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Abstract 
In determining whether to permit a safety-critical 
software system to be certified and in performing 
independent verification and validation (IV&V) of 
safety- or mission-critical systems, the requirements 
traceability matrix (RTM) delivered by the developer 
must be assessed for accuracy. The current state of the 
practice is to perform this work manually, or with the 
help of general-purpose tools such as word processors 
and spreadsheets Such work is error-prone and 
person-power intensive.  In this paper, we extend our 
prior work in application of Information Retrieval (IR) 
methods for candidate link generation to the problem 
of RTM accuracy assessment. We build voting 
committees from five IR methods, and use a variety of 
voting schemes to accept or reject links from given 
candidate RTMs. We report on the results of two 
experiments. In the first experiment, we used 25 
candidate RTMs built by human analysts for a small 
tracing task involving a portion of a NASA scientific 
instrument specification. In the second experiment, we 
randomly seeded faults in the RTM for the entire 
specification.  Results of the experiments are 
presented. 
 
1. Introduction 
 
    Developers who build software systems and “sell 
off” their software to the buyer must prove that their 
systems satisfy contractual requirements.  When 
obtaining system certification (safety, security, etc.), 
the developers again must demonstrate or validate that 
the software meets the certification requirements. 
Reverse engineers who seek to extract requirements 
from a set of design elements and code must validate 
that the requirements have been satisfied by the as-
built system.  A similar task has to be performed by an 
IV&V analyst who must verify that the artifacts of the 
current phase of the development lifecycle properly 
satisfy the artifacts of the previous phase (e.g., that the 
design satisfies the requirements).   Software 
maintainers deciding whether to reuse a component or 

to write it from scratch need to know if the component 
correctly satisfies its requirements. 
    The common thread (the unifying theme) of all the 
above situations is the need to know the mapping 
between the various artifact levels and the need to have 
a way to determine if this mapping is correct – a way 
to assess the mapping.  The various professionals 
(IV&V analyst, reverse engineer, etc.) may have 
different names for it, but basically they all are 
determining the accuracy of the mapping.  We 
illustrate this with a scenario where a requirements 
traceability matrix, or RTM, is used to map the 
elements of a pair of artifacts to each other (for 
example, a design specification’s elements are mapped 
to code components).  Let us call the ith element of the 
design document di and the jth component of the code 
cj.  An RTM from the design to the code will be a 
collection of lists or entries for each item di that may 
contain from 0 to N cj elements.  In such an RTM, for 
each di entry, its candidate links list should be 
evaluated for accuracy – do we agree that all listed cj 
elements are related to di?  It should also be checked 
for completeness – do we agree that all the cj elements 
related to di are listed?  In this work, we concentrate on 
accuracy.  
    The current state of the practice is to perform such 
evaluation manually, or with the help of general-
purpose tools such as word processors, spreadsheets, 
and database management systems.  Thus, the task is 
often not performed, or a “spot check” is performed 
rather than a more complete evaluation.  An automated 
technique for this would allow the work to be 
performed thoroughly, and with much less human 
effort and error.  The current state of research in the 
area of traceability [9,10,1,12,8] concentrates on trace 
recovery, rather than on RTM assessment tasks.  

In this paper, we extend our previous work on trace 
recovery to the complementary problem of RTM 
assessment.  To our knowledge, this paper represents 
the first attempt to address this problem in an 
automated fashion.  We adapt prior trace recovery 
methods [9,10] and some newly introduced trace 
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recovery methods to the problem of determining 
whether the candidate links of a given (candidate) 
RTM should be kept in the RTM or rejected. We use 
committees of trace recovery methods, and let the 
committees vote on each individual candidate link.  

This paper describes the results obtained from two 
studies. In one study we used a small dataset and 
candidate RTMs generated by human analysts. Our 
interest was to see if assessment by committee could 
detect mistakes that the humans had introduced into 
the RTMs. In the other study we looked at a larger 
dataset, and we seeded false positive links in the 
candidate RTMs using two seeding procedures.  The 
question for this study is whether assessment by 
committee can detect mistakes made by one automated 
trace recovery method.  Our committees work as 
simple unsupervised classifiers. We evaluate their 
work by measuring the false positive detection rate and 
the correct link rejection rate, the standard measures 
for assessing the quality of classifiers.  
    The paper is organized as follows.  Section 2 
presents related work.  Section 3 presents our 
methodology for combining techniques for assessment 
of requirements mappings or RTMs.  Section 4 
describes our validation.  Section 5 presents the results, 
and in Section 6 we present a discussion and future 
work. 
 
