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Abstract—The majority of today’s navigation techniques for 
intelligent transportation systems use Global Positioning 
Systems (GPS) that can provide position information with 
bounded errors. However, because of the low accuracy and 
multi-path problem, it is challenging to determine a vehicle’s 
position at lane level. With Markov-based approach based on 
sharing information among a group of vehicles that are 
traveling close to each other, the lane positions of vehicles can 
be found. The algorithm shows its effectiveness in both 
simulations and experiments with real data. 
Index Terms – lane-level positioning, lane determination, 
Markov localization, GPS, vehicle navigation 

I. INTRODUCTION 

I NTELLIGENT transportation systems are being 
developed in many different countries with an aim to 

improve the road traffic efficiency and safety. Many systems 
have been proposed and some lane finding/detection systems 
have been already commercialized. With the capability of 
lane-level positioning, a large number of transportation 
research applications would benefit. For example, in terms of 
lane departure warning/lane keeping, a safety application 
tracks a car’s current offset from the road/lane centerline. If 
it deviates more than a certain amount, a warning signal 
could activate or the car assumes control to avoid an 
accident. Another application of lane-level positioning are 
lane-level navigation systems which advise the driver as to 
which specific lane he should choose to reach his destination 
without excess the last-minute lane changing. Or using probe 
vehicles, transportation officials and researchers could 
determine differences in traffic conditions for different lanes 
of the freeway. This is particularly important when 
understanding the efficiency of weaving sections that may 
unnecessarily cause recurrent congestion [1]. 

Due to the importance of such applications, much effort 
has been put in lane finding/positioning by a number of 
researchers. Ieng et al. [2] deal with the multi-lane detection 
by using multiple cameras. Pierre-Yves et al. [3] use lane-
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level navigation systems with a high level DGPS/DR sensor 
integration system and a map database. Their system is able 
to detect which lane the car is driving in and when a car is 
changing lanes. Another approach [4] integrates an Inertial 
Measurement Unit (IMU) with the GPS receiver to allow for 
accurate vehicle positioning. It also uses Real-Time 
Kinematic DGPS (RTK-DGPS) receiver supported by DGPS 
base stations at the test site and a lane-level-detailed digital 
map. Other research directions can also be found in 
[5][6][7][8][9]. 

Most of these systems usually have to involve in 
complicated image processing algorithms and/or costly 
equipments such as highly accurate sensors, high 
performance computers, etc. With that in mind, we approach 
the problem by using sharing information between vehicles 
to determine their lane positions. Inter-vehicle 
communication and co-operative driving systems have been 
in development for a while [10][11][12][13]. With the 
availability of GPS systems, it is practical to locate a vehicle 
within certain accuracy. However, GPS data are usually off 
the road and do not provide the exact position of vehicles 
due to degradation or multi-path problem. Therefore, it is 
challenging to determine the exact lanes that vehicles are 
traveling in even when the digital map of the road network is 
available. 

In this paper, the authors describe a recent research effort 
in the area of low-cost lane-level position determination that 
can support a large number of transportation applications. A 
Markov-based approach which computes the lane position of 
transporting vehicles such as: cars, buses, etc, is proposed. 
Our fundamental assumption is the availability of a number 
of vehicles equipped with GPS receivers. Each vehicle has 
an ability to communicate with other vehicles within a 
certain radius and be able to send its information regarding 
position to other vehicles via ad-hoc network. In our 
simulations and experiments, the lane-level positioning 
algorithm works well when the vehicles are even 200m away 
from each other. 

This paper is organized as follows: Section II gives short 
introduction to Global Positioning Systems (GPS) and the 
architecture of the lane positioning system. Section III deals 
with the Markov localization algorithm in detail and its 
specific application in lane positioning problem. The 
simulation and experimental results are discussed in Section 
IV and V. In Section VI are some concluding remarks. 

II. GLOBAL POSITIONING SYSTEMS 

The GPS is the most convenient and accurate method for 
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determining vehicle position in a global coordinate system. It 
does this by using satellites and receivers. There are 
currently 24 satellites in orbit operated by the US 
Department of Defense that provide worldwide coverage 24 
hours a day, 7 days a week, in all weather. A detailed but 
concise description of GPS is provided in [14]. How the 
system works is by the satellites sending information to 
receivers. This information includes time, ( , , )x y z  position, 
and satellites strength among other things. The receivers pick 
up information from at least four satellites and use this to 
determine the users’ ( , , )x y z  location according to various 
measurements of the pseudo-range between the satellite and 
the receiver antenna. The standard deviation of a standard 
GPS is on the order of 10-20m and the GPS measurements 
for a car are usually off the road. Therefore, determine which 
lane a vehicle is traveling in is difficult if only GPS data 
from one vehicle are available. In this paper, it will be shown 
that by using sharing GPS data between vehicles that are 
traveling close to each other, the lane-level position for each 
vehicle can be determined. The architecture for the system is 
shown in Fig. 1. Each vehicle is equipped with a GPS 
receiver and a computer to implement lane positioning 
algorithm and communicate with other vehicles. 

