
Technique Integration for Requirements Assessment

Alex Dekhtyar+ Jane Huffman Hayes+ Senthil Sundaram+
Ashlee Holbrook+ Olga Dekhtyar*

+Department of Computer Science *Institute For HIV Prevention
{dekhtyar,hayes}@cs.uky.edu, {skart2, ashlee}@uky.edu, odekh2@uky.edu

University of Kentucky

Abstract
In determining whether to permit a safety-critical
software system to be certified and in performing
independent verification and validation (IV&V) of
safety- or mission-critical systems, the requirements
traceability matrix (RTM) delivered by the developer
must be assessed for accuracy. The current state of the
practice is to perform this work manually, or with the
help of general-purpose tools such as word processors
and spreadsheets Such work is error-prone and
person-power intensive. In this paper, we extend our
prior work in application of Information Retrieval (IR)
methods for candidate link generation to the problem
of RTM accuracy assessment. We build voting
committees from five IR methods, and use a variety of
voting schemes to accept or reject links from given
candidate RTMs. We report on the results of two
experiments. In the first experiment, we used 25
candidate RTMs built by human analysts for a small
tracing task involving a portion of a NASA scientific
instrument specification. In the second experiment, we
randomly seeded faults in the RTM for the entire
specification. Results of the experiments are
presented.

1. Introduction

 Developers who build software systems and “sell
off” their software to the buyer must prove that their
systems satisfy contractual requirements. When
obtaining system certification (safety, security, etc.),
the developers again must demonstrate or validate that
the software meets the certification requirements.
Reverse engineers who seek to extract requirements
from a set of design elements and code must validate
that the requirements have been satisfied by the as-
built system. A similar task has to be performed by an
IV&V analyst who must verify that the artifacts of the
current phase of the development lifecycle properly
satisfy the artifacts of the previous phase (e.g., that the
design satisfies the requirements). Software
maintainers deciding whether to reuse a component or

to write it from scratch need to know if the component
correctly satisfies its requirements.
 The common thread (the unifying theme) of all the
above situations is the need to know the mapping
between the various artifact levels and the need to have
a way to determine if this mapping is correct – a way
to assess the mapping. The various professionals
(IV&V analyst, reverse engineer, etc.) may have
different names for it, but basically they all are
determining the accuracy of the mapping. We
illustrate this with a scenario where a requirements
traceability matrix, or RTM, is used to map the
elements of a pair of artifacts to each other (for
example, a design specification’s elements are mapped
to code components). Let us call the ith element of the
design document di and the jth component of the code
cj. An RTM from the design to the code will be a
collection of lists or entries for each item di that may
contain from 0 to N cj elements. In such an RTM, for
each di entry, its candidate links list should be
evaluated for accuracy – do we agree that all listed cj
elements are related to di? It should also be checked
for completeness – do we agree that all the cj elements
related to di are listed? In this work, we concentrate on
accuracy.
 The current state of the practice is to perform such
evaluation manually, or with the help of general-
purpose tools such as word processors, spreadsheets,
and database management systems. Thus, the task is
often not performed, or a “spot check” is performed
rather than a more complete evaluation. An automated
technique for this would allow the work to be
performed thoroughly, and with much less human
effort and error. The current state of research in the
area of traceability [9,10,1,12,8] concentrates on trace
recovery, rather than on RTM assessment tasks.

In this paper, we extend our previous work on trace
recovery to the complementary problem of RTM
assessment. To our knowledge, this paper represents
the first attempt to address this problem in an
automated fashion. We adapt prior trace recovery
methods [9,10] and some newly introduced trace

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

recovery methods to the problem of determining
whether the candidate links of a given (candidate)
RTM should be kept in the RTM or rejected. We use
committees of trace recovery methods, and let the
committees vote on each individual candidate link.

This paper describes the results obtained from two
studies. In one study we used a small dataset and
candidate RTMs generated by human analysts. Our
interest was to see if assessment by committee could
detect mistakes that the humans had introduced into
the RTMs. In the other study we looked at a larger
dataset, and we seeded false positive links in the
candidate RTMs using two seeding procedures. The
question for this study is whether assessment by
committee can detect mistakes made by one automated
trace recovery method. Our committees work as
simple unsupervised classifiers. We evaluate their
work by measuring the false positive detection rate and
the correct link rejection rate, the standard measures
for assessing the quality of classifiers.
 The paper is organized as follows. Section 2
presents related work. Section 3 presents our
methodology for combining techniques for assessment
of requirements mappings or RTMs. Section 4
describes our validation. Section 5 presents the results,
and in Section 6 we present a discussion and future
work.