2. Related work 

 
There are two aspects to the study of automating 

requirements traceability: study of methods for 
automating traceability link recovery and other 
traceability tasks, and study of the impact of such 
methods on the entire tracing process and its 
efficiency. In [17] we have discussed the need for 
research on the latter problem: the study of the impact 
must involve studying how analysts use automated 
traceability tools/methods in vivo.  However, before 
such studies can take place, good tools/methods must 
be discovered. This paper falls in the realm of the 
study of methods: looking for the means of giving 
analysts accurate assessment results. Individual 
information retrieval methods have shown promise for 
generating mappings – term frequency-inverse 
document frequency and probabilistic retrieval have 
been used by Antoniol et al. [1], latent semantic 
indexing has been used by Marcus and Maletic [12] 
and Hayes et al. [10].  In general, these methods, 
working alone, result in finding many of the related 
items (high recall), but also tend to retrieve many 
elements that are not relevant (low precision).   We are 

not aware of any work on the assessment of 
requirements mappings.  

The idea behind N-version programming [5] is that 
if a piece of code is required to perform reliably and 
correctly (based on some specification), the software is 
implemented in several programming languages and/or 
using orthogonal programming paradigms (such as 
structured and object-oriented).  Theoretically, these 
diverse implementations should not fail in the same 
way.  Then, each implementation “weighs in” or 
“votes” by executing and providing output.  If a 
majority of the implementations generate the same 
output (agree), the output is returned and the result is 
deemed “correct.”  If the implementations cannot come 
to a majority ruling, the results are not “trusted.”   

Poshyvanyk et al also used the approach of 
combined experts to perform feature identification for 
maintenance programming support [15].  They found 
that combining scenario based probabilistic ranking 
and latent semantic indexing improved feature location 
when compared to the individual techniques. Based on 
the above related work, it appears that combining 
techniques might have promise for evaluating the 
accuracy of RTMs. Information retrieval methods have 
been shown to be helpful in generating or building 
such mappings, but can they assist in evaluating 
mappings and  is it useful to use more than one 
technique for the assessment? 
 
3. Methodology 
 
The RTM Assessment problem studied can be 
expressed as follows: 

Given two textual artifacts (referred to 
as a high-level and a low-level artifact), 
broken into individual elements, and a 
candidate Requirements Tracing Matrix 
(RTM) M, determine, for each candidate 
link in M, if it has been correctly 
included. 

To convert any trace recovery method into an RTM 
assessment method it is run on the given pair of 
artifacts, and the resulting candidate RTM recovered 
by the method is compared to the input RTM. The 
decision rule is: a link from the input RTM is kept iff it 
is found in the RTM constructed by the method. We 
extend this idea to the situation when more than one 
trace recovery method is available.  

For the purpose of this paper, we define a trace 
recovery method as any algorithm that, given a pair of 
textual artifacts broken into elements, outputs a 
candidate RTM for them. Many of the trace recovery 
methods discussed below provide some extra 



information about the recovered links – e.g., the 
perceived similarity between the two linked elements. 
However, for constructing RTM assessment methods 
discussed here, we view each trace recovery method as 
a filter: for each pair of high- and low-level elements, 
the trace recovery method decides whether it is 
included in the output, or whether it is rejected. Each 
trace recovery method F can be viewed as a function: 
F:H x L → {True, False}, where F(i,j)=True means 
that the method believes that the high-level element hi 
traces to low-level element lj. 

Suppose, we are given a collection F1,…,Fk of trace 
recovery methods. To construct an RTM assessment 
algorithm that uses F1,…,Fk, , we first need to select a 
voting scheme, i.e., a decision rule which will 
determine if a link is reported or rejected. We consider 
only simple decision rules that treat each method 
F1,…,Fk, equally, and simply count, for each link (i,j), 
the total number of Fl(i,j) which evaluate to True.  
Given an RTM M={(i,j)}, the RTM assessment 
method based on F1,..,Fk using the decision rule r 
works as follows: each candidate link (i,j) from M is, 
in turn, evaluated by F1,..,Fk. If the number of 
methods evaluating to True exceeds the threshold of r, 
the link (i,j) is kept in the output RTM. Otherwise, (i,j) 
is rejected. For example, a majority rule accepts a link 
if it is recovered by more than one half of all available 
methods. 

