
A Leveled Examination of Test-Driven Development Acceptance

David S. Janzen Hossein Saiedian
Cal Poly at San Luis Obispo University of Kansas

djanzen@csc.calpoly.edu saiedian@eecs.ku.edu

Abstract

Test-driven development (TDD) has garnered consider
able attention in professional settings and has made some
inroads into software engineering and computer science ed
ucation. A series of leveled experiments were conducted
with students in beginning undergraduate programming
courses through upper-level undergraduate, graduate, and
professional training courses. This paper reports that ma
ture programmers who try TDD are more likely to choose
TDD over a similar test-last approach. Additionally this
research reveals differences in programmer acceptance of
TDD between beginning programmers who were reluctant
to adopt TDD and more mature programmers who were
more willing to adopt TDD. Attention is given to confound
ing factors, and future studies aimed at resolving these fac
tors are identified. Finally proposals are made to improve
early programmer acceptance of TDD.

1 Introduction

Test-driven development (TDD) [3] is a novel software de
velopment practice that has gained recent attention with the
popularity of the Extreme Programming [2] software devel
opment methodology. Computer science and software engi
neering educators as well as professional software trainers
are beginning to incorporate TDD into their courses. How
ever little is known about the appropriate time and methods
for introducing TDD into the curriculum. This research re
ports on differences in student acceptance of TDD based on
programmer maturity.

2 Related Work

A handful of studies have investigated the use of TDD
in academia. Some early research reports mixed re
sults [7]regarding quality and productivity improvements
from TDD particularly on small software projects. More
recent research [6] conducted with advanced undergradu
ate students suggests that a test-first approach increases the

number of tests written and improves productivity, increas
ing the likelihood of higher quality software with similar or
lower effort.

Barriocanal [1] documented an experiment in which stu
dents were asked to develop automated unit tests in pro
gramming assignments. Christensen [4] proposes that soft
ware testing should be incorporated into all programming
assignments in a course, but reports only on experiences in
an upper-level course. Patterson [12] presents mechanisms
incorporated into the BlueJ [10] environment to support au
tomated unit testing in introductory programming courses.

Edwards [5] has suggested an approach to motivate stu
dents to apply TDD that incorporates testing into project
grades, and he provides an example of an automated grad
ing system that provides useful feedback. The authors have
proposed a pedagogic approach called “Test-Driven Learn
ing” (TDL) [9] that incorporates automated tests into pro
gramming courses. A minimal TDL approach was em
ployed in the experiments reported here.

3 Experiments

Six experiments were conducted to compare the effects of
a test-first (TDD) approach with a test-last approach. All
programmers in the experiments were instructed in both ap
proaches and tools for writing automated unit tests. The
experiments were part of a larger series of studies investi
gating the effects of TDD on internal software quality [8].

Five experiments were conducted in academic settings
at the University of Kansas and one experiment was con
ducted in a professional training course in a Fortune 500
company. Separate experiments were conducted in courses
ranging from beginning programming (CS1) through grad
uate software engineering. The first experiment was con
ducted in an undergraduate software engineering course in
Summer 2005. In Fall 2005, experiments were conducted
in Programming 1 (CS1), Programming 2 (CS2), and the
graduate software engineering course. The CS2 experiment
was then repeated in Spring 2006.

Due to course and industry constraints, the experiment
design was not consistent across all experiments although

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Null Alternative

Name
 Hypothesis Hypothesis

O1 OpTF = OpTL OpTF > OpTL

O2
 Op|TFTF = Op|TFTL Op|TFTF > Op|TFTL

Table 1. Formalized Hypotheses

it was consistent within each experiment. For instance in
the CS1 and industry experiment, students were randomly
assigned to use a test-first or test-last approach, whereas in
the CS2 experiment students self-selected between the two
approaches. The early (CS1 and CS2) programmers used
the C++ programming language with simple assert state
ments for automated unit tests, while all other programmers
used the Java programming language and JUnit. Course en
rollments varied from over one hundred in CS1 to about 30
in CS2 and twelve to fifteen in each of the software engi
neering and industry training courses.

3.1 Hypothesis

A formalization of the experiment hypotheses is presented
in Table 1. Hypothesis O1 examines whether all program
mers, whether they have used the test-first approach or not,
perceive test-first as a better approach. Hypothesis O2 more
specifically examines whether programmers who have at
tempted test-first prefer the test-first approach over a test-
last approach.

3.2 Programmer Opinion Results

Programmer opinions of the test-first and test-last ap
proaches were measured in each of the experiments. All
programmers participating in the experiments were asked
to complete surveys at three points: prior to the experi
ment (pre-experiment), shortly after the experiment (post
experiment), and several months after the experiment (lon
gitudinal). The results were analyzed statistically using the
two-sample t-test with significance at p < .05.

