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ABSTRACT: The Sierra Nevada red fox Vulpes vulpes necatoris listed as a threatened species under
the California Endangered Species Act. It originally occurred throughout California's Cascade and
Sierra Nevada mountain regions. Its current distribution is unknown but should be determined in
order to guide management actions. We used occurrence data from the only known population, in the
Lassen Peak region of northern California, combined with climatic and remotely sensed variables, to
predict the species’ potential distribution throughout its historic range. These model predictions can
guide future surveys to locate additional fox populations. Moreover, they allow us to compare the rel-
ative performances of presence-absence (logistic regression) and presence-only (maximum entropy,
or Maxent) modeling approaches using occurrence data with potential false absences and geograph-
ical biases. We also evaluated the recently revised Maxent algorithm that reduces the effect of geo-
graphically biased occurrence data by subsetting background pixels to match biases in the occur-
rence data. Within the Lassen Peak region, all models had good fit to the test data, with high values
for the true skill statistic (76—83 %), percent correctly classified (86-92 %), and area under the curve
(0.94-0.96), with Maxent models yielding slightly higher values. Outside the Lassen Peak region, the
logistic regression model yielded the highest predictive performance, providing the closest match to
the fox's historic range and also predicting a site where red foxes were subsequently detected in
autumn 2010. Subsetting background pixels in Maxent reduced but did not eliminate the effect that
geographically biased occurrence data had on prediction results relative to the Maxent model using
full background pixels.

INTRODUCTION

Determining the composition and distribution of
suitable habitat is crucial for the successful manage-
ment of rare or endangered species (Guisan & Zim-
mermann 2000). Species distribution models have
become an important tool to identify optimal survey
areas for these species and to increase the probabil-
ity of locating previously unknown populations
(Engler et al. 2004, Edwards et al. 2005, Guisan et al.

2006, Rachlow & Svancara 2006, Ferreira de Siqueira
et al. 2009, Menon et al. 2010, Rebelo & Jones 2010).
Because a rare species will likely be absent from
most sample locations in a simple random sample,
targeting survey locations to areas with high proba-
bility of species occurrence represents a more effi-
cient use of limited conservation resources (Guisan et
al. 2006).

The Sierra Nevada red fox Vulpes vulpes necatoris a
medium-sized canid that historically occurred at low



densities throughout the high elevations of the Sierra
Nevada and southern Cascade mountain ranges of
California and Oregon, USA (Grinnell et al. 1937, Hall
1981, Sacks et al. 2010). Within this broad range, Grin-
nell et al. (1937) reported 3 population centers: the
Mount Shasta/Lassen Peak region in northern Califor-
nia, the central Sierra near Mono Lake and Yosemite
National Park, and the southern Sierra near Mount
Whitney (now mostly in the Sequoia and Kings Canyon
National Parks). In 1980, due to a noticeable decline in
numbers, the Sierra Nevada red fox was listed as a
state ‘threatened’ species; the factors causing its
decline are unknown (CDFG 1996, 2004). Despite its
former extent, the verified detections since 1991 have
all been in the Lassen Peak region of northern Califor-
nia (Perrine et al. 2007). A recent conservation assess-
ment for this species (Perrine et al. 2010) recom-
mended that targeted surveys for the Sierra Nevada
red fox be conducted throughout its historic range to
determine whether any additional populations exist.
Prior attempts to detect this species as part of multi-
species carnivore inventories have been unsuccessful,
even in the Lassen Peak region where the species has
persisted (Zielinski et al. 2005). Surveys targeting the
Sierra Nevada red fox and focusing on areas with high
probabilities of the species’ occurrence may increase
detection probability and survey efficiency.