In this paper, we consider an RTM assessment 
committee composed of three, four and five different 
trace recovery methods, and employ a number of 
different decision rules. We briefly describe the five 
trace recovery methods next. 
 
Vector Space Retrieval using tf-idf keyword 
weighting (td-idf). This trace recovery method, 
described in detail in [9,10], represents each element as 
a vector of keyword weights.  It uses term frequency in 
the document and inverse document frequency, which 
measures the rarity of a keyword/term in the entire 
artifact, to compute weights of individual keywords. 
Similarity between two vectors is computed  as a 
cosine of the angle between them (i.e., as the 
normalized dot-product of the vectors).  
 
χ2-based Keyword Extraction (KE). This method, 
introduced recently to trace recovery [11], is an 
extension of a single-document keyword extraction 
method of Matsuo and Ishizuka [13], which turns it 
into a retrieval method. All keywords in the entire 
artifact are ranked based on their perceived 

importance1, and only the top X% of the keywords are 
used in the actual retrieval. We used the vectors of 
keyword weights generated by the tf-idf method, set 
X=50%, and projected out all keywords in the bottom 
half of the produced ranked list. 
 
Probabilistic Information Retrieval (ProbIR). We 
used the binary independence retrieval method, which 
tries to estimate the odds ratio of a pair of elements 
being a link vs. not being a link, and is often referred 
to as “probabilistic retrieval” [3].  The quality of the 
results returned by this method on small datasets2 
depends highly on the initial estimates of two 
quantities: probability of a true link containing a 
specific keyword, and probability of a false positive 
link containing a specific keyword3.  
Latent Semantic Indexing (LSI).  LSI transforms the 
element-by-keyword representation of an artifact into 
an element-by-latent topic representation using 
singular-valued matrix decomposition [6]. The key 
difference between the original and final representation 
is the fact that the number of latent topics can be 
significantly smaller than the number of keywords.  
Each element vector goes through the transform to 
obtain its vector of latent topic weights. The latter 
vectors are then compared to each other for similarity. 
We have used LSI in our prior work [10]. 
 
Latent Dirichlet Allocation (LDA). Like LSI, LDA 
represents all elements as vectors of latent topic 
weights [4]. The difference is in the transformation 
from the space of keyword weights to the space of 
latent topic weights. We have used the open source 
Java LDA implementation, LDA-J, which is available 
from the knowceans.org site [7].  LDA is implemented 
with a three-level hierarchical Bayesian model.  Each 
document is modeled as a mixture of k topics for 
classification.  Candidate links between requirements 
and design elements were recorded for those 
documents whose Euclidean distance measures were 
within a given threshold. 
 

                                                           
1 The method uses the keyword co-occurrence matrix and 
tries to establish keywords that show “interesting” co-
occurrence behavior. This is measured by the χ2 statistic for 
each keyword [13]. 
2 From the point of view of Information Retrieval, which is 
used to dealing with millions of documents, all our datasets 
are small. 
3 In the interest of space, we have relegated the specific 
formulas we used to estimate these quantities in our work to 
a tech. report. 



3.1. Evaluation measures 
 Consider a traceability task involving a high-level 
document consisting of N elements and a low-level 
document consisting of K elements. Let the true RTM 
for this task contain S links. Consider an RTM R 
containing M < K*N links.  Suppose an RTM 
assessment method F(.) is applied to links in R. Each 
link l from R can belong to one of the following 
categories: 

- true positive (hit). l is in the true RTM and l is 
classified as a true link by F(.). 

- false positive (strike). l is NOT in the true 
RTM but l is classified as a true link by F(.). 

- true negative. l is NOT in the true RTM, and l 
is classified as not a link by F(.). 

- false negative (miss). l is a true link, but it is 
classified as not a link by F(.). 

Let A be the number of hits, B be the number of 
strikes, C be the number of true negatives and D be the 
number of misses. We know that A+B+C+D = M (only 
the links in R are classified by F(.)).  We note that F(.) 
retains A+B links and rejects C+D links.  We use the 
following measures in our study.  

