

<1 n=11111>Summer grass --</1>
<1 n~11211>all that's left</I>
<1 n=113 11 >of warriors' dreams.</I> </lg>

XML Views for Electronic Editions

Ionut E. Iacob and Alex Dekhtyar

ABSTRACT

In this paper we discuss the implementation of user-defined views over multihierarchical document-

centric XML documents.

1. INTRODUCTION

Electronic Editions of documents require significant human effort at production time. Human editors

must prepare the proper annotation of the document, often with markup from multiple XML hierarchies

[2, 3]. In this paper we describe user-defined views over multihierarchical document-centric XML

documents and their use in the editorial process (Section 2). XML views allow human editors to prepare

and observe, during the editorial process, only portions of the markup relevant to their current task. We

also discuss the implementation of views in xTagger[2], a document-centric XML editor designed for

work with multihierarchical markup (Section 3).

2. VIEWS FOR ELECTRONIC EDITIONS

Most software for editing XML documents uses, in general, two data structure representations: a

document model for data access and a document model for data presentation. For data access, the XML

Document Object Model (DOM) is the most common data structure used. It represents XML as a tree,

provides API for its traversal and modification and supports path queries, transformations (XSL) and

schema validation. The data model for the XML presentation varies from editor to editor and depends,

in general, on the implementation of the editor. Unlike DOM, the data structure for document

presentation is, typically, a list of elements. In this list each element represents a serialized form of an

XML tag or text and contains style information for displaying the document. The presentation model

also serves as the interface for document editing: text and markup updates are performed using API of

the presentation model data structure. For example, let us consider the following XML document D:

The DOM tree of D (We label an element node with the corresponding tag name plus,

where necessary, the attribute name and value pairs) and a fragment of the document presentation data

model for D are shown in Figure 1.

Let dom(D) be the set of nodes in the DOM tree of D, and list(D) be the set of elements in the data

presentation model of D. We define a mapping F: list(D) —> dom(D) which returns the corresponding

DOM node for each element in the presentation model. This mapping permits dynamic synchronization

of the presentation and the data models: when an element e ∈ list(D) is modified, the corresponding F(e)
-1 list(D) list(D)∈ dom(D) is updated accordingly. The inverse mapping, F : dom(D) -> 2 (The 2 notation

represents the set of all parts of the set list(D)) , associates with each node in dom(D) the corresponding

element(s) (An element node in dom(D) is associated to a start and an end tag in list(D); a text node in

dom(D) is associated to a text element in list(D)) in list(D). The mapping F
-1

 allows, for instance, to

map path query results, performed over DOM, to elements and ranges in the presentation model (for

instance, to highlight the results).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Definition. An XML view of an XML document D is a set of nodes V ⊆ dom(D).

Using a view V of D we can define a reduced presentation model of D, F
-1

(V) = list(V). XML views

are a useful tool in customization of the editorial process. Human editors can define views of the

document, that match their tasks at hand: e.g, a views showing all markup for a single chapter of the

document, or a view, showing only the sentence markup for sentences which contain portions

reconstructed by the editors. For a single-hierarchy XML document, XML views can be represented as

XPath queries.

For multihierarchical XML documents, we have proposed to use a KyGODDAG data strcuture[1] in

place of DOM. KyGODDAG (KyGODDAG is derived from a more generic GODDAG data structure

[4]) combines the DOM trees for each individual hierarchy in one structure with shared root and content.

We have also extended XPath, to path expressions over KyGODDAG[1]. In addition to standard XPath

functionality, our extension allows for path expressions to transcend hierarchy borders and query for

such characteristic properties of multihierarchical XML as markup overlap between nodes from different

hierarchies. Thus, XML views over multihierarchical XML documents can be represented as path

expressions in extended XPath over KyGODDAG.

3. IMPLEMENTING VIEWS

In [2] we have described xTagger, the editing tool for document-centric multihierarchical XML. Here,

we briefly describe how xTagger had been extended to handle XML views, in particular, definition of

views, visualization of views, and views maintenance.