Fig. 1. Architecture for lane positioning system. 

III. MARKOV LOCALIZATION 

Markov localization addresses the problem of state 
estimation from sensor data. Markov localization is a 
probabilistic algorithm: instead of maintaining a single 
hypothesis as to which lane the vehicles might be, Markov 
localization maintains a probability distribution over the 
space of all such hypotheses. The probabilistic 
representation allows it to weight these difference hypotheses 
in a mathematically sound way. 

To introduce the major concepts, let us begin with a 

simple case, followed by a mathematical derivation of the 
algorithm. The readers may notice that Markov localization 
is a special case of probabilistic state estimation 
[15][16][17]. 

Let us start with the simplest case: two vehicles traveling 
on a two-lane road. The two vehicles are assumed close 
enough to be able to communicate with each other. The GPS 
data provided by the GPS receiver are usually off the road 
and not accurate enough to give correct lane position for 
each vehicle. The target is to determine which vehicle is 
travel in which lane. As usual in Markov localization 
approach, call P v = , = l the probability that vehicle l v  ˆ ( a 2 )t 1 b 

1 is traveling in lane a and vehicle 2 is in lane b at time t ; 
where a and b are either 1 or 2. Therefore there are totally 
four possibilities, which are P v = , = l ) ,ˆ ( l v  1 1 2 1 

ˆ ˆ( = l v  = l ) , P v = , = l )P v  , ( l v  ,  and  1 1 2 2 1 2 2 1 

ˆ ( = l v  = )P v  , l . Initially, all the probabilities of where the 1 2 2 2 

vehicles might be have an equal value of 0.25. In the course 
of the vehicles’ mission (i.e., when t > 0 ), P̂ is updated 
through two basic steps: (1) prediction, and (2) correction. 

A. Prediction: 
In the prediction step, the state of a vehicle is modeled 

through the conditional probability P vi = | i = l , which l v  ( a j ) 
denotes the probability for a motion action that carries 
vehicle i from lane j to lane a . When the vehicle moves, 

P vi = l v  | i = l , which models the uncertainty in the 

vehicle’s dynamics, is used to compute the probability 
distribution at time t as 

( a j ) 

2 

l ← P v = | = l P  v = l , (1)P v  = l v  t ( i a ) ∑ t −1 ( i a i j ) t −1 ( i j )
j=1 

where P (v = l ) is the probability that vehicle i isi a 

traveling in lane a . This step is repeated for both vehicles 
and then takes the multiplication to form the combined 
probabilities: 

, = l = P v  = l  P v  = l . (2)P v = l v  ˆ 
t ( 1 a 2 b ) t ( 1 a ) t ( 2 b )
 

The conditional probabilities P v = | = l for
 ( i l v  i ) at a j 

vehicle are computed by comparing its current GPS position 
to the position at the last time step t −1 . For example, by 
calculating the distance ΔD from the GPS reading at time t 
to the vehicle’s heading direction (obtained from two 
successive GPS readings) in the last time step, the 
probability at which vehicle 1 switches to lane 2 (see Fig. 2) 
can be computed. If ΔD is larger than the lane width, then 
the probability that vehicle 1 switches to lane 2 is close to 
100%. In a similar fashion, one can come up with all the 
conditional probabilities ( = l v  | = l that cover allP v  )t i a i j 

possible situations. 
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Vehicle 1 

−1t 
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ΔD 

Moving direction in last time step 
Lane 1 

Lane 2 

Vehicle 1 

Fig. 2. Prediction step: this figure illustrates a vehicle switching lane and its 
position is unknown. The distance ΔD from the current GPS reading to the 
estimated heading direction of the vehicles in the last time step is used to 
calculate the conditional probability. 

Since it is necessary to calculate ΔD of a vehicle between 
two successive time steps, a curve in the road could cause a 
problem where it is unclear as to whether the vehicle is 
switching lanes, or just following the curve in the road. For 
example Fig. 3 shows that the vehicle is still in lane 1, but a 
large value of ΔD due to the curve would falsely indicate 
that the vehicle is switching to lane 2. 