Recall: 
S
Arecallpd == .  Recall is the overall 

percentage of correct links retained by F(.). 

Probability of false positive detection: 
BC

Bpf
+

= . 

Pf is the probability of detecting a false positive, i.e., 
the probability of keeping a non-link in the output. Pf 
represents the probability of false positive detection by 
method F(.) alone.  Additionally, we are interested in 
the overall probability of detecting a false positive, opf, 

computed as ( ) SKN
Bopf

−⋅
= . 

Precision:
BA

Aprecision
+

= .  Precision measures 

the total percentage of correct links among the links 
retained by the method. 
In our prior studies on trace recovery, we mainly 
concentrated on pd (recall) and precision of the 
recovered candidate RTMs. Our prior results [9,10] 
show high recall rates in candidate link lists retrieved 
by individual IR methods. At the same time, in 
unfiltered candidate link lists, precision was in single 
digits. The problem of RTM assessment, however, as 
stated above, is more akin to the traditional 
classification problem.  In addition to pd, the 
probability of false positive detection, pf, is 
traditionally considered as a key measure. In our case, 

we consider two variations: pf and opf. The first 
measure is the probability of false positive detection 
relative to the false positives contained in the input 
RTM R. The second measure is the overall probability 
of false positive detection achieved by the combination 
of the method that produced the candidate RTM R and 
our RTM assessment method F(.). 
 
4. Study Design 
 
   In this section, we present the datasets used in our 
studies as well as the design of the studies. 
 
4.1. Datasets Used 
 
   In general, the methodology studied here can be 
applied both to assessment of RTMs between different 
artifacts and assessment of RTMs between consecutive 
versions of the same artifact. In this study, our datasets 
belong to the former class – we had no access to a 
dataset of the latter category. Both studies described 
below use data from the CM-1 dataset [14], distributed 
by NASA’s Metrics Data Program (MDP) and 
available from the PROMISE repository [16]. In our 
prior work [10], we extracted a requirements document 
and a design specification from the CM-1 dataset and 
broke each artifact into individual elements. We also 
traced the requirements document to the design 
document via a process described in detail in [10]. For 
our first study, we used a small subset of the CM-1 
dataset. We extracted a single section of the 
requirements document and the section in the design 
document to which most of the requirements elements 
were pointing and restricted our ground truth RTM to 
the links between the extracted sections. We refer to 
this smaller dataset as CM-1, subset 1, or as the 
“student dataset” in the remainder of the paper.  Table 
1 shows the main characteristics of the main CM-1 
dataset and the student dataset. 
4.2. Study 1 
Our first study used the results of an in-class quasi-
experiment, conducted as part of a graduate software 
engineering topics course in the Spring 2006 semester. 
30 students who took the class were divided into two 
equal size groups. Each student was asked to complete 
a trace recovery task for the student dataset described 
above. Students in the first group were asked to 
perform trace recovery manually, whereas students in 
the second group were asked to use RETRO [10], a 
requirements tracing tool built by our group. RETRO 
was configured to use vector space retrieval with tf-idf 
weighting schema (see Section 3) to produce candidate 
link lists. 



Table 1. Datasets used in this work. 

    At the end of the quasi-experiment, 11 submissions 
from group 1 (manual trace recovery) and 14 
submissions from group 2 (trace recovery using 
RETRO) were deemed acceptable.  
   We used the committee of all five methods and 
applied three decision rules: majority (3 of 5 methods), 
supermajority (4 of 5 methods), and consensus (5 of 5 
methods) to classify the links.  To find the probability 
of detection (pd) for each committee, we simply ran 
the true RTM through it. For each of the student-
generated RTMs, we therefore were interested in 
establishing pf, the probability of false positive 
detection, and thus only the false positives from these 
RTMs were studied. We also looked at how each 
committee changed the precision and recall of the 
RTM.  
 
