LETTER
FLOWERING LOCUS C Influences the Timing of Shoot
Maturation in Arabidopsis thaliana

Laurie Mentzer, Tarah Yee, Tina Y. Wang, and Ed Himelblau

Many plant species undergo changes in leaf morphology as the vegetative shoot meristem matures
(Poethig, 2003; Telfer et al., 1997). In Arabidopsis, juvenile leaves are produced before shoot maturation
and are relatively round and lack trichomes on the abaxial side (underside) of the leaves. Adult leaves
formed after the shoot meristem matures are more elliptical and have abaxial trichomes. An important
difference between the juvenile-vegetative and adult-vegetative phases is that only during the adult-
vegetative phase can the meristem become competent to respond to environmental and endogenous
signals that promote flowering (Telfer et al., 1997).

Genetic backgrounds and environmental conditions that delay flowering also delay shoot maturation
(Telfer et al., 1997). For example, both flowering and shoot maturation occur later in the Columbia
accession (Col) than in the Landsberg errecta accession (Ler) (Lee et al., 1993; Telfer et al., 1997). An
important difference between these two accessions occurs at the FLC locus. FLC levels are slightly
elevated in Col compared to Ler, which has a weak allele of FLC (Michaels et al., 2003). FLC encodes a
MADS-domain transcription factor that acts as a repressor of flowering (Michaels and Amasino, 1999a;
Sheldon et al., 1999). Flowering is delayed under conditions or in genetic backgrounds in which FLC
expression is elevated (Michaels and Amasino, 1999a). The observation that shoot maturation is delayed
in Col relative to Ler suggests that FLC influences the rate of shoot maturation. However, there are many
genetic differences between Col and Ler making it difficult to determine whether FLC expression is solely
responsible for the delay in shoot maturation observed in Col.

To further explore the potential role of FLC in the regulation of shoot maturation, we performed
experiments in the Col background using mutations that eliminate FLC function, as well as mutations in
known regulators of FLC. This allowed us to create a series of lines containing various levels of FLC
expression that could be used to determine if there is a correlation between FLC expression and the
timing of shoot maturation. The appearance of abaxial trichomes was used to determine when the
transition from juvenile to adult leaves occurred (Telfer et al., 1997). The first leaf with four or more
abaxial trichomes was scored as the first adult-vegetative leaf. Leaves were photographed at the time of
trichome counting, and those images confirm that the appearance of abaxial trichomes corresponds to
leaf shape changes associated with shoot maturation in Arabidopsis (Fig. 1) (Telfer et al., 1997). The
number of leaves produced before flowering was also recorded for each genotype and treatment (Table
1).

In the Col background, shoot maturation occurred earlier in an flc null mutant (flc-3) yna, in wild type
(t-test, P < 0.0001) (Table 1, Fig. 2a). Thus, FLC acts to delay shoot maturation, and a reduction in FLC
expression is sufficient to promote shoot maturation.

To test whether increased FLC expression would further delay shoot maturation, we examined the
timing of shoot maturation in late-flowering autonomous pathway mutants that have elevated levels of
FLC expression (Michaels et al., 2003). Previous work in the Ler background has shown that shoot
maturation is slightly delayed by autonomous pathway mutants (Telfer et al., 1997). In the Ler
background, lacking a strong allele of FLC, autonomous-pathway mutants are known to have little effect
on flowering time (Michaels et al., 2003). Therefore, we examined the effect of autonomous-pathway
mutants in Col. FCA is part of the autonomous pathway, and loss of function of FCA delays flowering
(Sheldon et al., 2000). Shoot maturation was delayed in the presence of an fca null allele (fca-9) relative
to wild type (t-test, P < 0.0001) (Table 1, Fig. 2a). In the flc-3 background, fca-9 did not influence the



timing of shoot maturation (flc-3, FCA was indistinguishable from flc-3, fca -9) (t-test, P = 0.373)
indicating that the delay induced by fca was FLC-dependent. Loss-of-function of a different gene in the
autonomous pathway, LUMENIDEPENDENS (LD) did not influence shoot maturation. The null allele Id-4
had no influence on shoot maturation in either the FLC or flc-3 background (Table 1, Fig. 2a). Itis
interesting that while both fca-9 and Id-4 delay flowering to a similar degree, only fca-9 delays shoot
maturation. It is known that FLC is upregulated in both fca and Id backgrounds (Michaels and Amasino,
1999a; Sheldon et al., 2000). Perhaps, FLC upregulation in Id occurs too late in shoot development to
influence the transition from juvenile to adult leaves but early enough to influence flowering.

A dominant allele of FRIGIDA (FRI) promotes FLC expression causing a delay in flowering (Michaels
and Amasino, 2001). Common laboratory strains of Arabidopsis thaliana are relatively early flowering
because they lack strong alleles of FLC or FRI or both (Gazzani et al., 2003; Michaels and Amasino, 2001;
Michaels et al., 2003). Shoot maturation was delayed in Col plants that had been introgressed with a
late-flowering allele of FRI (t-test, P < 0.0001) (Table 1, Fig. 2b). Vernalization, an extended exposure to
cold, is known to promote flowering in many species. One way that vernalization promotes flowering is
by inducing epigenetic silencing of FLC (Michaels and Amasino, 2001; Sheldon et al., 2000; Sung and
Amasino, 2004). To determine the effect of vernalization on shoot maturation, FLC plants with and
without a late-flowering allele of FRI were cold-treated for 0, 20, or 60 days. In the absence of a late-
flowering allele of FRI, vernalization did not influence the rate of shoot maturation (Fig. 2b). Shoot
maturation occurred earlier following vernalization in plants with a late-flowering allele of FRI and 20
days of cold was sufficient to saturate this response. Following 20 days of vernalization FLC, FRI was
indistinguishable from FLC, fri (t test, P = 0.35) (Table 1, Fig. 2b). Interestingly, 20 days of cold was not
sufficient to eliminate the effect of FRI on the transition to flowering (Table 1).