2. Related work

There are two aspects to the study of automating

requirements traceability: study of methods for
automating traceability link recovery and other
traceability tasks, and study of the impact of such
methods on the entire tracing process and its
efficiency. In [17] we have discussed the need for
research on the latter problem: the study of the impact
must involve studying how analysts use automated
traceability tools/methods in vivo. However, before
such studies can take place, good tools/methods must
be discovered. This paper falls in the realm of the
study of methods: looking for the means of giving
analysts accurate assessment results. Individual
information retrieval methods have shown promise for
generating mappings – term frequency-inverse
document frequency and probabilistic retrieval have
been used by Antoniol et al. [1], latent semantic
indexing has been used by Marcus and Maletic [12]
and Hayes et al. [10]. In general, these methods,
working alone, result in finding many of the related
items (high recall), but also tend to retrieve many
elements that are not relevant (low precision). We are

not aware of any work on the assessment of
requirements mappings.

The idea behind N-version programming [5] is that
if a piece of code is required to perform reliably and
correctly (based on some specification), the software is
implemented in several programming languages and/or
using orthogonal programming paradigms (such as
structured and object-oriented). Theoretically, these
diverse implementations should not fail in the same
way. Then, each implementation “weighs in” or
“votes” by executing and providing output. If a
majority of the implementations generate the same
output (agree), the output is returned and the result is
deemed “correct.” If the implementations cannot come
to a majority ruling, the results are not “trusted.”

Poshyvanyk et al also used the approach of
combined experts to perform feature identification for
maintenance programming support [15]. They found
that combining scenario based probabilistic ranking
and latent semantic indexing improved feature location
when compared to the individual techniques. Based on
the above related work, it appears that combining
techniques might have promise for evaluating the
accuracy of RTMs. Information retrieval methods have
been shown to be helpful in generating or building
such mappings, but can they assist in evaluating
mappings and is it useful to use more than one
technique for the assessment?

3. Methodology

The RTM Assessment problem studied can be
expressed as follows:

Given two textual artifacts (referred to
as a high-level and a low-level artifact),
broken into individual elements, and a
candidate Requirements Tracing Matrix
(RTM) M, determine, for each candidate
link in M, if it has been correctly
included.

To convert any trace recovery method into an RTM
assessment method it is run on the given pair of
artifacts, and the resulting candidate RTM recovered
by the method is compared to the input RTM. The
decision rule is: a link from the input RTM is kept iff it
is found in the RTM constructed by the method. We
extend this idea to the situation when more than one
trace recovery method is available.

For the purpose of this paper, we define a trace
recovery method as any algorithm that, given a pair of
textual artifacts broken into elements, outputs a
candidate RTM for them. Many of the trace recovery
methods discussed below provide some extra

information about the recovered links – e.g., the
perceived similarity between the two linked elements.
However, for constructing RTM assessment methods
discussed here, we view each trace recovery method as
a filter: for each pair of high- and low-level elements,
the trace recovery method decides whether it is
included in the output, or whether it is rejected. Each
trace recovery method F can be viewed as a function:
F:H x L → {True, False}, where F(i,j)=True means
that the method believes that the high-level element hi
traces to low-level element lj.

Suppose, we are given a collection F1,…,Fk of trace
recovery methods. To construct an RTM assessment
algorithm that uses F1,…,Fk, , we first need to select a
voting scheme, i.e., a decision rule which will
determine if a link is reported or rejected. We consider
only simple decision rules that treat each method
F1,…,Fk, equally, and simply count, for each link (i,j),
the total number of Fl(i,j) which evaluate to True.
Given an RTM M={(i,j)}, the RTM assessment
method based on F1,..,Fk using the decision rule r
works as follows: each candidate link (i,j) from M is,
in turn, evaluated by F1,..,Fk. If the number of
methods evaluating to True exceeds the threshold of r,
the link (i,j) is kept in the output RTM. Otherwise, (i,j)
is rejected. For example, a majority rule accepts a link
if it is recovered by more than one half of all available
methods.

In this paper, we consider an RTM assessment
committee composed of three, four and five different
trace recovery methods, and employ a number of
different decision rules. We briefly describe the five
trace recovery methods next.

Vector Space Retrieval using tf-idf keyword
weighting (td-idf). This trace recovery method,
described in detail in [9,10], represents each element as
a vector of keyword weights. It uses term frequency in
the document and inverse document frequency, which
measures the rarity of a keyword/term in the entire
artifact, to compute weights of individual keywords.
Similarity between two vectors is computed as a
cosine of the angle between them (i.e., as the
normalized dot-product of the vectors).

χ2-based Keyword Extraction (KE). This method,
introduced recently to trace recovery [11], is an
extension of a single-document keyword extraction
method of Matsuo and Ishizuka [13], which turns it
into a retrieval method. All keywords in the entire
artifact are ranked based on their perceived

importance1, and only the top X% of the keywords are
used in the actual retrieval. We used the vectors of
keyword weights generated by the tf-idf method, set
X=50%, and projected out all keywords in the bottom
half of the produced ranked list.