View definition. In xTagger we define views (a.k.a. filters) in two ways (Figure 2): (i) based on element

names and, if needed, attribute names and values (possibly specified by regular expressions); (ii) based

on a node set selected by an Extended XPath ex-

pression. In the former view definition all descendent text nodes of the selected element nodes are

included in the presentation model. In the latter view definition, text nodes are explicitly included in the

data presentation model if they are in the node set result of the path expression evaluation.

Visualization. Based on a defined view, V, xTagger generates a document presentation, list(V), and a

mapping F : V -> list(V). The XML document is then displayed based on the current data presentation

list(V).

View maintenance. Changes of document are made at the presentation model level, list (D). In turn they

are mapped to the document access model level, D. The mapping T is updated accordingly. If V is

affected but the change, T(V) is updated accordingly, and the change is reflected in the view display. It is

possible that markup insertions or deletions create inconsistencies between data access model and data

presentation model: F-
1(

list(V)) :A V (that is, nodes not included in list(V) or included when they are not

supposed to be included). To prevent this situation, xTagger reevaluates the presentation model, list(V),

after each markup insertion or deletion.

4. CONCLUSIONS

In situations when human editors have to deal with a wide range of diverse markup in their work on

annotating documents, XML views let them select for display only the features currently of interest

and/or relevance. Extended XPath expressions allow users to express a wide range of views over

multihierarchical XML documents. This functionality has been implemented in our document-centric

XML editor tool, xTagger. Not surprisingly, our experience with implementing xTagger shows that the

more presentation features an XML editor provides (such as different colors and text styles for tags,

attribute names and values, entities, etc.) the more memory the presentation model uses. We have found

that the memory used by the presentation model is by far greater than that used by the access model. In

practice, our approach of XML views can greatly reduce the editor memory requirements while

preserving full editing capabilities.

Our current work in this area concentrates on the problem of incremental maintenance of XML views

described in this paper. When a document is updated, the answer set for an extended XPath query can

change, sometimes significantly. We are in the process of developing efficient algorithms for

incremental updates to XML views and for determination of situations when such updates are

applicable.

5. REFERENCES

[1]	 I. E. Iacob and A. Dekhtyar. Towards a Query Language for Multihierarchical XML: Revisiting

XPath. In In Proc. of the International Workshop on the Web and Databases (WebDB), pages 49–

54, 2005.

[2]	 I. E. Iacob and A. Dekhtyar. xTagger: a new approach to authoring document-centric XML. In JCDL

’05: Proceedings of the 5th ACM/IEEE-CSjoint conference on Digital libraries, pages 44–45, New

York, NY, USA, 2005. ACM Press.

[3]	 I. E. Iacob and A. Dekthtyar. Building Tools for Image-Based Electronic Editions. In Proc., Joint

Conference of the ALLC and ACH, Victoria, BC, Canada, 2005.

[4]	 C. M. Sperberg-McQueen and C. Huitfeldt. GODDAG: A Data Structure for Overlapping

Hierarchies. In Principles of Digital Document Processing, DDEP/PODDP 2000, Munich, pages

139–160, Sept. 2000. Early draft presented at the ACH-ALLC Conference in Charlottesville, June

1999.

<Ig>

ofwamor's dream

Element I Descnptton Style
<1g> Start tag colot=red

<1 n·nln> start tag color=rea
Summer grass Text COI01=black

</1> En tag co or=rea

Figure 1: The nOM tree and the document presentation data
structure (excerpt).

• Add/Remove filters L8J

Now A.., 'I-----d I
Rkf-s.,~s

r;; Text filter {Select con~t to~ then 1lIte!" out t!"

Select con~t to show

r AI content

SeKt contmt~ 1//foI(c:n.sme"·2~1

Figure 2: Defining views (filters) In xTagger.

Figures