Our goal was to predict the extent and distribution
of suitable habitat for the Sierra Nevada red fox
throughout its historic range, based on the character-
istics of occupied habitat in its current known range.
The available data were collected during a compre-
hensive ecological study of the Lassen Peak popula-
tion (Perrine 2005). Unfortunately, these detection
data contained 2 important biases. First, the survey
data contained potential ‘false absences;’ surveys
have failed to detect this species in areas where popu-
lations were known to be present. Absence data for
rare species may result from the rarity of the species
rather than its true absence (MacKenzie et al. 2006).
False absences are problematic in species distribution
modeling because they do not indicate unsuitable
habitat or confirm that the species does not occur at a
given site (Guisan & Zimmermann 2000, Engler et al.
2004, MacKenzie et al. 2006). Second, the only avail-
able occurrence data for the Sierra Nevada red fox
were from the Lassen Peak region, which represents
only a small portion of the species’ historic range.
Researchers have cautioned against using geographi-
cally biased occurrence data or transferring models to
broad unsampled regions (Peterson et al. 2007, Bar-
bosa et al. 2009); however, such projections have suc-
cessfully increased detection rates (Guisan et al.
2006). General linear models (GLMs) may transfer
quite well to unsampled areas (Randin et al. 2006,

Barbosa et al. 2009); presence-only models such as
Maxent have made improvements in their transfer-
ability (Phillips 2008), with their performance being
positively correlated with the similarity between the
occurrence data region and the projection area (Bul-
luck et al. 2006).

Addressing these biases provided an opportunity to
explicitly compare the performance of 2 different mod-
eling approaches: logistic regression based on pres-
ence-absence data versus maximum entropy based on
presence-only data. Logistic regression has been
widely used in species distribution modeling (Mlade-
noff et al. 1999, Nielsen et al. 2002, Johnson et al. 2004,
Posillico et al. 2004, Olivier & Wotherspoon 2006).
Logistic regression uses presence-absence data to
model the probability of species occurrence as a func-
tion of its predictor variables, which can be continuous
or categorical (MacKenzie et al. 2006). Its output is
confined to values between 0.0 and 1.0.

Maximum entropy methods, although relatively new
and not as widely used as logistic regression, can out-
perform logistic regression (Elith et al. 2006) and have
successfully identified locations of previously undis-
covered populations (Rebelo & Jones 2010). The most
widely used maximum entropy approach, in the pro-
gram Maxent (Phillips et al. 2006), estimates the spe-
cies' probability distribution that is most dispersed
within the constraints of the target population informa-
tion. Like logistic regression, Maxent can use both cat-
egorical and continuous predictor variables, and the
output can provide information on the relative contri-
bution of each predictor variable (Phillips et al. 2006).
Maxent can utilize presence-only data, sidestepping
the problem of false absences, but geographical and
environmental biases in the occurrence data can intro-
duce considerable error in presence-only models
(Phillips 2008). Presence-only models such as Maxent
draw background pixel values from the entire study
region, while presence data values are drawn only
from a small portion of the study area (Phillips et al.
2006). The resulting predictions may therefore under-
represent habitat suitability outside of the occurrence
data area (Peterson et al. 2007, Phillips 2008). Substan-
tial improvements can be made in Maxent models
derived from biased occurrence data by selecting
background data with similar biases as the occurrence
data (Phillips 2008). This approach has recently been
implemented in Maxent (Phillips 2008), but its effects
have had little empirical validation.

Here we compared the performance and output of a
presence-absence logistic regression model versus
presence-only Maxent models with and without the
transferability improvements. We then combined the
output from the logistic regression and updated Max-
ent model to generate an ensemble prediction, lever-



aging the strengths of each model while minimizing
their respective weaknesses (Aratjo & New 2007,
Stohlgren et al. 2010). In addition, we explored the
use of unclassified spectral data as a predictor vari-
able in place of predetermined classification schemes
(e.g. vegetation or canopy cover categories). Although
classified maps are commonly used predictor vari-
ables, wildlife may respond to continuous environ-
mental gradients that are not captured in the class-
ification schemes (Laurent et al. 2005). By using
unclassified spectral data, species’ occurrence can be
predicted by spectrally detectable components of
their habitat, rather than predetermined classification
schemes that may inaccurately delineate boundaries
between cover types and under-represent habitat het-
erogeneity (St-Louis et al. 2006). Using unclassified
spectral reflectance in the distribution model may
minimize errors in the resulting predictive maps (Lau-
rent et al. 20095).