Probabilistic Information Retrieval (ProbIR). We
used the binary independence retrieval method, which
tries to estimate the odds ratio of a pair of elements
being a link vs. not being a link, and is often referred
to as “probabilistic retrieval” [3]. The quality of the
results returned by this method on small datasets2
depends highly on the initial estimates of two
quantities: probability of a true link containing a
specific keyword, and probability of a false positive
link containing a specific keyword3.
Latent Semantic Indexing (LSI). LSI transforms the
element-by-keyword representation of an artifact into
an element-by-latent topic representation using
singular-valued matrix decomposition [6]. The key
difference between the original and final representation
is the fact that the number of latent topics can be
significantly smaller than the number of keywords.
Each element vector goes through the transform to
obtain its vector of latent topic weights. The latter
vectors are then compared to each other for similarity.
We have used LSI in our prior work [10].

Latent Dirichlet Allocation (LDA). Like LSI, LDA
represents all elements as vectors of latent topic
weights [4]. The difference is in the transformation
from the space of keyword weights to the space of
latent topic weights. We have used the open source
Java LDA implementation, LDA-J, which is available
from the knowceans.org site [7]. LDA is implemented
with a three-level hierarchical Bayesian model. Each
document is modeled as a mixture of k topics for
classification. Candidate links between requirements
and design elements were recorded for those
documents whose Euclidean distance measures were
within a given threshold.

1 The method uses the keyword co-occurrence matrix and
tries to establish keywords that show “interesting” co-
occurrence behavior. This is measured by the χ2 statistic for
each keyword [13].
2 From the point of view of Information Retrieval, which is
used to dealing with millions of documents, all our datasets
are small.
3 In the interest of space, we have relegated the specific
formulas we used to estimate these quantities in our work to
a tech. report.

3.1. Evaluation measures
 Consider a traceability task involving a high-level
document consisting of N elements and a low-level
document consisting of K elements. Let the true RTM
for this task contain S links. Consider an RTM R
containing M < K*N links. Suppose an RTM
assessment method F(.) is applied to links in R. Each
link l from R can belong to one of the following
categories:

- true positive (hit). l is in the true RTM and l is
classified as a true link by F(.).

- false positive (strike). l is NOT in the true
RTM but l is classified as a true link by F(.).

- true negative. l is NOT in the true RTM, and l
is classified as not a link by F(.).

- false negative (miss). l is a true link, but it is
classified as not a link by F(.).

Let A be the number of hits, B be the number of
strikes, C be the number of true negatives and D be the
number of misses. We know that A+B+C+D = M (only
the links in R are classified by F(.)). We note that F(.)
retains A+B links and rejects C+D links. We use the
following measures in our study.

Recall:
S
Arecallpd == . Recall is the overall

percentage of correct links retained by F(.).

Probability of false positive detection:
BC

Bpf
+

= .

Pf is the probability of detecting a false positive, i.e.,
the probability of keeping a non-link in the output. Pf
represents the probability of false positive detection by
method F(.) alone. Additionally, we are interested in
the overall probability of detecting a false positive, opf,

computed as () SKN
Bopf

−⋅
= .

Precision:
BA

Aprecision
+

= . Precision measures

the total percentage of correct links among the links
retained by the method.
In our prior studies on trace recovery, we mainly
concentrated on pd (recall) and precision of the
recovered candidate RTMs. Our prior results [9,10]
show high recall rates in candidate link lists retrieved
by individual IR methods. At the same time, in
unfiltered candidate link lists, precision was in single
digits. The problem of RTM assessment, however, as
stated above, is more akin to the traditional
classification problem. In addition to pd, the
probability of false positive detection, pf, is
traditionally considered as a key measure. In our case,

we consider two variations: pf and opf. The first
measure is the probability of false positive detection
relative to the false positives contained in the input
RTM R. The second measure is the overall probability
of false positive detection achieved by the combination
of the method that produced the candidate RTM R and
our RTM assessment method F(.).

4. Study Design

 In this section, we present the datasets used in our
studies as well as the design of the studies.

4.1. Datasets Used

 In general, the methodology studied here can be
applied both to assessment of RTMs between different
artifacts and assessment of RTMs between consecutive
versions of the same artifact. In this study, our datasets
belong to the former class – we had no access to a
dataset of the latter category. Both studies described
below use data from the CM-1 dataset [14], distributed
by NASA’s Metrics Data Program (MDP) and
available from the PROMISE repository [16]. In our
prior work [10], we extracted a requirements document
and a design specification from the CM-1 dataset and
broke each artifact into individual elements. We also
traced the requirements document to the design
document via a process described in detail in [10]. For
our first study, we used a small subset of the CM-1
dataset. We extracted a single section of the
requirements document and the section in the design
document to which most of the requirements elements
were pointing and restricted our ground truth RTM to
the links between the extracted sections. We refer to
this smaller dataset as CM-1, subset 1, or as the
“student dataset” in the remainder of the paper. Table
1 shows the main characteristics of the main CM-1
dataset and the student dataset.
4.2. Study 1
Our first study used the results of an in-class quasi-
experiment, conducted as part of a graduate software
engineering topics course in the Spring 2006 semester.
30 students who took the class were divided into two
equal size groups. Each student was asked to complete
a trace recovery task for the student dataset described
above. Students in the first group were asked to
perform trace recovery manually, whereas students in
the second group were asked to use RETRO [10], a
requirements tracing tool built by our group. RETRO
was configured to use vector space retrieval with tf-idf
weighting schema (see Section 3) to produce candidate
link lists.