To resolve this discrepancy, the lane finding algorithm 
must estimate the radius of the lane curvature and 
compensate the drift caused by the curve. This can be done 
by using the least square method based on successive GPS 
readings. In our simulations and experiments five successive 
GPS readings were used to estimate this curvature. 

ΔD 

−3tGPS 

−2tGPS 

tGPS 

−1tGPS 

Lane 1 

Lane 2 

Moving direction at 
time step t-1 

Fig. 3. Radius of curvature estimation: this figure illustrates the GPS 
readings for a vehicle assumed to be traveling in lane 1. The position and 
moving direction of the vehicle are estimated from GPS data. The GPS 
measurements are not necessarily exactly in lane 1 and the actual vehicle 
does not necessarily overlay with the GPS measurements as the figure 
shows. 

B. Correction: 
Denote z the GPS measurements, that come in at time 

step t , for both vehicles and P ( z v| = , = ll v  ) the 1 a 2 b 

probability of perceiving z when the two vehicles are in 
lanes a and b , respectively. When the GPS measurements 
are taken into account, | = , = l )P ( z v  l v  is used to1 a 2 b 

update the probability distribution at time t using Bayes’ 
rule 

( | = l v  = ) (  = l v  ,P z v  , l  P v  = l )t 1 a 2 b t 1 a 2 b( = l v  = l z  | ) 
ˆ 

, (3)P v  , ←t 1 a 2 b P zt ( )  
where ( )P z has the purpose of normalizing the sum of all 

( = l v  = | )P v , l z  .t 1 a 2 b 

We will show how P ( z v| = , 2 = lb )l v  is provided using 1 a 

the sharing of GPS data between vehicles. 
Suppose that at time t new GPS data z are available 

consisting of the positions of the two vehicles in the form of 
their x and y coordinates. From that, the distance, which is 
z , between the two vehicles with respect to their moving 
directions (see Fig. 4) is calculated. 

Vehicle 1 

Z 

Lane 1 

Lane 2 

Vehicle 2 

Fig. 4.  Correction step: this figure illustrates two vehicles traveling on a 
highway. The distance z  is used to update the belief in prediction step. 

The result for two-vehicle-and-two-lane-road can be 
extended to the general case. Denote the number of vehicles 
that are communicating with each other and the number of 
lanes by nv and nl respectively. Let 
ˆ ( a , 2 = l ,..., vn = l ) be the probability that vehicle P v = l v  t 1 b xv 

1 is traveling in lane a , vehicle 2 is in lane b , etc., at time 
t where a , b , …,  x vary from 1 to nl . The probability 
distribution at time t for the prediction step is given by 

( = l ) ← 
nl

P− v = l v  = l  P  t 1 v = l ), (4)P v  |t i a ∑ t 1 ( i a i j )  (  − i j 
j=1 

and 
ˆ ( = l v  = l ,..., v = l ) =P v  ,t 1 a 2 b nv x 

= ( = l  P v  ) (  = l )...P v  = l .P vt 1 a t 2 b t ( n x ) 
(5) 

Bayes’ rule for the correction step is 
( = l v  2 = b ,..., v = x | ) 

v 

P v  , 
v 

(6) 
t 1 a l n l z  ← 

ˆ| l v  = l ,..., v ( =l  P v  = l v  l ,..., lP z v  t ( 1 = a , 2 b n = x ) t 1 a , 2 = b vn x )
← v v . 

t ( )P z  

With the developed Markov-based algorithm, we are able to 
implement simulations and experiments which will be 
discussed in the next Sections. 

IV. SIMULATION RESULTS 

To implement simulations, the software VISSIM [18] was 
used. VISSIM is a microscopic, time step and behavior 
based simulator developed to analyze the full range of 
functionally classified roadways. It is capable of modeling 
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traffic with various control measures in 3D environment. 
VISSIM lets us communicate and control the behaviors of 
vehicle through a dynamic link library (DLL) file complied 
from C/C++ code. Vehicle parameters from the external 
driver model DLL output function are stored within member 
variables of a designated vehicle class object. 

For a precise analysis of the algorithm, a 3D map of a road 
based on an actual highway, as shown in Fig. 5, was built in 
VISSIM and a number of simulations with different 
situations were implemented. In all simulations, the GPS 
data are modeled by adding some noise to the positions of 
vehicles. 