Figures 1 and 2 report programmer opinions of the test-
first and test-last approaches from the post-experiment sur
veys. The results have been grouped by developer maturity.
CS1 and CS2 programmers are in the “Beginning” group,
and industry programmers and student programmers from
the software engineering courses are in the “Mature” group.
The corresponding questions ask programmers to choose:

1.	 which approach they would choose in the future
(Choice)

2.	 which approach was the best for the project(s) they
completed (BestApproach)

Beginning Programmer Opinions

Choice

BestApproach

ThoroughTesting

Correctness

Simpler

FewerDefects

% Choosing

Test-First Test-Last

Figure 1. Early Programmer Opinions

Mature Programmer Opinions

Choice

BestApproach

ThoroughTesting

Correctness

Simpler

FewerDefects

% Choosing

Test-First Test-Last

Figure 2. Mature Programmer Opinions

3.	 which approach would cause them to more thoroughly
test a program (ThoroughTesting)

4.	 which approach produces a correct solution in less
time (Correct)

5.	 which approach produces code that is simpler, more
reusable, and more maintainable (Simpler)

6.	 which approach produces code with fewer defects
(FewerDefects)

The charts illustrate that beginning programmers think
the test-last approach is better and are more likely to choose
it whereas more mature programmers think the test-first ap
proach is better and are more likely to choose it. The lon
gitudinal survey reported similar results with 86% of begin
ning programmers choosing the test-last approach and 87%
of mature programmers choosing the test-first approach.

Interestingly, the percentage of programmers choosing
the test-first method is always slightly less than the pro
grammer opinions on other desirable characteristics. In
other words, despite recognizing many valuable benefits of

0% 20% 40% 60% 80% 100%

C
h

ar
ac

te
ri

st
ic

	
C

h
ar

ac
te

ri
st

ic

0% 20% 40% 60% 80% 100%

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Beginning Programmer Opinions

Beginning Programmer Opinions
Choice

BestApproach
 Choice

ThoroughTesting BestApproach

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

C
h

ar
ac

te
ri

st
ic

C
h

ar
ac

te
ri

st
ic

C

h
ar

ac
te

ri
st

ic

C
h

ar
ac

te
ri

st
ic

Correctness ThoroughTesting

CorrectnessSimpler

FewerDefects

% Choosing

Test-First Test-Last

Figure 3. Early Programmers w/TF

the test-first approach, some programmers are still unwill
ing to choose it. A number of comments on the surveys cor
responded with this trend. Several programmers noted that
even though they thought the test-first approach was better,
they perceived it as being more difficult or very different
from what they were comfortable with.

The beginning programmer survey data from Figure 1
was divided into two groups: those who used the test-first
approach on at least one project and those who only used
the test-last approach on all projects. The former group con
tained a total of 65 programmers and the latter group had 88
programmers. Figure 3 reports the percent of programmers
preferring the test-first and test-last approaches on the six
characteristics out of programmers who used the test-first
approach on at least one project. Figure 4 reports the same
information for the programmers who used the test-last ap
proach on all projects.

Likewise the mature programmer survey data from Fig
ure 2 was divided into two groups: those who used the test-
first approach on at least one project and those who only
used the test-last approach on all projects. The former group
contained a total of 16 programmers and the latter group had
15 programmers. Figure 5 reports the percent of program
mers preferring the test-first and test-last approaches on the
six characteristics out of programmers who used the test-
first approach on at least one project. Figure 6 reports the
same information for the programmers who used the test-

Simpler

FewerDefects

% Choosing

Test-First Test-Last

Figure 4. Early Programmers w/Only TL

Mature Programmer Opinions

Choice

BestApproach

0% 20% 40% 60% 80% 100%

ThoroughTesting

Correctness

Simpler

FewerDefects

% Choosing

Test-First Test-Last

Figure 5. Mature Programmers w/TF

Mature Programmer Opinions

Choice

BestApproach

0% 20% 40% 60% 80% 100%

ThoroughTesting

Correctness

Simpler

last approach on all projects.

These charts demonstrate that mature programmers who
try the test-first approach almost unanimously like and
choose the test-first approach. Beginning programmers
clearly have a preference for the test-last approach. How
ever, the charts illustrate that trying the test-first approach
significantly increases the likelihood that programmers will
see benefits with and may choose the test-first approach.