Table 1. Datasets used in this work.

 At the end of the quasi-experiment, 11 submissions
from group 1 (manual trace recovery) and 14
submissions from group 2 (trace recovery using
RETRO) were deemed acceptable.
 We used the committee of all five methods and
applied three decision rules: majority (3 of 5 methods),
supermajority (4 of 5 methods), and consensus (5 of 5
methods) to classify the links. To find the probability
of detection (pd) for each committee, we simply ran
the true RTM through it. For each of the student-
generated RTMs, we therefore were interested in
establishing pf, the probability of false positive
detection, and thus only the false positives from these
RTMs were studied. We also looked at how each
committee changed the precision and recall of the
RTM.

4.3. Study 2

 In the second study, we used the full CM-1 dataset.
At the moment, we have not conducted studies in
which analysts trace the full CM-1 dataset. In order to
evaluate the performance of our assessment techniques
on a large dataset, we felt that it was important to test
on the full CM-1 dataset. Toward that end, we
considered two different ways of automatically seeding
(selecting) the RTM with false positive links. In both
cases, the false positives were drawn from a list of
about 37,000 links – the combined list of links
recovered by four (TF-IDF, KE, ProbIR and LSI) of
the five methods considered in this study (LDA
method did not produce a similarity score that we
needed to use in the selection process below). The two
methods we considered were:

Random selection. We selected approximately
3% of the links. Each link form the list of about
37,000 links had an equal chance of being
selected. We used the “Select a sample” feature of
the SPSS statistical package to construct ten
datasets.
Weighted selection. Each of the four methods
returned a similarity/ranking score for each link,
ranging from 0 to 1 (with 1 being most similar and
0 being least similar). We used the sum of these
scores as the weight of each link. Using the SPSS
“Weight cases by” feature, we weighted our links,

and then selected ten 3% samples from the
weighted dataset using the “Select a sample”
feature of SPSS. Weighted selection is biased
against our assessment method as false positives
with higher rank (and thus – harder to deal with)
have a higher probability of being selected.

Dataset: CM-1 CM-1, subset 1
(student dataset)

requirements 232 52
design elements 220 22

links in RTM 361 35 We used the same voting methods as in Study 1. We
examined the input RTMs using the committee of five
methods described in Section 3. We used the Majority,
SuperMajority, and Consensus decision rules. Finally,
we studied both the unfiltered and filtered at 10%
inputs from individual methods.
 We used the CM-1 answer set to find the recall (pd)
numbers for each method, and the random and
weighted samples to find the probability of false
positive detection (pf) numbers. For this study, we
report mean pf values for each selection methods/
voting method combination.

5. Results
Tables 2 through 4 and Figures 1--8 document the
results of the first study (the lines connect the results
obtained for the same data point on for different
decision rules, thus showing the drift of the measures).
In Table 2, we show the probability of detection (pd,
a.k.a., recall) rates for different methods for the
student dataset used in this study. We show the details
for three committee methods and our baseline method,
TF-IDF, which simply looks to see if the line is
present in the candidate RTM recovered by the vector
space retrieval using tf-idf method. In the unfiltered
case, we used the entire list recovered by all five
methods; in the top 10% case, we used only the top
10% of these links ranked by similarity, omitting the
other 90% of recovered links from consideration. It
can be seen, for example, that the majority rule applied
to the unfiltered case detects 100% of the correct links
as does the TF-IDF method. Tables 3 and 4 show the
mean pf and opf values obtained in our evaluation.
Figures 7 and 8 combine the content of Tables 2 and 3
and plot the results of our study in the pf-vs-pd space.
 Because the candidate RTMs constructed by students
from group 1 (manual trace recovery) and those

constructed by students from group 2 (using RETRO)
differed significantly, we break our computations by
group. In general, we observed that most of the
candidate RTMs in group 2 were very similar, and
hence we only report the means for this group. Group
1 included 11 different, manually constructed
candidate RTMs.
 Figures 1 through 6 illustrate the results of applying
our RTM assessment methodology to each individual
RTM in the group. Figures 1 (no filter) and 2 (top 10%
filter) show the precision-vs-recall drift, from the
original RTM to the RTMs retained by the three
committees: majority, supermajority, and consensus. It
can be seen, for example, in Figure 1 that Student 6’s
manually built RTM (original) had recall of 48% and
precision of 28%. This drifted to 48%/29% for the
Majority rule, to 48% recall/32% precision for the
Supermajority rule, and to 38% recall and 41%
precision for the Consensus rule.