MATERIALS AND METHODS

Study area. Our model prediction area
covers the area within and immediately
surrounding the historic range of the
Sierra Nevada red fox (Fig. 1). This in-
cludes the Sierra Nevada and the south-
ernmost extent of the Cascade Range in
California. The prediction area spans 2
Major Land Resource Area (MLRA)
ecoregions: the Sierra Nevada ecore-
gion and the California portion of the
Eastern Cascade Slopes and Foothills
ecoregion (USDA-NRCS 2006). The
Sierra Nevada ecoregion extends from
just south of Lassen Peak to the
Tehachapi Pass near Bakersfield. The
majority of this ecoregion is comprised
of elevations ranging from 450 to
2750 m, with the highest peak being
Mount Whitney (4419 m). The California
portion of the Eastern Cascade Slopes
and Foothills ecoregion represents the
southernmost extent of the Cascade
Mountain Range, extending from the
Central Cascade Mountains to the Sierra
Nevada. The majority of this ecoregion
is comprised of elevations ranging from
450 to 2500 m, with the highest peak
being Mount Shasta (4318 m). Ly
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Peak region (6455 km?) includes Lassen Volcanic Na-
tional Park (LVNP), the surrounding Lassen National
Forest (LNF), and the immediately adjacent lands of
various ownerships (Fig. 1). This montane area is domi-
nated by conifers such as Jeffrey pine Pinus jeffreyi and
Ponderosa pine P. ponderosa, red fir Abies magnifica
and white fir A. concolor, and mountain hemlock Tsuga
mertensiana, along with wet alpine meadows and talus
slopes. This area has a Mediterranean climate with
warm dry summers and cold wet winters. Most of the
annual precipitation occurs as snow from November
through April, with snowpacks at the higher elevations
often exceeding 3 m in depth and persisting into the
summer months.

Fox survey data. Sierra Nevada red fox locations were
determined using 4 detection methods: radio teleme-
try, scats (feces), and camera surveys using opportunis-
tic and stratified random sampling designs. Each
detection method contained biases.
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Fig. 1. Vulpes vulpes necator. Model prediction area for the Sierra Nevada red
fox relative to its historic range (Grinnell et al. 1937) and the Lassen Peak
region. Note that scale bar is in miles (1 mile = ca. 1.6 km)



Five Sierra Nevada red foxes were captured and
fitted with VHF collars and tracked by aerial and
ground-based telemetry from 1998 through 2002 (Per-
rine 2005). All capture and handling activities were in
accordance with California Department of Fish and
Game and University of California Berkeley protocols.
The field team collected 586 independent ground
telemetry locations using a Trimble GeoExplorer II
GPS and LOCATE II telemetry software (Nams 2001),
and aerial telemetry provided 123 additional locations.
In addition, a total of 227 Sierra Nevada red fox scats
were collected opportunistically from June 1998
through December 2002, primarily in association with
ground telemetry. The telemetry and scat locations
were clustered in the western half of LVNP and the
adjacent LNF lands (Perrine 2005).

The opportunistic camera station survey was con-
ducted between 1992 and 2002 and consisted of 968
baited TrailMaster (Goodson and Associates) camera
stations throughout LVNP and the LNF (Perrine 2005).
This survey was conducted primarily by Park and For-
est Service biologists following the standard protocol
for surveying forest carnivores (Zielinski & Kucera
1995). Although the cameras were widely distributed
throughout the region, sampling biases arose due to
the opportunistic nature of this survey. For example,
the southwest portion of LVNP and the LNF east of the
Caribou Wilderness were heavily sampled, whereas
the northern portion of the region had the least sam-
pling effort. Samples were also biased toward roads.
This survey yielded 50 Sierra Nevada red fox detection
locations, with multiple detections at some locations.

