
COMPLETE AND SCALABLE MULTI-ROBOT
PLANNING IN TUNNEL ENVIRONMENTS

Mike Peasgood ∗ John McPhee ∗∗

Christopher Clark ∗

∗ Lab for Intelligent and Autonomous Robotics,
Department of Mechanical Engineering,

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{mike, chris}@lair.uwaterloo.ca

∗∗Motion Research Group,
Department of Systems Design Engineering,

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

mcphee@real.uwaterloo.ca

Abstract: This paper addresses the challenging problem of finding collision-
free trajectories for many robots moving to individual goals within a common
environment. Most popular algorithms for multi-robot planning manage the
complexity of the problem by planning trajectories for robots sequentially; such
decoupled methods may fail to find a solution even if one exists. In contrast, this
paper describes a multi-phase approach to the planning problem that guarantees a
solution by creating and maintaining obstacle-free paths through the environment
as required for each robot to reach its goal. Using a topological graph and spanning
tree representation of a tunnel or corridor environment, the multi-phase planner is
capable of planning trajectories for up to r = L−1 robots, where the spanning tree
includes L leaves. Monte Carlo simulations in a large environment with varying
number of robots demonstrate that the algorithm can solve planning problems
requiring complex coordination of many robots that cannot be solved with a
decoupled approach, and is scalable with complexity linear in the number of robots.

Keywords: mobile robots, efficient algorithms, path planning, trajectory planning

1. INTRODUCTION

The use of multiple mobile robots in a common en-
vironment is required for the automation of many
operations, such as underground mining and ware-
house management. In such applications, multi-
ple vehicles are required to drive autonomously
between different locations, preferably taking the
shortest possible route while avoiding collisions
with static objects and other vehicles. This paper
presents an algorithm for efficiently determining

collision-free paths for many vehicles in environ-
ments composed of tunnels or corridors, as may
be found in these applications. The problem ad-
dressed by this research is demonstrated by the
multi-robot planning task pictured in Figure 1(a).

In this scenario, the environment is constructed
of corridors or tunnels that are wide enough for
only a single robot to travel, and we assume
differential drive robots that can rotate in place.
The objective in this example is to shift the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19158007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


positions of each robot, such that robot R1 moves
to the initial position of R3, R3 to the position
of R2, and R2 to the position of R1. Our goal
is to find an algorithm that can solve the simple
problem shown in Figure 1(a), yet is scalable to a
large number of robots (> 100) densely situated
in a large environment.

Many methods have been proposed for plan-
ning the motion of one or more robots; refer to
(Latombe, 1991) and (LaValle, 2006) for detailed
reviews. Planning algorithms can be evaluated in
terms of completeness (whether they are guaran-
teed to find a solution if one exists), complexity,
and optimality.

Most multi-robot planning algorithms fall into
one of two categories, coupled and decoupled.
Coupled algorithms, such as (Svestka and Over-
mars, 1998), plan the trajectories of all robots in
the environment concurrently. By combining the
states (poses) of the individual robots together
into a system state representation, a sequence of
state transitions can be found that will move all
robots to their respective goals. Using complete
search methods, such as A*, coupled algorithms
can achieve completeness and optimality, and can
solve the problem shown in Figure 1(a). Their
limitation is in searching the large configuration
space that grows in dimension as each additional
robot is added to the environment. One approach
to reducing the size of the search space is to create
probabilistic roadmaps (PRMs) through the envi-
ronment; this method was shown in (Svestka and
Overmars, 1998) to be probabilistically complete
and demonstrated in simulation for up to 5 robots.