4.3. Study 2 
 
     In the second study, we used the full CM-1 dataset. 
At the moment, we have not conducted studies in 
which analysts trace the full CM-1 dataset. In order to 
evaluate the performance of our assessment techniques 
on a large dataset, we felt that it was important to test 
on the full CM-1 dataset. Toward that end, we 
considered two different ways of automatically seeding 
(selecting) the RTM with false positive links. In both 
cases, the false positives were drawn from a list of 
about 37,000 links – the combined list of links 
recovered by four (TF-IDF, KE, ProbIR and LSI) of 
the five methods considered in this study (LDA 
method did not produce a similarity score that we 
needed to use in the selection process below). The two 
methods we considered were:  

Random selection. We selected approximately 
3% of the links. Each link form the list of about 
37,000 links had an equal chance of being 
selected. We used the “Select a sample” feature of 
the SPSS statistical package to construct ten 
datasets. 
Weighted selection. Each of the four methods 
returned a similarity/ranking score for each link, 
ranging from 0 to 1 (with 1 being most similar and 
0 being least similar). We used the sum of these 
scores as the weight of each link. Using the SPSS 
“Weight cases by” feature, we weighted our links, 

and then selected ten 3% samples from the 
weighted dataset using the “Select a sample” 
feature of SPSS. Weighted selection is biased 
against our assessment method as false positives 
with higher rank  (and thus – harder to deal with) 
have a higher probability of being selected.  

Dataset: CM-1 CM-1, subset 1 
(student dataset) 

# requirements 232 52 
# design elements 220 22 

# links in RTM 361 35 We used the same voting methods as in Study 1. We 
examined the input RTMs using the committee of five 
methods described in Section 3. We used the Majority, 
SuperMajority, and Consensus decision rules. Finally, 
we studied both the unfiltered and filtered at 10% 
inputs from individual methods. 
   We used the CM-1 answer set to find the recall (pd) 
numbers for each method, and the random and 
weighted samples to find the probability of false 
positive detection (pf) numbers. For this study, we 
report mean pf values for each selection methods/ 
voting method combination.  
 
5. Results 
Tables 2 through 4 and Figures 1--8 document the 
results of the first study (the lines connect the results 
obtained for the same data point on for different 
decision rules, thus showing the drift of the measures).  
In Table 2, we show the probability of detection (pd, 
a.k.a., recall) rates for different methods for the 
student dataset used in this study. We show the details 
for three committee methods and our baseline method, 
TF-IDF, which simply looks to see if the line is 
present in the candidate RTM recovered by the vector 
space retrieval using tf-idf method. In the unfiltered 
case, we used the entire list recovered by all five 
methods; in the top 10% case, we used only the top 
10% of these links ranked by similarity, omitting the 
other 90% of recovered links from consideration.  It 
can be seen, for example, that the majority rule applied 
to the unfiltered case detects 100% of the correct links 
as does the TF-IDF method. Tables 3 and 4 show the 
mean pf and opf values obtained in our evaluation. 
Figures 7 and 8 combine the content of Tables 2 and 3 
and plot the results of our study in the pf-vs-pd  space. 
  Because the candidate RTMs constructed by students 
from group 1 (manual trace recovery) and those 



constructed by students from group 2 (using RETRO) 
differed significantly, we break our computations by 
group. In general, we observed that most of the 
candidate RTMs in group 2 were very similar, and 
hence we only report the means for this group. Group 
1 included 11 different, manually constructed 
candidate RTMs.  
    Figures 1 through 6 illustrate the results of applying 
our RTM assessment methodology to each individual 
RTM in the group. Figures 1 (no filter) and 2 (top 10% 
filter) show the precision-vs-recall drift, from the 
original RTM to the RTMs retained by the three 
committees: majority, supermajority, and consensus. It 
can be seen, for example, in Figure 1 that Student 6’s 
manually built RTM (original) had recall of 48% and 
precision of 28%.  This drifted to 48%/29% for the 
Majority rule, to 48% recall/32% precision for the 
Supermajority rule, and to 38% recall and 41% 
precision for the Consensus rule. 
 
Table 2. Probability of Detection (pd or recall) rates for CM-

1, subset 1 (student) dataset used in Study 1. 
Classifier base  

Rule unfiltered  top 10% 
Majority 1 0.914286 
supermajority 0.971429 0.571429 
consensus 0.685714 0.542857 
TF-IDF 1 0.571429 

 
Table 3. Means of probability of false positive detection (pf) 

for Study 1 by groups. 