Table 2. Probability of Detection (pd or recall) rates for CM-

1, subset 1 (student) dataset used in Study 1.
Classifier base

Rule unfiltered top 10%
Majority 1 0.914286
supermajority 0.971429 0.571429
consensus 0.685714 0.542857
TF-IDF 1 0.571429

Table 3. Means of probability of false positive detection (pf)

for Study 1 by groups.

 Figures 3 and 4 show the individual pf values for all
RTMs and committee methods for filtered and
unfiltered cases, respectively. For Student 6’s
unfiltered RTM, e.g., it can be seen that the Consensus
rule had just over a 40% chance of keeping a false
positive that it examined (pf). Figures 5 and 6 show the
opf values. It can be seen, e.g., from Figure 5 that the
Consensus rule for Student 6’s unfiltered RTM had
only a 1.8% chance overall of keeping a false positive.
The results of Study 2 are presented in Tables 5 and 6
and in Figure 9. In Table 5, we show the probability
of detection (pd) rates for the three committee methods
for the unfiltered and filtered case (we looked at the
Top 10% of the links as in Study 1). It can be seen,

e.g., that the Majority rule detected 98% of the correct
links in the unfiltered case. Table 6 shows the mean pf
values obtained in the second study. For example, it
can be seen that the Consensus rule only retained 2.9%
of the false positives (that were seen) for the randomly
selected filtered RTMs.

Table 4. Means of overall probability of false positive

detection (opf) for Study 1 groups.

 Figure 1. Changes in recall and precision for students from

group 1 (manual trace recovery).

Figure 2. Changes in recall and precision for students from
group 1 (manual trace recovery), committee uses only top

10% of links.
Figure 9 shows the mean pf versus probability of
detection (recall) for the random unfiltered RTMs, the
random filtered RTMs, the weighted filtered RTMs,
and the weighted unfiltered RTMs. It can be seen, for

 Rule

Group Filter Maj SuperMaj
Consen
sus TF-IDF

Manual None 0.952 0.817 0.409 0.964

RETRO None 0.915 0.626 0.190 0.967

Manual 10% 0.436 0.400 0.187 0.426

RETRO 10% 0.097 0.072 0.024 0.085

Group Filter
Original
RTM Maj SuperMaj

Consen
sus

TF-
IDF

Manual None 0.036 0.034 0.029 0.014 0.034
RETRO none 0.745 0.677 0.463 0.141 0.716
Manual 10% 0.036 0.015 0.014 0.006 0.011
RETRO 10% 0.745 0.072 0.053 0.018 0.063

Precision vs. Recall, CM-1 student dataset, manual trace recovery

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Recall

Pr
ec

is
io

n

Student1 Student2 Student3 Student4 Student5 Student6
Student7 Student8 Student9 Student10 Student11

Original student RTM

Consensus rule

Supermajority rule

Majority
 rule

Precision vs. Recall, CM-1 student dataset, manual trace recovery,
10% filter

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Recall

Pr
ec

is
io

n

Student1 Student2 Student3 Student4 Student5 Student6
Student7 Student8 Student9 Student10 Student11

Consensus rule

Supermajority rule

Majority
rule

Original student RTM

example, that the Majority rule had a pd of close to 1
and a pf of close to 0.8.\

Figure 3. Pf values, group 1 (manual trace recovery).

Figure 4. Pf values, group 1 (manual trace recovery)

committee uses only top 10% of links.

6. Analysis and Discussion

 As mentioned previously, our prior work has shown
that information retrieval methods perform well in
retrieving correct links [10]. Not surprisingly, Study 1
shows that a committee of IR methods that are used to
assess a given RTM also does an excellent job of
detecting and keeping the true links. Table 2 (pd or
recall) shows that the Majority rule keeps 100% of the
true links in the unfiltered case (tying the TF-IDF
method). In the filtered case, the Majority rule
performs much better than the TF-IDF method,
keeping 91.4% of the true links (as compared to 57.1%
for TF-IDF). Even the Supermajority rule ties the TF-
IDF method in terms of pd. So our prior findings on
the effectiveness of information retrieval methods for
recovering a high percentage of all true links have also
been demonstrated in assessing RTMs.
 Precision, or the ability to discard false positives, is a
noted shortcoming of information retrieval methods

[10]. In assessing a given RTM, it is desirable to not
only keep all of the correct links evaluated, but also to
discard all of the false links evaluated. In data mining,
pf is traditionally used to measure the probability of
false positive detection.