Decoupled methods plan for the motion of individ-
ual robots, rather than planning the motion of all
robots simultaneously. Such methods may use a
decentralized architecture, allowing independent
planning based methods such as maze-searching
(Lumelsky and Harinarayan, 1997) or potential
fields (Ge and Cui, 1997), or they may use a
centralized architecture planning for all robots
with a single processor, allowing for coordination
of collision-free plans for all robots. Centralized
decoupled planners typically determine individual
trajectories sequentially and combine the plans of
all robots to avoid collisions, as in (Erdmann and
Lozano-Perez, 1987), (Bennewitz et al., 2001) and
(Guo and Parker, 2002). By planning the motion
of robots sequentially, decoupled methods have
lower complexity and greater scalability than a
coupled planner; however, this comes at the cost
of completeness and optimality. The problem in
Figure 1(a) for example cannot be solved by a
sequential planner. By selecting the optimal plan
for any robot independently, an obstacle is created
in the space-time map that cannot be avoided by
the other two robots.

(a) A planning problem (b) Graph-based map

Fig. 1. A multi-robot planning problem requiring
coordination of 3 robots, and a graph-based
representation of the environment.

This paper presents an alternative multi-phase
planning method that can solve these coordinated
planning problems, and is scalable to a large num-
ber of robots in a large environment. A graph
representation of the environment is first created,
and a spanning tree through the graph is selected.
For the tunnel and corridor environments consid-
ered here the segments are only one lane wide,
reducing the complexity of a suitable topological
map generation process compared to the general
case. A multi-phase planning approach then takes
advantage of the properties of the graph and
spanning tree to create and maintain obstacle-free
paths while robots move to their respective goals.

2. MAP REPRESENTATION

Occupancy grids are a common map representa-
tion for robot navigation, and are easily derived
from range sensor measurements. However, for
motion planning problems, graph representations
such as topological maps and roadmaps are often
more efficient.

For the simple example of Figure 1(a), a topologi-
cal graph G can be constructed as shown in Figure
1(b), consisting of N = 6 nodes and E = 6 edges.
We assume that the initial and goal positions of
all robots lie on the nodes of the graph; in this
representation, the goal positions of robots R1,
R2, and R3 are nodes A, C, and B respectively.

Given the graph representation, we can also select
a spanning tree T ∗ in the graph, that is, a subset
of edges connecting all nodes without forming any
loops. A given spanning tree has L leaf nodes, and
N − L interior nodes. A suitable spanning tree
for the example is shown in Figure 2 where node
C, closest to the geographic center of the map,
is selected as the root. Selecting all edges except
for E − F into the spanning tree as shown gives



Fig. 2. A spanning tree T ∗ for the graph represen-
tation of the environment rooted at node C,
and a subtree TB rooted at node B.

L = 4 leaf nodes, A, D, E, and F , and two interior
nodes, B and C.

In general the spanning tree is not unique, and
a heuristic approach for tree selection is required
that tends to maximizes the number of leaves and
minimize the distance between leaves. We have
found an effective approach is to iteratively add
edges to the tree that lead to the nodes with the
maximum number of branches.

3. MULTI-PHASE PLANNING ALGORITHM

The multi-phase algorithm finds a feasible solu-
tion to the trajectory planning problem by break-
ing the problem into a sequence of four sub-
problems, each of which can be solved in time
proportional to the number of robots by taking
advantage of the graph and spanning tree struc-
ture developed above.

First, the robots move to the leaves of the span-
ning tree. We then use the following observations
to plan a sequence of paths to drive each robot to
its goal. For a system with r < L robots:

Lemma 1: When all robots occupy leaf nodes,
any robot can move to any interior node in the
graph G.

Lemma 2: When all robots occupy leaf nodes,
any two robots can swap positions.

Lemma 1 is clear since an obstacle-free path
can be found between any two nodes through
the spanning tree T ∗, and no robots remain as
obstacles on the interior nodes of the tree. Lemma
2 follows, since with r < L robots, there is always
one unoccupied leaf Ntmp in the spanning tree.
Robots Ri and Rj at nodes Ni and Nj can swap
positions by moving Ri to Ntmp, Rj to Ni, and
Ri to Nj .

Note that these lemmas guarantee that one path
can be found using the spanning tree through
the graph under certain conditions. However, a
shorter path may exist using graph edges that are
not in the tree. Where an A* search is used in the
following steps, the entire graph is searched, and
the shortest paths will be selected.

