

On the Influence of Test-Driven Development
on Software Design

David S. Janzen Hossein Saiedian
Electrical Engineering and Computer Science

University of Kansas, Lawrence, KS USA
{djanzen,saiedian}@eecs.ku.edu

Abstract

Test-driven development (TDD) is an agile software development strategy that addresses
both design and testing. This paper describes a controlled experiment that examines the
effects of TDD on internal software design quality. The experiment was conducted with
undergraduate students in a software engineering course. Students in three groups completed
semester-long programming projects using either an iterative Test-First (TDD), iterative
Test-Last, or linear Test-Last approach. Results from this study indicate that TDD can
be an effective software design approach improving both code-centric aspects such as object
decomposition, test coverage, and external quality, and developer-centric aspects including
productivity and confidence. In addition, iterative development approaches that include
automated testing demonstrated benefits over a more traditional linear approach with manual
tests. This study demonstrates the viability of teaching TDD with minimal effort in the
context of a relatively traditional development approach. Potential dangers with TDD are
identified regarding programmer motivation and discipline. Pedagogical implications and
instructional techniques which may foster TDD adoption will also be referenced.

1: Introduction

Test-driven development [3] (TDD) has emerged as a novel software development ap
proach that involves writing automated unit tests in an iterative Test-First manner. When
applying TDD, a software developer writes one small automated unit test. The developer
then writes just enough code to make the test pass. After possible refactoring, the cycle
then quickly repeats with the developer writing another test and code to satisfy the test.

As a member of the Extreme Programming (XP) [2] best practices, TDD is most often
associated with agile software development processes. Many agile processes reject a com
prehensive design step preceding significant programming in favor of a small architectural
sketch followed quickly by programming. In such a process, the software design and perhaps
architecture are allowed to emerge as the software grows. Programmers make decentralized
design decisions as they are coding.

TDD is considered an essential strategy in such an emergent design because when writing
a test prior to code, the programmer contemplates and decides not only the software’s
interface (e.g. class/method names, parameters, return types, and exceptions thrown), but
also on the software’s behavior (e.g. expected results given certain inputs). For instance
the following simple test is written using JUnit [6].

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

public void testCreateEmptyBank() {
Bank b = new Bank();
assertEquals(b.getNumAccounts(),0);

}

Despite being such a simple test, it involves several design decisions including the class
name (Bank), the expectation of a default constructor, a method named getNumAccounts()
that returns an int, and the behavior that a default Bank has no accounts.

This paper describes a formal experiment that examines how the TDD approach involv
ing Test-First programming with minimal up-front design affects internal software design
quality. The experiment was conducted during the summer of 2005 with upper-level un
dergraduate students in a software engineering course. Students in three groups completed
semester-long programming projects using either an iterative Test-First (TDD), iterative
Test-Last, or linear Test-Last approach. Iterative approaches involve writing automated
unit tests either just before (Test-First) or just after (Test-Last) a small portion of code is
written. Manual or automated unit tests are written much later with the linear Test-Last
approach. This experiment demonstrates the feasibility of using TDD in the context of a
more traditional development method (i.e. no XP), and reveals potential quality improve
ments with minimal instruction cost.

2: Related Work

While some practitioners have applied some form of TDD for several decades [11], aca
demic and industry studies have only more recently emerged [9]. These studies have exam
ined the effects of TDD on external quality and programmer productivity with somewhat
mixed results.

Two industry case studies [8, 15] report reductions in defect density with minimal impact
on programmer productivity with TDD. Erdogmus [5] on the other hand identified produc
tivity improvements with no significant change in external quality based on a controlled
academic experiment.

Edwards [4] conducted studies with beginning programmers and found a significant
reduction in defects. This study utilized a web-based program submission system that
factored student-written tests and test coverage into an automated grading process that
apparently provided significant motivation for early programmers to write tests.

While these results are mixed, there are no alarming results that might make TDD
adoption risky. Interestingly, despite TDD being primarily a design mechanism, none of
the studies to date examined the internal quality of software developed with TDD. Perhaps
this is because TDD also produces tests which are generally associated with external quality,
or simply because external quality is easier to measure by counting external test pass rates.

