zoomed in 
version and the input signal is shown in Fig. 7. 

Fig. 7. The neural network output and system response to a 
"chirp" signal (zoomed in) 

For a complete study, a conventional model for inner 
gimbal azimuth axis system is considered and its 
performance is investigated. Assume that the torsional 
structure is rigid; and the torque disturbance contains the 

(ω2 − ω1)t   (8)  x(t) A
 +
  
 
}t=
  

 

{cos ω1 2M
 

 



 
 

 

 
              

 
  

  
 

    

  

 

 
  

 
 
 

 
 

  
 
  

   
 

 
 

 
  

 
 

 
 

  
 

 

 
 

  
  

 

 
 

  
 

 
 

  
  

 
 

  
  

  
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 

 
 

spring torque and a dampening torque: 
Td = −K s Δθ − cθ.   (9)  

where K  is the spring constant; Δθ  is the relative angular s 

displacement between the inner and outer azimuth gimbal; c 
.is the system damping; and θ  is angular velocity. The 

Matlab Simulink model is shown in Fig. 8. 
The motor/amplifier block shown in Fig. 2 consists of a 

current amplifier which drives a “torqer” motor consisting of 
a coil and magnet. The coil is attached to the outer gimbal 
while the magnet is attached to the inner gimbal. Fig. 9 
shows the model of the motor/amplifier block. Fig. 11. The conventional model output and system response to 

a 5Hz sinusoidal signal 

Fig. 8. Gimbal (rigid structure w/ spring & dampening torque 
disturbances) Fig. 12. The conventional model output and system response to 

a "multi-frequency" sinusoidal signal 

Fig. 9. Amplifier/motor model 

The gyro rate sensor is illustrated in Fig. 10. The corner 
frequency of the gyro ω ≈ 628 (rad/s) and the quality Fig. 13. The conventional model output and system response to 

n a "chirp" signal 
factor Q � 10. 

Fig. 10. Gyro rate sensor 

The simulation results of the performance of the 
conventional model is illustrated in Fig. 11, 12, and 13. 

In conclusion, computer simulation results show that the 
artificial neural network model is more accurate than the 
traditional model. The results are summarized in table 1, 
where the MSE (mean-square-error) and the R-squared value 
(also termed "coefficient of determination") are calculated 
and compared. In statistic, R2  measures how well the 
model approximates the real data points; and an R2  of 1.0 
indicates that the model perfectly fits the data [7]: 

2 

2 ( cov(Ŷ ,Y ) } ( E[(Ŷ − Ŷ )(Y −Y )]}2 

R = = (10)
σ σ σ σŶ Y Ŷ Y 

where Ŷ  is the model output vector; Y is the real system 
output vector; cov(·) is the covariance function; and 
σ (⋅) represents the standard deviation. 

 



 
 

 

 
 

 
 

  
    

     

 
 

    

 
 

    

     

 

  
  

   
 

   
 

 
   

  

 

 
  

 
  

   
  

  
 

 
  

 
 

   
  

   

  
 

Table 1. The performance of the neural network and 
conventional model 

Signal Traditional 
MSE 

NN 
MSE 

Traditional 
R2 

NN 
R2 

Random 
Signal 0.026229 1.9801E-6 0.74866 0.99997 

5 Hz Sine 
Wave 0.001343 1.7119E-6 0.92557 0.99988 

Multiple 
Frequency 0.0039535 2.2514E-6 0.89522 0.99993 

Chirp 
Signal 6.1893E-5 1.9082E-6 0.85409 0.9921 

V. CONCLUSION 

Multi gimbal systems are often used for camera 
stabilization in a dynamic and mobile environment. This 
paper investigates the applications of artificial neural 
networks to model the inertial characteristics (on the 
azimuth axis) of the inner gimbal in a gyro-stabilized multi-
gimbal system. The neural network is trained with time-
domain data obtained from gyro rate sensors of an actual 
camera system. The network performance is evaluated and 
compared with measurement data and a traditional model. 
Computer simulation results show the neural network model 
fits well with the measurement data and significantly 
outperforms the traditional model. 
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