 
 Figures 3 and 4 show the individual pf values for all 
RTMs and committee methods for filtered and 
unfiltered cases, respectively. For Student 6’s 
unfiltered RTM, e.g., it can be seen that the Consensus 
rule had just over a 40% chance of keeping a false 
positive that it examined (pf). Figures 5 and 6 show the 
opf values.  It can be seen, e.g., from Figure 5 that the 
Consensus rule for Student 6’s unfiltered RTM had 
only a 1.8% chance overall of keeping a false positive. 
The results of Study 2 are presented in Tables 5 and 6 
and in Figure 9.  In Table 5, we show the probability 
of detection (pd) rates for the three committee methods 
for the unfiltered and filtered case (we looked at the 
Top 10% of the links as in Study 1).  It can be seen, 

e.g., that the Majority rule detected 98% of the correct 
links in the unfiltered case.  Table 6 shows the mean pf 
values obtained in the second study. For example, it 
can be seen that the Consensus rule only retained 2.9% 
of the false positives (that were seen) for the randomly 
selected filtered RTMs. 

 
Table 4. Means of overall probability of false positive  

detection (opf) for Study 1 groups. 

 

 
 Figure 1. Changes in recall and precision for students from 

group 1 (manual trace recovery). 
 

 
Figure 2. Changes in recall and precision for students from 
group 1 (manual trace recovery), committee uses only top 

10% of links. 
Figure 9 shows the mean pf versus probability of 
detection (recall) for the random unfiltered RTMs, the 
random filtered RTMs, the weighted filtered RTMs, 
and the weighted unfiltered RTMs.  It can be seen, for 

 Rule 

Group Filter Maj SuperMaj 
Consen 
sus TF-IDF 

Manual None 0.952 0.817 0.409 0.964 

RETRO None 0.915 0.626 0.190 0.967 

Manual 10% 0.436 0.400 0.187 0.426 

RETRO 10% 0.097 0.072 0.024 0.085 

Group Filter 
Original 
RTM Maj SuperMaj 

Consen 
sus 

TF-
IDF 

Manual None 0.036 0.034 0.029 0.014 0.034 
RETRO none 0.745 0.677 0.463 0.141 0.716 
Manual 10% 0.036 0.015 0.014 0.006 0.011 
RETRO 10% 0.745 0.072 0.053 0.018 0.063 

Precision vs. Recall, CM-1 student dataset, manual trace recovery
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example, that the Majority rule had a pd of close to 1 
and a pf of close to 0.8.\ 

 
Figure 3. Pf  values, group 1 (manual trace recovery). 

 

 
Figure 4. Pf  values, group 1 (manual trace recovery) 

committee uses only top 10% of links. 
 
6. Analysis and Discussion 
 
   As mentioned previously, our prior work has shown 
that information retrieval methods perform well in 
retrieving correct links [10].  Not surprisingly, Study 1 
shows that a committee of IR methods that are used to 
assess a given RTM also does an excellent job of 
detecting and keeping the true links.  Table 2 (pd or 
recall) shows that the Majority rule keeps 100% of the 
true links in the unfiltered case (tying the TF-IDF 
method).  In the filtered case, the Majority rule 
performs much better than the TF-IDF method, 
keeping 91.4% of the true links (as compared to 57.1% 
for TF-IDF).  Even the Supermajority rule ties the TF-
IDF method in terms of pd.  So our prior findings on 
the effectiveness of information retrieval methods for 
recovering a high percentage of all true links have also 
been demonstrated in assessing RTMs. 
  Precision, or the ability to discard false positives, is a 
noted shortcoming of information retrieval methods 

[10].  In assessing a given RTM, it is desirable to not 
only keep all of the correct links evaluated, but also to 
discard all of the false links evaluated.  In data mining, 
pf is traditionally used to measure the probability of 
false positive detection. 
 