Internal quality is somewhat more subjective and prone to much debate. However, many
internal metrics do exist that can provide insight on the quality of a software design or
at least lack of quality in software. Also, if we agree that an important attribute of high
internal quality software is that it is easier to modify, enhance, and reuse, then productivity
and reuse can serve as indirect measures of internal quality as well.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

3: Experimental Design

The goal of this experiment is to compare iterative Test-First programming with Test-
Last programming for the purpose of evaluating internal quality, programmer productivity,
and programmer perceptions. The experiment was conducted in the context of an under
graduate software engineering course consisting of junior and senior computer science and
computer engineering students with at least two previous programming courses.

Students were asked to design and build an HTML pretty print system. This system was
to take an HTML file as input and transform the file into a more human readable format by
performing operations such as deleting redundant tags and adding appropriate indentation.

Students were taught a simplified form of the Unified Process including inception, elab
oration, construction, and transition stages. The project schedule was divided into two
iterations with the first focusing on a text-based user interface and a partial set of features.
The second iteration added a graphical user interface and additional features.

Students were taught how to write automated unit tests with the JUnit framework. All
students were instructed in how to write software in a Test-First and Test-Last manner. The
total time spent on JUnit and Test-First/Test-Last programming was less than one and a
half hours. Students were then divided into three groups: two groups were to complete the
project with a Test-First approach and the third group was to use a Test-Last approach.
Students were allowed to self-select their teams, but Java programming experience was
established as a blocking variable to ensure that each team had at least one member with
previous Java experience. Test-First/Test-Last team assignments were made after analyzing
the pre-experiment questionnaire to ensure the teams were reasonably balanced.

3.1: Hypotheses

Several hypotheses are examined. A formalization of the hypotheses is given in Table 1.
Each of these hypotheses is discussed in turn here. Hypothesis P1 considers whether Test-
First programmers are more productive than Test-Last programmers. We will examine
development time, effort per feature, and effort per lines of code.

Some sources[1, 3] claim that Test-First programmers consistently write a significant
amount of test code. Hypothesis T1 examines whether Test-First programmers write more
tests than Test-Last programmers. T2 augments T1 by examining whether the tests writ
ten by Test-First programmers actually exercise more production code (test-coverage) than
the tests written by Test-Last programmers. The rationale for T2 is that more tests may
only be better if the tests actually exercise more lines or branches in the production code.

Hypothesis Q1 tests if Test-First code has higher internal quality than Test-Last code.
Recognizing that not all code may be covered by automated unit-tests, hypothesis Q2
considers whether code developed in a Test-First manner and covered by tests has higher
internal quality than code also developed in a Test-First manner, but not covered by tests.
In an ideal situation, this hypothesis could not be examined because all Test-First code
would be covered by unit tests. However, the reality is that students first learning to use
TDD will rarely achieve such high test-coverage.

Finally hypothesis O1 and O2 address programmer opinions of the Test-First approach.
Hypothesis O1 examines whether programmers perceive Test-First as a better approach.
Hypothesis O2 more specifically examines whether programmers who have attempted Test-
First prefer the Test-First approach over a Test-Last approach.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

Name Null Hypothesis Alternative Hypothesis

P1 ProdTF = ProdTL ProdTF > ProdTL

T1 #TestsTF = #TestsTL #TestsTF > #TestsTL

T2 #TestCovTF = #TestCovTL #TestCovTF > #TestCovTL

Q1 IntQltyTF = IntQltyTL IntQltyTF > IntQltyTL

Q2 IntQlty|TestedTF =
IntQlty|UntestedTF

IntQlty|TestedTF >
IntQlty|UntestedTF

O1 OpTF = OpTL OpTF > OpTL

O2 Op|TFTF = Op|TFTL Op|TFTF > Op|TFTL

Table 1. Formalized Hypotheses

4: Data Analysis

Originally two student teams were instructed to use a Test-First approach and one team
was instructed to use a Test-Last approach. Only one team actually used the Test-First
approach. This team will be labeled the “Test-First” team. The other Test-First team
did write automated unit tests, but the tests were not written by the same developer who
wrote the production code, and they were written after implementation of the production
code. This team will be labeled the “Test-Last” team. Despite being instructed to write
automated unit tests, the remaining Test-Last team reported that they “ran out of time”
and performed only manual testing. This team will be labeled the “No-Tests” team. While
this reclassification of the groups calls into question the level of control in this controlled
experiment, the existence of a Test-First and Test-Last group satisfies the experiment goals,
and the creation of a “No-Tests” group adds an interesting alternative for comparison.