Figure 5. Overall Pf values, group 1 (manual trace

recovery).
 We examine this measure and we also examine the
overall pf or opf. As can be seen in Table 3, the
Majority rule, the Supermajority rule, and the TF-IDF
method fail to discard 95.2%, 81.7%, and 96.4%
(respectively) of the false positives that they examine
in the unfiltered Manual (group 1) RTMs. In contrast,
the Consensus rule only fails to discard 40.9% of the
false positives. This effect is even more prominent for
the unfiltered RETRO RTMs where the Consensus
rule only fails to discard 19% of the false positives.
Filtering has a clear impact on pf: the Consensus rule
only fails to discard 2.4% of the observed false
positives for the filtered RETRO RTMs and all other
decision rules perform well. Note that all decision rules
outperform TF-IDF except for the Majority rule which
only outperforms TF-IDF in the unfiltered case.
Once these false positives have been discarded
(presumably they were discarded by the analyst in the
RTM building phase), it is of interest to see how well
the committees perform at discarding any remaining
false positives. Table 4 addresses this question with
the opf measure. It can be seen that the average
original RTM failed to discard 3.6% of the overall
false links (in the N x K space) for the manual cases
(filtered and unfiltered) and failed to discard 74.5%
for both RETRO cases (filtered and unfiltered). In
stark contrast, the Consensus rule only failed to discard
.06% for the filtered manual group RTMs, 1.4% for the
unfiltered manual group RTMs, and 1.8% for the
filtered RETRO group RTMs. In other words, the
Consensus rule is able to discard almost 100% of the
false positives in the N x K space (after an analyst has

Overall probability of false positive detection (pf), manual trace recovery

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 Mean

Student

pf

Original RTM Majority Rule Supermajority Rule Consensus Rule

Probability of false positive detection (pf), manual trace recovery, 10% filter

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 Mean

Students

pf

Majority Rule Supermajority Rule Consensus Rule

Probability of false positive detection (pf), manual trace recovery

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 Mean

Student

pf

Majority Rule Supermajority Rule Consensus Rule

discarded anywhere from 8.5% to 96.4% (see Table
3)). Looking at the TF-IDF method, one can see that
the Consensus rule committee outperforms TF-IDF in
terms of opf by 57% (for unfiltered RETRO group
RTMs) – that is almost a four-fold improvement.
 For Study 2, we focus on pf and pd. As shown in
Table 5, when there is no filtering, the Majority and
Supermajority rules capture close to 100% of the true
links: 98% and 97% respectively. The Consensus rule
retains close to 83% of the true links. In the filtered
case, some true links are discarded, with the best
performance, 80%, coming from the majority rule.
Table 6 examines the mean probability of false
positive detection for the randomly selected RTMs and
the weighted selection RTMs. It can be seen that the
Consensus rule performs quite well for the filtered
RTMs, regardless of the selection method, retaining
only 3% of the false links that it examines. On the
other hand, the unfiltered cases are a challenge for the
committees, with Majority and Supermajority retaining
close to 80% of the false positives. The Consensus
rule does a better job on the unfiltered case, but still
retains almost 40% of the false positives.

Figure 6. Overall Pf values, group 1 (manual trace recovery)

committee uses only top 10% of links.

 Figure 9 makes it very clear that there is no
difference between the selection methods when
plotting pf vs. pd. The random unfiltered and weighted
unfiltered values are almost indiscernible. The same is
true for the random filtered and weighted filtered
cases. It is interesting to note that the Majority rule
clearly achieves higher mean pd, but at the expense of
pf. The Consensus rule throws away some true links
(hence a decrease in pd), but has a very low pf. Note
that it is desirable to have the pf vs. pd points in the
lower right quadrant of the graph. Our Consensus and
Supermajority rules just barely enter this quadrant.
 Figures 1 and 2 show a very clear pattern in the
behavior of the committee rules. It is apparent in both

for the Consensus rule applied to the

k

types of candidate
TMs, those created from scratch by human analysts

introduced by

figures that the original RTM has the highest recall and
precision for each student. In Figure 1, we see that the
Majority rule increases precision just slightly, with no
drop in recall. The Supermajority rule may allow a
slight drop in recall, but with an increase in precision.
Finally, the Consensus rule improves precision (almost
10%), but at some loss of recall (roughly 10%). In
Figure 2, this same trend is apparent, though there is a
drop in recall when moving from the original RTM to
the Majority rule. As can be expected, the Consensus
rule may result in throwing away some true links
(since all the methods did not retrieve that true link),
but it is usually a small decrease in recall with an
increase in precision (as many false positives are
discarded).
Figures 3 through 6 demonstrate that, on average, the
pf is 40%
unfiltered manual group RTMs, 80% for the
Supermajority rule, and 98% for the Majority rule. Pf
drops to 19.9% for the filtered manual group RTMs,
with the other committees at or just above 40%. This
is a significant improvement when using a simple
filtering rule (top 10%). The opf for the Consensus
rule is, on average, only 1.5% for the unfiltered manual
case and at/or just above 3% for the other rules and for
the original RTM. The opf for the filtered case is less
than 1% for the Consensus rule, and just around 1.5%
for the others. So the Consensus rule is still almost
50% better than the other rules.