(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Fig. 3. A multi-phase solution to the planning
problem of Figure 1(a). Refer to text for
details of each step.

3.1 Phase 1: Reaching Leaf Nodes

In Phase 1, we develop a plan that will move all
robots to leaf nodes of the spanning tree. This is
accomplished by repeatedly selecting a robot Ri

that is not currently on a leaf node, and selecting
an unoccupied leaf node Li. This is guaranteed to
succeed, since there are L leaf nodes, and r < L
robots to occupy them. In the example in Figure
1(a), node D may be selected as the leaf node for
robot R1.

An A* search is then used to find a path (sequence
of nodes) Pi, from the initial position of robot Ri

to the target leaf node Li, ignoring all other robots
in the system. If any robots are found on a node
of the path Pi, let Rj be the robot on a node of
Pi that is closest to Li. In this case, we plan for
Rj to move to Li instead, using the obstacle-free
subpath of Pi that connects Rj to Li.

In Figure 3(a), since robot R2 is an obstacle
between the selected robot R1 and leaf node D,
a path P1 moving R2 from node C to D is added
instead. Continuing the process, R1 remains to be
moved to a leaf node, and either node E or F may
be selected, indicated by path P2.



3.2 Phase 2: Filling Leaf Node Goals

In Phase 2, we require that all robots with goal
positions located on leaf nodes fill those goals.
Since Phase 1 has moved all robots to leaf nodes,
referring to lemma 2, we can move any robot to
any leaf goal node and maintain an obstacle-free
path through the spanning tree.

For the example scenario, R1 is the only robot
with a leaf node goal at node A, and that node is
occupied by robot R3. The obstacle R3 is therefore
first moved to the unoccupied leaf node F , after
which a plan for R1 to its goal node is added, as
indicated by paths P3 and P4 in Figure 3(b). The
final step of the swap is not required in this phase;
R3 may remain at node F leaving the interior
nodes unoccupied.

3.3 Phase 3: Robots with Interior Node Goals

In Phase 3, we move all robots with goals on
interior nodes into positions where they can reach
those goals without creating an obstruction for
another robot. The need for this arrangement step
can be seen in 3(b): robots R2 and R3 have goals
on the interior nodes C and B respectively, and if
either moves directly to its goal, it will create an
obstacle for the other.

For a general algorithm to resolve this potential
deadlock, we consider the problem in terms of
robot positions relative to their goals within the
spanning tree structure. Let TGi be a subtree of
the spanning tree with root at the goal node Gi

of robot Ri. The deadlock condition occurs only
if another robot Rj is in the subtree TGi , and
is blocked from reaching its goal outside of the
subtree when Ri occupies its goal node Gi. We
can prevent this condition by:

(1) moving robots to nodes within the subtree of
their goal nodes, and

(2) ordering the depth of the robots within the
subtree based on the depth of their goals.

To accomplish this task, we process robots in the
order of the depth of their goals, that is, the
distance from the goal node to the root of the
spanning tree. For each robot Ri, we determine
whether it is already in TGi . If not, we test
whether filling the goal Gi will create an obstacle
for any robots in the subtree TGi . In so, we
select the deepest positioned such robot Rj within
TGi , and swap the positions of Ri and Rj , as
described in lemma 2. If no robots will be blocked
into the subtree, Ri can be moved Gi directly.
This method achieves the two conditions required
above to avoid deadlock conditions when filling
interior node goals.

The total path length can be reduced by only
partially completing the swap in some cases:

• If the temporary unoccupied leaf used for
swapping is not in TGi , robot Rj may remain
at that leaf rather than completing the swap
to the previous position of Ri.

• If Rj is the only robot that would be blocked
into the subtree, robot Ri can fill its goal
node immediately after robot Rj has been
moved.

In the example, the goals of robots R2 and R3 are
interior nodes C and B, with C being the root
of the spanning tree T ∗. R3 has the deepest goal
node B, so is processed first. Node B is the root of
the subtree containing nodes A and D, as shown in
Figure 2, so we must check for robots that would
be blocked into the subtree. Referring to Figure
3(b), R2 at node D is such a robot. We therefore
move R2 to an unoccupied leaf node, then plan
robot R3 to its goal node, indicated by paths P5

and P6. This leaves R2 and R3 in subtrees of their
goal nodes, and in the same depth order as their
goals, as required.