4.1: Productivity

The Test-First team implemented about twice as many features (12) as the No-Tests
and Test-Last teams (5 and 6), with similar numbers of defects. In addition, the Test-First
team was the only one to complete the graphical user interface. Despite implementing more
features, the Test-First team did not invest the most time of all the teams. Table 2 reports
the amount of time each team spent on the project. Total effort includes time spent on all
project activities including general meetings and research. Dev(elopment) Effort includes
only time spent directly on the project including analysis, design, code, test, fix, and review.

The Test-First team spent less effort per line-of-code and they spent 88% less effort
per feature than the No-Tests team, and 57% less effort per feature than the Test-Last
team. Individual productivity is known to vary widely among programmers so it is cer
tainly possible that the Test-First team was blessed with one or more highly productive
programmers. However, analysis of the pre-experiment questionnaire indicates that there
was no statistically significant difference in the academic or practical background of the
teams. This data indicates that Test-First programmers may be more productive than
Test-Last programmers, however a larger sample size is necessary before rejecting the P1
null hypothesis.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

Team Total Effort Dev Effort Dev Effort/LOC Dev Effort/Feature

Test-First
No-Tests
Test-Last

6504
11385
4450

2239
7340
2575

2.13
7.38
9.94

186.58
1468.00
429.17

Table 2. Effort in minutes

Team Classes LOC Test LOC LOC/method LOC/feature

Test-First
Test-First(no GUI)
No-Tests
Test-Last

13
11
7
4

1053
670
995
259

168
168
0
38

12.10
11.75
27.64
7.40

87.75
55.83
199.00
43.17

Table 3. Code Size Metrics

4.2: Code Size and Test Density

Table 3 reports the size of the code implemented in terms of number of classes and lines
of code. For comparison, we also give the code size of the Test-First application with only
the text user interface. While the Test-First team implemented additional features besides
the graphical user interface, the GUI was a significant feature and removing it allows a more
consistent comparison with the two teams that only implemented a text user interface.

As might be expected, the Test-First team implemented more code than the other two
teams. We note that both the Test-First and Test-Last teams have a reasonable average
method size and lines-of-code per feature, but the No-Tests team apparently wrote long
methods and implemented an excessive amount of code for the provided functionality.

Table 4 reports test size and test coverage metrics as calculated with the STREW [14]
Eclipse plug-in. The Test-First team wrote almost twice as many assertions per source-
line-of-code as the Test-Last team. While the tests did not cover a significantly higher
number of lines, they did cover 86% more branches than those written by the Test-Last
team. This data indicates a statistically insignificant trend against T1 and T2 that merits
further investigation.

4.3: Internal Quality

Over twenty-five structural and object-oriented metrics were calculated for all software
to gauge internal quality. The metrics were gathered using freely available tools (see
http://metrics.sourceforge.net and http://cccc.sourceforge.net). While most
metrics had comparable and acceptable values for all three projects, some warnings were

Team Assertions/SLOC Test Coverage Test Coverage
(lines) (branches)

Test-First 0.077 19.00% 39.00%
Test-First(less GUI) 0.086 31.00% 43.00%
No-Tests 0.000 0.00% 0.00%
Test-Last 0.045 29.00% 23.00%

Table 4. Test Density and Coverage Metrics

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

Nested Block Cyclomatic Parameters CBO IF
Depth Complexity

Team avg max avg max avg max avg max avg

Test-First 2.02 6 2.33 13 0.62 6 4.58 20 2.56
Test-First(no GUI) 1.85 6 2.59 13 0.89 6 3.27 5 1.47
No-Tests 3.00 6 6.53 27 1.08 5 2.57 6 0.00
Test-Last 1.20 3 1.46 4 0.57 3 1.25 2 0.00

Table 5. Internal Quality Metrics with Warnings

noted regarding complexity and coupling. Table 5 identifies concerns in the Test-First and
No-Tests code with Nested Block Depth, Cyclomatic Complexity, Number of Parameters,
Coupling Between Objects, and Information Flow.