FewerDefects

% Choosing

Test-First Test-Last

Figure 6. Mature Programmers w/Only TL

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Hypothesis O1. Hypothesis O1 examines whether pro
grammers prefer the test-first or test-last approach. In the
pre-experiment survey, beginning programmers had a sta
tistically significant higher opinion of the test-last approach
over the test-first approach. Additionally 76% indicated that
they would choose the test-last approach. Mature program
mers had a slightly (not statistically significant) higher opin
ion of the test-first approach and 62% indicated that they
would use the test-first approach if given the chance. As a
result, we must keep the O1 null hypothesis and assume that
programmers in general do not prefer the test-first approach.

Hypothesis O2. Hypothesis O2 examines programmer
opinions after trying the test-first approach. The differences
in choice as reported in Figures 3, 4, 5, and 6 are statisti
cally significant for both the beginning and mature devel
opers. Therefore we can claim that developers (both be
ginning and mature) who try the test-first approach are sig
nificantly more likely to choose the test-first approach over
the test-last approach. Despite this significant difference,
a majority of beginning developers still would choose the
test-last approach, while a majority of mature developers
would choose the test-first approach. These results allow
us to reject the O2 null hypotheses for mature developers
and claim that mature programmers prefer the test-first ap
proach. Although the improvement is significant for begin
ning developers, we cannot say that they prefer the test-first
approach.

3.3 Confounding Factors and Future Work

Three confounding factors were identified in this research.
First the early programmers used C++ and assert statements
for automated unit tests, whereas the more mature develop
ers used Java and JUnit. A future study is planned with
Java and JUnit in early programming courses to determine
if the language and testing framework make a difference in
programmer acceptance of TDD.

Second the early programmers worked individually
whereas the more mature developers worked in teams (SE
courses) or in pairs (industry training). Evidence [11] sug
gests that early programmers have better experiences when
pairing. A study could easily examine the effects of adding
pair-programming to TDD on TDD acceptance.

Finally the early programmers worked on relatively
small (two to three week) projects whereas most of the ma
ture programmers worked on semester-long projects. Early
programming courses traditionally use small projects so we
propose to apply the test-driven learning approach through
out an early programming course to examine the effects of
extended TDD exposure on programmer acceptance.

4 Conclusions

This research has reported on significant differences in pro
grammer willingness to adopt TDD based on TDD experi
ence and developer maturity. First this research has demon
strated that developers are more likely to choose TDD after
having tried it. Second this research has revealed that ma
ture developers are much more willing to accept TDD than
early programmers. Confounding factors such as program
ming language, independence, project size and TDD expo
sure time were identified. Future studies were proposed to
address such factors.

References

[1] E. Barriocanal, M. Urb’an, I. Cuevas, and P. P’erez. An ex
perience in integrating automated unit testing practices in an
introductory programming course. ACM SIGCSE Bulletin,
34(4):125–128, December 2002.

[2] K.	 Beck. Extreme Programming Explained. Addison-
Wesley Longman, Inc., 2000.

[3] K. Beck. Aim, fire. Software, 18(5):87–89, Sept.-Oct. 2001.
[4] H. B. Christensen. Systematic testing should not be a topic

in the computer science curriculum! In Proceedings of
the 8th Annual Conference on Innovation and Technology
in Computer Science Education, pages 7–10. ACM Press,
2003.

[5] S. Edwards.	 Rethinking computer science education from
a test-first perspective. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-oriented Program
ming, Systems, Languages, and Applications: Educators’
Symposium, pages 148–155, 2003.

[6] H. Erdogmus. On the effectiveness of test-first approach to
programming. IEEE Transactions on Software Engineering,
31(1):1–12, January 2005.

[7] D. Janzen and H. Saiedian.	 Test-driven development: con
cepts, taxonomy and future directions. IEEE Computer,
38(9):43–50, Sept 2005.

[8] D. Janzen and H. Saiedian.	 On the influence of test-driven
development on software design. In Nineteenth Conference
on Software Engineering Education & Training, pages 141–
148. IEEE-CS, 2006.

[9] D. Janzen and H. Saiedian.	 Test-driven learning: Intrinsic
integration of testing into the CS/SE curriculum. In Proceed
ings of the 37th SIGCSE Technical Symposium on Computer
Science Education, pages 254–258. ACM Press, 2006.

[10] M. Kolling and J. Rosenberg. Guidelines for teaching object
orientation with java. In Proceedings of the 6th Annual Con
ference on Innovation and Technology in Computer Science
Education, pages 33–36. ACM Press, 2001.

[11] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald. Pair
programming improves student retention, confidence, and
program quality. Commun. ACM, 49(8):90–95, 2006.

[12] A. Patterson, M. Kolling, and J. Rosenberg. Introducing unit
testing with BlueJ. In Proceedings of the 8th Annual Con
ference on Innovation and Technology in Computer Science
Education, pages 11–15. ACM Press, 2003.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