In summary, loss of FLC function is associated with early shoot maturation, while some genetic
backgrounds (FRI, fca) in which FLC levels are elevated show delayed shoot maturation. Vernalization,
which induces silencing of FLC, promotes earlier shoot maturation in a line with elevated FLC expression.
Together, these observations support a role for FLC as an inhibitor of shoot matura-tion. The only
observation not consistent with this model is that loss of function of LD, known to result in upregulation
of FLC, does not delay shoot maturation.

FLC does not represent the first identified regulatory overlap between shoot maturation and
flowering. In Arabi-dopsis, plants deficient for biosynthesis of gibberellic acid (GA) have delayed
flowering (Michaels and Amasino, 1999b). One such mutant line, ga-1, displays a delay in shoot
maturation. Application of exogenous GA acceler-ates shoot maturation (Telfer et al., 1997).
Photoperiod influences the timing of flowering and shoot maturation. Arabidopsis is a facultative long-
day (LD) plant, and flower-ing is delayed under short-day (SD) conditions. LD photo-periods promote
shoot maturation, whereas SD photoper-iods have the opposite effect (Telfer et al., 1997). Together,
these observations suggest that considerable regulatory overlap exists between shoot maturation and
flowering.

All genotypes examined were in the Col background. The mutant alleles examined were |d-4, fca-9, and
flc-3 (Michaels and Amasino, 2001). Col introgressed with the late-flowering allele of FRI from the Sf-2
background was also examined (Lee et al., 1994).

Seeds were germinated on solidified media containing 0.4% Dyna-Gro 7-9-5 fertilizer (Dyna-Gro Co.,
San Pablo, CA), 0.05% MES (pH 5.8), and 6% phytagel. For vernaliza-tion, seeds were distributed on the
surface of the solidi-fied media and allowed to imbibe for 6 h after which they were incubated in the
dark at 40C for 20 or 60 days. Non-vernalized controls were incubated at 40C for 48 h to pro-mote
synchronous germination. Seeds were allowed to germinate under LD conditions (16 h of light and 8 h of
darkness) and were then transplanted to soil (Scotts redi-earth plug and seedling mix) and grown in LD
conditions (described above). The first nine leaves were removed and a dissecting microscope was used
to count abaxial tri-chomes. At this point, the first nine leaves were photo-graphed. At least five plants



from each test group were allowed to flower, and the number of primary leaves pro-duced before
flowering was determined.

All statistical conclusions were determined through t-tests in Minitab 15.1.20 (Minitab Inc., State
College, PA, USA).
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FIG. 1. Juvenile and adult leaves of Arabidopsis. The first nine true leaves of the Col accession of Arabidopsis are shown from two genetic
backgrounds (FLC, fri (top row) and FLC, FRI (bottom row)). The arrows indicate the transition from juvenile to adult leaves based on
the appearance of >4 abaxial trichomes. The appearance of >4 abaxial trichomes roughly correlates with changes in leaf shape
representative of the juvenile and adult vegetative phases. Bar represents 1 cm.

Table 1
Leaf Number at the Vegetative Phase Change and at Flowering
Vernalization
0 Days 20 Days 60 Days
FLC 8.7 £ 0.8 (36)
13.6 £1.0(11)
fle-3 6.8 = 0.7 (34)
8.9 = 0.7 (30)
FLC, fca-9 104 + 1.5(22)
>60 (6)
flc-3, fca-9 6.9 = 0.7 (36)
11.0 = 0.7 (30)
FLC, id-4 8.8 + 1.0 (26)
>60 (6)
fle-3, Id-4 7.1:08(34)
8.9 +0.8(34)
FLC, fri 6.9 + 0.6 (32 7.2+06(32) 7.0x0.6(26)
9.3+ 0.7(10) 9.4+09(11) 82x09(10
FLC, FRI 8.4 £ 0.9(31) 72+0.7(36) 6.9+08(30)

>60 (5) 17.8 £ 6.7 (6) 8.0+3.2(6)

For each genetic background and vernalization treatment, the meanfirst leaf with >4 abaxial trichomes is shown in bold accompanied
by standard deviation (sample size is shown in parentheses). The mean number of leaves produced prior to flowering is shown in
plain text. For extremely late-flowering plants, it was difficult to obtain an accurate leaf count; therefore, leaf number was not deter-
mined for plants that produced > 60 leaves prior to flowering. Vernalization treatments involved incubating imbibed seeds at 4°C forO,
20, or 60 days.
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FIG.2. Appearance of first adult leaf. (a) Appearance of the first adult leaf in several genetic backgrounds. (b) Appearance of the first
adultleaf in the FLC, fri background (black bars) or FLC, FRI background (grey bars) that had been exposed to 4.C for 0, 20 or 60 days.
Error barsrepresent the standard deviation of the mean. Sample sizes for each genetic background and treatment are shown in Table
1.