A manual inspection of the projects reveals that the No-Tests and Test-Last systems,
while organized into classes, are quite procedural in nature. The No-Tests code contains
classes with verb names such as “AlignTags” and “DeleteTags” as well as many long,
complex loops. The Test-Last code defines only three classes besides a holder class for
main(), and main() contains the primary control logic of the system. The Test-Last code
achieves more functionality with less code by relying heavily on the java.util.regex.*
library from Java 1.5.

The Test-First code on the other hand is decomposed in a very object-oriented way
with responsibilities being distributed between thirteen classes. There are concerns that
coupling is too high in the Test-First code, particularly in the one class that has an Coupling
Between Objects (CBO) of 20. It turns out that the GUI is created in one large class that is
tightly coupled with many other parts of the system. GUI’s are traditionally hard to test,
and as noted above, the GUI code was not covered by any automated unit tests. Various
approaches such as Dependency Inversion [13] and Command [7] objects might be used
to reduce the coupling and allow automated testing of GUI code. Without knowledge of
these patterns, it seems that the inability to design tests may have contributed to the high
coupling in these modules.

An additional micro-evaluation was performed on the Test-First code. Code that was
covered by automated unit tests was separated from code not covered by any tests. Table 6
reports differences with Weighted Methods per Class, Coupling Between Objects, Nested
Block Depth, Computational Complexity, and Number of Parameters. All values for the
28% of methods that were tested directly are within normal acceptable levels, but values
for NBD, Complexity, and Parameters are flagged with warnings in the untested code. The
tested methods had a complexity average 43% lower than their untested counterparts. A
two-sample t-test comparing the complexity means produces a p-value of .08. In addition,
tested classes had 104% lower coupling measures than untested classes. Although this is
insufficient to reject the Q2 null hypothesis, it draws attention to complexity and coupling
as effects that should be investigated further. In addition, the relatively low test coverage
calls us to question whether the untested code would have a higher internal quality if it
were written with tests, or if the lack of tests and corresponding internal quality issues are
the result of other factors such as basic programmer laziness. In either case, it might be
said that lack of test coverage could be an indicator of potential internal quality issues.

The balance of concerns with coupling/complexity along with manual observations on
software design keep us from rejecting the Q1 null hypothesis. While the micro-evaluation

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

WMC CBO NBD Complexity Parameters
Code avg max avg max avg max avg max avg max

Tested 7.80 21 2.2 3 1.50 3 1.77 5 1.00 3
Untested 13.55 53 4.5 20 2.20 6 2.53 13 0.48 6

Table 6. Metrics on Tested and Untested code of Test-First Project

Test-First Test-Last
Team Pre Post % Change Pre Post % Change

Test-First 3.67 4 9% 3.33 2.33 -30%
No-Tests 1.5 2 33% 3.67 3.33 -9%
Test-Last 2.33 3.25 39% 4 3.25 -19%

Table 7. Programmer Perceptions of Test-First and Test-Last (0 to 4 scale)

of the Test-First software did shed some light on the effects of testing on internal quality,
additional study is needed before making any widespread claims.

4.4: Programmer Perceptions

Pre and post-experiment surveys were administered to all programmers. Comparisons
between the two surveys are reported in Table 7 and reveal that all three teams perceived
the Test-First approach more positively after the experiment and inversely perceived the
Test-Last approach more negatively. Additionally, 89% of programmers thought Test-First
produced simpler designs, 70% thought Test-First produced code with fewer defects, and
75% thought Test-First was the best approach for this project.

In the post-experiment survey, all programmers who tried Test-First indicated they would
prefer to use Test-First over Test-Last in future projects. All programmers from the No-
Tests team indicated they would prefer to use Test-Last again on future projects. Comments
on their surveys indicated that the No-Tests programmers are more comfortable with an
approach that they already know. Programmers from the Test-Last team were split with
half preferring to use Test-First on future projects and half choosing Test-Last.