6.1 Discussion and Future Wor

In our studies we considered two
R
and those built by selecting links from a pool of links
retrieved by automated methods. In considering the
original problem motivation, it was of great interest
whether or not we could use a committee of
information retrieval methods to find the mistakes that
human analysts introduce when building RTMs.
Secondarily, we wondered if a committee of methods
could detect problems introduced into an RTM by a
single information retrieval method.
Our assessment method captures and rejects a large
percentage of the false positives
automated methods used to build the RTM. This is
significant because as traceability researchers achieve
increased success, more analysts will be using their
methods in order to build mappings or RTMs (as
illustrated in Section 1). It is thus important that we
have techniques available for assessing their accuracy
in a manner that is not time consuming or erroneous.

Overall probability of false positive detection, manual trace recovery, 10%
filter

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 Mean

Student

pf

Original RTM Majority rule Supermajority rule Consensus rule

Figure 7. Study 1: Mean probability of false positive

detection vs. Recall (unfiltered case).

Figure 8. Study 1: Mean probability of false positive

detection vs. Recall (filtered case).

ilities of detection (recall) Table 5. Study 2: Probab

Perhaps the more interesting aspect of our study is the

operates on the data generated by the TF-IDF method.

behavior of our methods on the RTMs that were
constructed by the human analysts from scratch. In
this particular case, we cannot predict what false
positives might be introduced. We see that while our
methods were not as good on the human generated
RTMs, we still see that our method can reject a
significant percentage of the observed false positives
while preserving a high pd. Humans themselves are
good at weeding out false positives (as can be seen by
their low opf values in Study 1), and our method can
come in behind the human analyst and reject a large
percentage of the false positives that the human left in.

Figure 9. Study 2: Mean probability of false positive

detection (pf) vs. probability of detection (recall).

 Table 6. Study 2: Mean probabilities of false positive
detection (pf).

As stated in Section 1, this is our first study of

automated methods for RTM assessment. At this point,
we see three clear ways in which the approach
described in this paper can be improved. First, we can
build larger committees by adopting/adapting more
IR/text mining methods for trace recovery tasks.
Second, each of the methods we used in our
committees came with a number of different
parameters. Finding the best “variations” for each
member method can improve the overall quality of
voting. Finally, we have considered a full committee of
five methods. However, one can construct five four-
member subcommittees and 20 three-member
subcommittees just out of the methods used here.
Some of these subcommittees might prove to be more
sensitive to false positives than the overall committee.
To show this, consider the information in Table 7.
There, we report pair-wise Pearson correlations
between the lists of false positive links in the filtered
committees used in our Study 2. As seen from this
data, TF-IDF and KE methods show a very high
correlation and, therefore, provide almost no
orthogonal information --- on the contrary, these
methods reinforce each others’ false positives during
“committee hearings” This correlation was not
unexpected: as we state in Section 3, the KE method

Filter Majority Supermajority Consensus
None 0.980 28 0.977 0.8
Top 10% 0.800 0.753 0.518

 Rule
Selection
Method Filter Majority SuperMajority Consensus
Random Top 10% 0.101 0.069 0.029
Weighted Top 10% 0.096 0.065 0.030
Random None 0.786 0.748 0.385
Weighted None 0.779 0.735 0.381

Study 1: Mean probability se positive detection
(pf) vs. recall (pd), fil red (top 10%) case

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

pd (recall)

pf

 of fal
te

Manual, committee RETRO, committee Manual, tf-idf RETRO, tf-idf

Majority

Consensus

Supermajority

Study 2: Mean Probability of False Positive
detection (pf) vs. recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall (pd)

pf

Random, unfiltered random, filtered
weigted, unfiltered weighted, filtered

Majority

Consensus

Supermajority

Study 1: Mean probability of false positive
detection (pf) vs. recall (pd), unfiltered case

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

pd (recall)

pf

Manual, committee RETRO, committee
RETRO, tf-idf Manual, tf-idf

Majority

Supermajority

Consensus

A more pleasant surprise to us was relatively low
correlation rates for other methods. At the same time,
we note that other methods show a much more
infrequent rate of false positive co-incidence which
suggests that careful selection of subcommittees may
improve the false positive rejection rates without
affecting recall.