 
Figure 5. Overall Pf  values, group 1 (manual trace 

recovery). 
   We examine this measure and we also examine the 
overall pf or opf.   As can be seen in Table 3, the 
Majority rule, the Supermajority rule, and the TF-IDF 
method fail to discard 95.2%, 81.7%, and 96.4% 
(respectively) of the false positives that they examine 
in the unfiltered Manual (group 1) RTMs.  In contrast, 
the Consensus rule only fails to discard 40.9% of the 
false positives.  This effect is even more prominent for 
the unfiltered RETRO RTMs where the Consensus 
rule only fails to discard 19% of the false positives.  
Filtering has a clear impact on pf: the Consensus rule 
only fails to discard 2.4% of the observed false 
positives for the filtered RETRO RTMs and all other 
decision rules perform well. Note that all decision rules 
outperform TF-IDF except for the Majority rule which 
only outperforms TF-IDF in the unfiltered case.  
Once these false positives have been discarded 
(presumably they were discarded by the analyst in the 
RTM building phase), it is of interest to see how well 
the committees perform at discarding any remaining 
false positives.  Table 4 addresses this question with 
the opf measure.  It can be seen that the average 
original RTM failed to discard 3.6% of the overall 
false links (in the N x K space) for the manual cases 
(filtered and unfiltered) and failed to discard 74.5%  
for both RETRO cases (filtered and unfiltered).  In 
stark contrast, the Consensus rule only failed to discard 
.06% for the filtered manual group RTMs, 1.4% for the 
unfiltered manual group RTMs, and 1.8% for the 
filtered RETRO group RTMs.  In other words, the 
Consensus rule is able to discard almost 100% of the 
false positives in the N x K space (after an analyst has 
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discarded anywhere from 8.5% to 96.4% (see Table 
3)).  Looking at the TF-IDF method, one can see that 
the Consensus rule committee outperforms TF-IDF in 
terms of opf by 57% (for unfiltered RETRO group 
RTMs) – that is almost a four-fold improvement.    
    For Study 2, we focus on pf and pd.  As shown in 
Table 5, when there is no filtering, the Majority and 
Supermajority rules capture close to 100% of the true 
links: 98% and 97% respectively. The Consensus rule 
retains close to 83% of the true links.  In the filtered 
case, some true links are discarded, with the best 
performance, 80%,  coming from the majority rule. 
Table 6 examines the mean probability of false 
positive detection for the randomly selected RTMs and 
the weighted selection RTMs.  It can be seen that the 
Consensus rule performs quite well for the filtered 
RTMs, regardless of the selection method, retaining 
only 3% of the false links that it examines.  On the 
other hand, the unfiltered cases are a challenge for the 
committees, with Majority and Supermajority retaining 
close to 80% of the false positives.  The Consensus 
rule does a better job on the unfiltered case, but still 
retains almost 40% of the false positives. 
 

 
Figure 6. Overall Pf  values, group 1 (manual trace recovery) 

committee uses only top 10% of links. 
 

   Figure 9 makes it very clear that there is no 
difference between the selection methods when 
plotting pf vs. pd.  The random unfiltered and weighted 
unfiltered values are almost indiscernible.  The same is 
true for the random filtered and weighted filtered 
cases.  It is interesting to note that the Majority rule 
clearly achieves higher mean pd, but at the expense of 
pf.  The Consensus rule throws away some true links 
(hence a decrease in pd), but has a very low pf.  Note 
that it is desirable to have the pf vs. pd points in the 
lower right quadrant of the graph.  Our Consensus and 
Supermajority rules just barely enter this quadrant. 
  Figures 1 and 2 show a very clear pattern in the 
behavior of the committee rules.  It is apparent in both 

for the Consensus rule applied to the 

k 

types of candidate 
TMs, those created from scratch by human analysts 

introduced by 

figures that the original RTM has the highest recall and 
precision for each student.  In Figure 1, we see that the 
Majority rule increases precision just slightly, with no 
drop in recall.  The Supermajority rule may allow a 
slight drop in recall, but with an increase in precision.  
Finally, the Consensus rule improves precision (almost 
10%), but at some loss of recall (roughly 10%). In 
Figure 2, this same trend is apparent, though there is a 
drop in recall when moving from the original RTM to 
the Majority rule.  As can be expected, the Consensus 
rule may result in throwing away some true links 
(since all the methods did not retrieve that true link), 
but it is usually a small decrease in recall with an 
increase in precision (as many false positives are 
discarded). 
Figures 3 through 6 demonstrate that, on average, the 
pf is 40% 
unfiltered manual group RTMs, 80% for the 
Supermajority rule, and 98% for the Majority rule.  Pf 
drops to 19.9% for the filtered manual group RTMs, 
with the other committees at or just above 40%.  This 
is a significant improvement when using a simple 
filtering rule (top 10%).  The opf for the Consensus 
rule is, on average, only 1.5% for the unfiltered manual 
case and at/or just above 3% for the other rules and for 
the original RTM.  The opf for the filtered case is less 
than 1% for the Consensus rule, and just around 1.5% 
for the others.  So the Consensus rule is still almost 
50% better than the other rules. 
 