Programmers were also asked in the post-experiment survey to evaluate their confidence
in the software they developed. Although most responses were similar, the Test-First team
did report higher confidence in the ability to make future changes to their software. A
two-sample t-test comparing this difference with the Test-Last team was not statistically
significant (p=.059).

4.5: Threats to Validity

The primary threat to validity was the small sample size. Only ten programmers par
ticipated in this study which is too few to draw any broad conclusions. Furthermore, The
post-experiment survey revealed that a single programmer on each of the three teams im
plemented a majority of the core functionality. While all team members participated in
development on each project, it is possible that differences in quality and productivity could
be attributed to the individual skill levels of only three programmers.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

.

5: Conclusions

This study evaluated the influence of TDD on programmer productivity and internal
quality, with additional information regarding effects on test coverage and programmer
perceptions. Results indicate that the Test-First approach may have a positive correlation
with programmer productivity. While internal quality was not shown to be better with
Test-First code, concerns were raised about internal quality issues when the Test-First
process breaks down and tests are not written.

The study also demonstrated that programmers perceive TDD more positively after ex
posure to it, and particularly they are much more likely to adopt TDD after having tried
it. The issue of motivating programmers to adopt TDD is raised. While a variety of tech
niques [12] have been identified for introducing new ideas like TDD into organizations,
faculty have the luxury of setting course and grading requirements that can include the use
of TDD. Academic efforts such as Test-Driven Learning [10] which incorporate automated
tests through all levels of the curriculum may hold some promise for incorporating auto
mated testing into the curriculum. Further studies with larger populations and a broader
base of programmers including students and professional practitioners will reveal the valid
ity of the observations in this work and may provide the motivation for broader adoption.

References

[1]	 David Astels. Test Driven Development: A Practical Guide. Prentice hall PTR, 2003.

[2]	 Kent Beck. Extreme Programming Explained. Addison-Wesley Longman, Inc., 2000.

[3]	 Kent Beck. Test Driven Development: By Example. Addison-Wesley, 2003.

[4]	 S.H. Edwards. Rethinking computer science education from a test-first perspective. In Proceedings of
the 18th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications: Educators’ Symposium, pages 148–155, 2003.

[5]	 H. Erdogmus. On the effectiveness of test-first approach to programming. IEEE Transactions on
Software Engineering, 31(1):1–12, January 2005.

[6]	 E. Gamma and K. Beck. http://www.junit.org.

[7]	 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995.

[8]	 Boby George and Laurie Williams. A structured experiment of test-driven development. Information
and Software Technology, 46(5):337–342, 2004.

[9]	 D. Janzen and H. Saiedian. Test-driven development: concepts, taxonomy and future directions. IEEE
Computer, 38(9):43–50, Sept 2005.

[10]	 D. Janzen and H. Saiedian. Test-driven learning: intrinsic incorporation of testing into the cs/se
curriculum. In SIGCSE ’06: Proceedings of the 37th SIGCSE Technical Symposium on Computer
Science Education, 2006.

[11] Craig Larman and Victor R. Basili.	 Iterative and incremental development: a brief history. IEEE
Computer, 36(6):47–56, June 2003.

[12] Mary Lynn Manns and Linda Rising. Fearless Change. Addison-Wesley Professional, 2004.

[13]	 Robert C. Martin. Agile Software Development: Principles, Patterns, and Practices. Pearson Educa
tion, Inc., 2003.

[14]	 N. Nagappan, L. Williams, M. Vouk, and J. Osborne. Early estimation of software quality using in-
process testing metrics: a controlled case study. In Third Software Quality Workshop, co-located with
the International Conference on Software Engineering (ICSE 2005), pages 46–52, May 2005.

[15]	 L. Williams, E.M. Maximilien, and M. Vouk. Test-driven development as a defect-reduction practice.
In Proceedings of the 14th IEEE International Symposium on Software Reliability Engineering, pages
34–45, Nov. 2003.

Proceedings of the 19th Conference on Software Engineering Education & Training (CSEET’06)
1093-0175/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