Table 7. Pearson correlations between false positives in

tra

 TFIDF KE LSI LDA

ces recovered by five methods for CM-1 dataset, filtered
at top 10%.
 ProbIR

TFIDF
KE 0.932
ProbIR .209 0.210 0
LSI 0.499 0.485 0.170
LDA -0.44 -0.41 0.176 -0.30

7. Acknowledgments

Our thanks to Stephanie Ferguson and Marcus Fisher.
We

. References

] Antoniol, G., , G. Canfora, G. Casazza, A. De Lucia, and

] Antoniol, G., Merlo, E., Guéhéneuc, Y., and Sahraoui, H.

] Baeza-Yates, Ricardo A., Berthier A. Ribeiro-Neto:

] Blei, D., A. Ng, and M. Jordan. Latent Dirichlet

night, J. C., and Leveson, N. G. 1990.

] Deerwester, S., S.T. Dumais, G.W. Furnas, T.K.

] Heinrich, Gregor, “LDA-J Library” Code available at

] Cleland-Huang,J., C.K. Chang, G. Sethi, K. Javvaji, H.
Hu, and J Xia. Automating speculative queries through

nthil
undaram, Sarah Howard, “Helping Analysts Trace

., and Sundaram, S..
dvancing Candidate Link Generation for Requirements

Huffman Hayes, J., Dekhtyar, A., Holbrook, E.A.,
undaram, S., Dekhtyar, O., Will Johnny/Joanie Make a

arcus, A., and J. Maletic, Recovering Documentation-
-Source Code Traceability Links using Latent Semantic

zuka: Keyword
xtraction from a Single Document using Word Co-

ite, CM-1 Project, http://mdp.ivv.nasa.gov/
dp_glossary.html#CM1, 2005.

, Y., Marcus, A., Antoniol,
., and Rajlich, V. Combining Probabilistic Ranking and

ISE Repository,
ttp://promise.site.uottawa.ca/SERepository/.

ext Mining for
oftware Engineering: How Analyst Feedback Impacts Final

 thank Mike Chapman and the Metrics Data Program
(MDP) for access to the CM-1 dataset. This work is
sponsored by NASA under grant NAG5-11732.

8

[1
E. Merlo. Recovering Traceability Links between Code and
Documentation. IEEE Transactions on Software
Engineering, Volume 28, No. 10, October 2002, 970-983.

[2
2005. On feature traceability in object oriented programs. in
Proc. 3rd Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE’05) 2005, 73-78.

[3
Modern Information Retrieval. ACM Press / Addison-
Wesley, 1999.

[4
allocation. Journal of Machine Learning Research, 3:993–
1022, January 2003.
[5] Brilliant, S. S., K
Analysis of Faults in an N-Version Software Experiment,.
IEEE Trans. Softw. Eng. 16, 2 (Feb. 1990), 238-247.

[6
Landauer, and R. Harshman, Indexing by Latent Semantic
Analysis, J. Am. Soc. Information Science, vol. 41, no. 6, pp.
391-407, 1990.

[7
http://www.arbylon.net/projects/.

[8

event-based requirements traceability. Proc. International
Requirements Engineering Conference (RE’02), 2002.

[9] Huffman Hayes, Jane, Alexander Dekhtyar, Se
S
Requirements: An Objective Look,” in Proceedings of IEEE
Requirements Engineering Conference (RE) 2004, Kyoto,
Japan, September 2004, pp. 249-261.

[10] Huffman Hayes, J.,. Dekhtyar, A
A
Tracing: The Study of Methods IEEE Transactions on
Software Engineering, Volume 32, No. 1, (January 2006), 4-
19.

[11]
S
Good Software Engineer?: Are Course Grades Showing the
Whole Picture?, in Proc., Conference on Software
Engineering Education and Training (CSEET), 2006, pp. 175
- 182.

[12] M
to
Indexing, Proc. ICSE 2003, pp. 125 – 135.

[13] Matsuo, Yutaka, and Mitsuru Ishi
E
occurrence Statistical Information. FLAIRS Conference
2003: 392-396.

[14] MDP Webs
m

[15] Poshyvanyk, D., Gueheneuc
G
Latent Semantic Indexing for Feature Identification in Proc..
ICPC 2006, pp. 137-148.

[16] PROM
h

[17] J. H. Hayes, A. Dekhtyar, S. Sundaram, T
S
Results, in Proc. MSR'2005: Second International Workshop
on Mining Software Repositories, pp. 58-62, St. Louis, MO,
May 2005.

	1. Introduction
	2. Related work
	3. Methodology
	The RTM Assessment problem studied can be expressed as follows:
	Suppose, we are given a collection F1,…,Fk of trace recovery methods. To construct an RTM assessment algorithm that uses F1,…,Fk, , we first need to select a voting scheme, i.e., a decision rule which will determine if a link is reported or rejected. We consider only simple decision rules that treat each method F1,…,Fk, equally, and simply count, for each link (i,j), the total number of Fl(i,j) which evaluate to True.
	3.1. Evaluation measures
	4. Study Design
	5. Results
	6. Analysis and Discussion

	7. Acknowledgments
	8. References