6.1 Discussion and Future Wor
  
In our studies we considered two 
R
and those built by selecting links from a pool of links 
retrieved by automated methods.  In considering the 
original problem motivation, it was of great interest 
whether or not we could use a committee of 
information retrieval methods to find the mistakes that 
human analysts introduce when building RTMs.  
Secondarily, we wondered if a committee of methods 
could detect problems introduced into an RTM by a 
single information retrieval method.   
Our assessment method captures and rejects a large 
percentage of the false positives 
automated methods used to build the RTM.  This is 
significant because as traceability researchers achieve 
increased success, more analysts will be using their 
methods in order to build mappings or RTMs (as 
illustrated in Section 1).  It is thus important that we 
have techniques available for assessing their accuracy 
in a manner that is not time consuming or erroneous. 
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Figure 7. Study 1: Mean probability of false positive 

detection vs. Recall (unfiltered case). 
 

 
Figure 8. Study 1: Mean probability of false positive 

detection vs. Recall (filtered case). 
 

ilities of detection (recall) Table 5. Study 2: Probab

Perhaps the more interesting aspect of our study is the 

operates on the data generated by the TF-IDF method. 

 
  
behavior of our methods on the RTMs that were 
constructed by the human analysts from scratch.  In 
this particular case, we cannot predict what false 
positives might be introduced.  We see that while our 
methods were not as good on the human generated 
RTMs, we still see that our method can reject a 
significant percentage of the observed false positives 
while preserving a high pd.  Humans themselves are 
good at weeding out false positives (as can be seen by 
their low opf values in Study 1), and our method can 
come in behind the human analyst and reject a large 
percentage of the false positives that the human left in.   
 

 
Figure 9. Study 2: Mean probability of false positive 

detection (pf) vs. probability of detection (recall). 
 

   Table 6. Study 2: Mean probabilities of false positive 
detection (pf ). 

 
As stated in Section 1, this is our first study of 

automated methods for RTM assessment. At this point, 
we see three clear ways in which the approach 
described in this paper  can be improved. First, we can 
build larger committees by adopting/adapting more 
IR/text mining methods for trace recovery tasks. 
Second, each of the methods we used in our 
committees came with a number of different 
parameters. Finding the best “variations” for each 
member method can improve the overall quality of 
voting. Finally, we have considered a full committee of 
five methods. However, one can construct five four-
member subcommittees and 20 three-member 
subcommittees just out of the methods used here. 
Some of these subcommittees might prove to be more 
sensitive to false positives than the overall committee. 
To show this, consider the information in Table 7. 
There, we report pair-wise Pearson correlations 
between the lists of false positive links in the filtered 
committees used in our Study 2. As seen from this 
data, TF-IDF and KE methods show a very high 
correlation and, therefore, provide almost no 
orthogonal information --- on the contrary, these 
methods reinforce each others’ false positives during 
“committee hearings” This correlation was not 
unexpected: as we state in Section 3, the KE method 

Filter Majority Supermajority Consensus 
None 0.980  28 0.977 0.8
Top 10% 0.800 0.753 0.518 

 Rule 
Selection  
Method Filter Majority SuperMajority Consensus 
Random Top 10% 0.101 0.069 0.029 
Weighted Top 10% 0.096 0.065 0.030 
Random None 0.786 0.748 0.385 
Weighted None 0.779 0.735 0.381 
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A more pleasant surprise to us was relatively low 
correlation rates for other methods. At the same time, 
we note that other methods show a much more 
infrequent rate of false positive co-incidence which 
suggests that careful selection of subcommittees may 
improve the false positive rejection rates without 
affecting recall. 

 
Table 7. Pearson correlations between false positives in 

tra

 TFIDF KE  LSI LDA 

ces recovered by five methods for CM-1 dataset, filtered 
at top 10%. 
 ProbIR

TFIDF      
KE 0.932     
ProbIR .209 0.210 0    
LSI 0.499 0.485 0.170   
LDA -0.44 -0.41 0.176 -0.30  
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