P(v2 =l1) P(v2 =l2) 
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Fig. 6. Probability distribution for simulation of three cars (car 1 to car 3 
from top to bottom) on a two-lane highway. 
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Fig. 5. Highway 86, Waterloo, ON, Canada. 

Fig. 6 and Fig. 7 show a simulation with three cars and a 0.5 
0 5 10 15 20 25 30 35 

2.5 two-lane road. The scenario is as follows: Initially, car 1 is in 
actual lane 

2 estimated lane lane 1, car 2 and car 3 are both in lane 2. After 6 seconds, 

La
ne
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La
ne 1.5 actual lane 

estimated lane 
1 

car 2 switches to lane 1. Car 1 switches to lane 2 after 16 1.5 

1seconds and car 3 moves to lane 1 after 26 seconds (Fig. 7). 
One can see that the algorithm accurately estimates the lane 0.5 

0 5 10 15 20 25 30 35 

2.5 
actual lane 

positions of vehicles. The corresponding probabilities are 
2 estimated lane given in Fig. 6. In practice, as the number of vehicles grows 

larger, the algorithm will be able to estimate the lane 1.5 

1positions faster and more reliable. 
0.5 

0 5 10 15 20 25 30 35 40 
Time (s) 

P(v1 = l1) P(v1 = l2) Fig. 7. Simulation result for three cars (car 1 to car 3 from top to bottom) 
on a two-lane highway. 
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1
 

0.8 
V. EXPERIMENTAL RESULTS 0.6 

0.4 To validate the algorithm, a number of experiments with 
0.2 different scenarios were implemented on the same highway. 

0 The real GPS data were also collected for the cars used in 
0 10  20  30  40  the test. 

One of those experiments is shown in Fig. 8 and Fig. 9. In 
(a) this experiment, two cars equipped with low cost GPS 

receivers with different sampling rates and variances 
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maneuvered on the highway. The GPS receiver for the first 
car is Garmin 18 and has the sampling rate of 5Hz. The GPS 
receiver for the second car is LocSense 40-CM whose 
sampling rate is 1Hz. Both GPS receivers output National 
Marine Electronics Association (NMEA) 0183 standard 
messages. The first GPS receiver has much lower noise 
compared to the second one. This is reflected in Fig. 8 and 
Fig. 9. One can see that the plots for car 2 are much noisier 
than that of the first car. 
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Fig. 8. Probability distribution for experiment. 
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Fig. 9. Lane estimation result for two cars on highway (car 1 to car 2 from 
top to bottom). 
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To refine the estimation result, the GPS data for car 2 
were let run though a particle filter [19] fused with a 
Butterworth filter (one can use other types of filters instead) 
to filter out the unwanted measurement noise (see Fig. 10). 
Due to the limited space, the detailed discussion about the 
used particle filter will be reserved for a future report. Fig. 
11 and Fig. 12 show improvements compared to the results 
shown in Fig. 8 and Fig. 9. This improvement indicates that 
one can fuse low cost GPS receivers with a filter to obtain 
low-noised GPS measurements instead of using expensive 
sensors. 

GPS satellite GPS satellite 

Talk to car 2 Talk to car 1 
GPS receiver GPS receiver 

Car 2 
Car 1 

Particle Butterworth 
 filter filterMarkov 

Receive GPS localization data from car 2 Markov 
Receive GPS 

unit 
localization 

data from car 1 unit 

Lane Lane 
positions positions 

Fig. 10. Co-operative lane positioning diagram with filters. 
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Fig. 11. Improved probability distribution for experiment. 
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Fig. 12. Improved results with particle filtering. 

VI. CONCLUSION 

This paper has proposed a new lane position estimation 
algorithm that uses a Markov-based approach based on co
operative driving models. 

Compared to conventional lane positioning methods which 
usually deal with complicated image processing techniques 
and/or expensive equipments, only low cost GPS receivers 
and a simple localization algorithm are used. Simulation and 
experiment results have proved the efficiency of the 
algorithm, even when the GPS data are highly degraded. 

Future research will continue with more complicated 
situations such as determining lane position on highways 
with intersections. Besides the lane models, such problem 
requires a per-lane model of intersection behavior. For 
example, the positioning system may indicate that 100% of 
drivers in the left lane at a particular intersection turn left, 
50% of drivers in the right lane go straight, and 50% turn 
right. 

It is hoped that the knowledge acquired from this research 
will lead to the future development of actual lane positioning 
systems. 
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