3.4 Phase 4: Filling Interior Node Goals

In Phase 4, we fill the remaining goals on interior
nodes. If we plan for robots with goals closest
to the top of the tree first, an obstacle-free path
for each robot is guaranteed by the arrangement
determined in Phase 3, where the robots are
sorted in order of the depth of their goals. For the
example scenario, this requires planning robot R2

to its goal at node C, resulting in the desired goal
configuration shown in Figure 3(d).

3.5 Complexity Analysis

The plan completed at the end of Phase 4 will
move all robots to their respective goals, as re-
quired for a complete planner. In each of the 4
phases, we iterate once over the set of r robots,
and required at most 3 (in the case of swapping)
A* plans for each. Each A* search has a fixed com-
plexity C that depends on the size of the graph
and the heuristic used, but remains independent
of the number of robots in the environment. The
total complexity of the 4-phase planning method
is therefore O(r · C) for r robots.

3.6 Building a concurrent plan

The plan segments Pi determined in phases 1-
4 are collision-free with only one robot moving
at any time. A plan of shorter duration can be
created by overlapping the individual segments



Fig. 4. Example simulation environment

in time as much as possible without introducing
any collisions. Each successive segment of the
original plan is added to a concurrent plan by
first considering it appended to the end of the
plan. The start position of the segment is then
moved earlier in time until the motion in the new
segment would create a collision between robots
in the concurrent plan. The motion of the robot
in the new segment is then incorporated into the
concurrent plan.

4. SIMULATION RESULTS

The planner described above was implemented
and evaluated in Monte-Carlo simulations in the
underground mine map shown in Figure 4, using
between 3 and 60 robots. A topological map
was generated from an occupancy grid by finding
adjacent circular regions of open space (nodes)
and connecting all adjacent nodes by edges. The
spanning tree selected for the graph contains 63
leaf nodes, allowing for motion planning of up
to 62 robots in the environment. Random initial
and goal positions are selected for each robot.
As expected from the analysis above, the multi-
phase planner finds a collision-free plan for every
configuration.

For comparison, a Decoupled Planner using a
sequential A* planning approach for each robot
was also implemented, which randomly selects
a priority sequence of robots. This sequential
planner finds the shortest collision-free path for
each robot through the space-time map, avoiding
obstacles including the trajectories all previously
planned robots. The results of such a planner are
dependent on the priority sequence selected, so
up to 250 randomly selected priority sequences
were selected for each case in an attempt to find
a sequence for which a plan could be found. The
plots in the following sections show the results of
applying the two different algorithms to the same
randomly-generated problems in the mine map.

Fig. 5. Average robot path length generated by
each planner

4.1 Planning Success Rate

The first measure of the algorithm performance
is the success rate of finding a feasible solution.
As expected for a complete algorithm, the success
rate of the multi-phase planner is 100% for up
to 62 robots given a spanning tree with 63 leaves.
However, the sequential planner failed to find solu-
tions for 10% of the randomly generated problems
with 22 robots, and failed to find solutions for all
problems with 34 or more robots.

4.2 Average Robot Path Length

The average distance required for each robot to
travel to reach its goal is plotted in Figure 5.
The results indicate that the multi-phase planner
consistently generates longer paths for each robot,
particularly as the number of robots increases.
This is not unexpected, since the planner first
directs robots to positions other than their goals
in order to create an obstacle-free path for the
final phases of the process. For 22 or more robots,
where the sequential planner begins to fail for
some problems, the average path length is com-
puted only for those scenarios where a solution
was found.

4.3 Search Cost

The search cost is a measure of the complexity of
the planning algorithm, or the time required to
complete the search for a feasible solution. Figure
6 shows the CPU time required by each algorithm;
the processing time has been normalized by the
number of robots in the plan, and plotted on a
logarithmic scale to show the exponential growth
in complexity of the decoupled planning method.
The values indicate the time required to find a
feasible solution given the graph representation,
and not the (one-time) cost of generating the map.



Fig. 6. Average CPU time used by each planner

These results demonstrate that while a decoupled
approach can find shorter paths for simpler plan-
ning problems, the multi-phase planner involves
much less computational cost. The cost of the
sequential planner grows exponentially, since it
requires many attempts with different random
priority sequences to find a solution. The cost
of the multi-phase planning algorithm, however,
increases linearly with the increase in number of
robots. For 60 robots, feasible plans were com-
puted in less than 2 seconds (< 30 ms per robot)
using a 1.5 GHz Pentium M processor.

5. DISCUSSION

In this paper, maps of tunnels and corridors were
considered specifically, since they have a relatively
simple topological representation and present a
challenging environment for the coordination of
a large number of robots. For more general cases,
including arbitrary obstacles and non-holonomic
motion constraints, the generation of a suitable
roadmap or graph representation can be a chal-
lenging problem in itself. However, once a suitable
graph is created, the multi-phase algorithm can be
applied directly.

Considering the performance comparison between
the sequential planner and the multi-phase plan-
ner, it may be advantageous to consider a hybrid
approach, taking advantage of the features of both
algorithms. By first generating a plan using the
multi-phase planner, a feasible solution can be
generated very efficiently. To search for a more
optimal plan, a sequential planner could then be
applied to the same problem, and permitted to
run within the time bounds of the application.

The algorithm as presented here assumes a cen-
tralized planning architecture, where all infor-
mation and resources are available at a single
processing point. Incorporating this centralized
planner into a distributed planning architecture,
as proposed in (Clark et al., 2003), will be another
subject of future work.

6. CONCLUSIONS

This paper presented a multi-robot planning algo-
rithm for tunnel and corridor environments that
is based on a topological graph and spanning tree
representation. By breaking the planning algo-
rithm into several different phases, it was shown
that the algorithm guarantees a solution to the
planning problem, and is scalable with linear in-
crease in complexity for up to r < L robots
given a spanning tree with L leaves. In compari-
son to a decoupled sequential planning algorithm,
the multi-phase planner typically produces longer
paths, but at a much reduced computational cost
when planning for many robots.

7. ACKNOWLEDGEMENTS

We would like to thank Sebastian Thrun of the
Stanford Artificial Intelligence Lab for the use of
the robot-generated maps of underground mines.

This work is funded in part by NSERC.

REFERENCES

Bennewitz, M., W. Burgard and S. Thrun (2001).
Optimizing schedules for prioritized path
planning of multi-robot systems. In: Proc.
IEEE Int. Conf. on Robotics and Automa-
tion. pp. 271–276.

Clark, C., S. Rock and J.C. Latombe (2003). Mo-
tion planning for multi-robot systems using
dynamic robot networks. In: Proc. IEEE Int.
Conf. on Robotics and Automation. pp. 4222
– 4227.

Erdmann, Michael and Tomas Lozano-Perez
(1987). On multiple moving objects. Algorith-
mica 2, 477–521.

Ge, S.S. and Y.J. Cui (1997). Dynamic motion
planning for mobile robots using potential
field method. Autonomous Robots 13(3), 207–
222.

Guo, Y. and L. Parker (2002). A distributed
and optimal motion planning approach for
multiple mobile robots. In: Proc. IEEE Int.
Conf. on Robotics and Automation. pp. 2612–
2619.

Latombe, J.C. (1991). Robot Motion Planning.
Kluwer Academic Publishers.

LaValle, S. M. (2006). Planning Algorithms. Cam-
bridge University Press.

Lumelsky, V.J. and K.R. Harinarayan (1997). De-
centralized motion planning for multiple mo-
bile robots: The cocktail party model. Au-
tonomous Robots 4(1), 121–135.

Svestka, P. and M. Overmars (1998). Coordinated
path planning for multiple robots. Robotics
and Autonomous Systems 23, 125–152.