The stratified random camera survey was conducted
in the summers of 2001 and 2002. This survey consisted
of 24 sites stratified by elevation and randomly placed
throughout the Lassen Peak region. Each site con-
tained 2 baited TrailMaster cameras approximately
1.6 km apart, following the standard protocol for forest
carnivores (Zielinski & Kucera 1995). This survey
yielded 3 red fox detection locations (Perrine 2005).

We combined and subsampled these occurrence data
to use as the species response variable. Combining these
data reduced the effect of the sampling biases inherent
in each method, but new errors arose as a result of com-
bining 4 different collection methods that spanned
multiple years. Some locations contained 2 presence
points, because a fox was detected in the same area by 2
different methods. These pseudoreplicates violate the
assumption that training data points are independent,
which in turn can bias model results (Guisan & Zimmer-
mann 2000). Additionally, false absences likely occurred
at some camera locations due to the elusiveness of this
species. Within the 10 yr sampling period, several
camera locations detected foxes in one year but not an-
other. Having detection and non-detection records at

the same location can introduce conflicting information
in the model, which may lower its predictive power. To
remove pseudoreplicates and correct for conflicting in-
formation, we used ArcGIS (ESRI) to label a location as a
presence if a fox was detected there at any time during
the 10 yr period. Similarly, we deleted duplicate de-
tections at the same location.

After pooling these data, the sampling intensity var-
ied between habitat types. Since survey data were
plentiful (~2000 records), we randomly subsampled the
data from each environmental zone to balance the sam-
pling intensity (Guisan & Zimmermann 2000, Aratjo &
Guisan 2006). The environmental zones were based on
a combination of 10 elevation zones and 19 California
Wildlife Habitat Relationship (CWHR; Mayer & Lau-
denslayer 1988) types. This subsampling reduced the
dataset from 2000 to 1200 points (600 per presence and
absence, respectively) and reduced but did not elimi-
nate sample clustering. To reduce clustering bias, we
used Thiessen polygons (Rhynsburger 1973) to down-
weight points that occurred close together.
Environmental predictor variables. We based our envi-
ronmental predictor variables on Sierra Nevada red fox
ecology and the availability of digital data. The Sierra
Nevada red fox is associated with high-elevation
conifer forests, subalpine woodlands, talus slopes, and
barren areas above treeline (Grinnell et al. 1937,
Schempf & White 1977, Perrine 2005). To represent
these environmental conditions, we used a variety of
GIS layers containing vegetation, climate, hydrology,
and forest structure data. Specifically, to represent veg-
etation and forest stand structure, we used CalFire Fire
Resource and Assessment Program's Multi-Source
Land Cover Data (MSLC), which contained CWHR veg-
etation type, total tree canopy closure, tree size class,
and tree density class attributes (www.frap.cdf.ca.gov).
We also derived Tasseled-cap greenness and wetness
from Landsat 5 imagery as an additional variable
(software: ERDAS 2008 Leica geosystems geospatial
imaging, Atlanta, GA). Tasseled-cap transformation
variables represent a continuous environmental gradi-
ent that is highly correlated with stand age and struc-
tural complexity (Hansen et al. 2001). Pixels containing
high greenness and wetness values are associated with
dense vegetation having high leaf area index, while
lower values indicate sparsely vegetated areas such as
barren areas or regions of snow and ice (White et al.
1997, Waring & Running 1998). We used Spatial Analyst
(ESRI) to calculate the Euclidean (straight-line) distance
from the center of each raster cell to the nearest water
feature from the National Hydrography dataset
(http://nhd.usgs.gov) and to derive slope from a 30 m
digital elevation model (USGS 2000). The Sierra
Nevada red fox's elevational limits, relationship to snow
pack, and phylogeography (Aubry et al. 2009) suggest



an affinity for specific climatic conditions. We used grid-
ded climate data derived from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM) to
predict the species’ response to different climatic condi-
tions; specifically, we used mean monthly precipitation
and monthly average daily minimum and maximum
temperatures from 1971 through 2000 (Daly et al. 1994).

After selecting the initial environmental variables
based on red fox ecology, we used the R statistical
package (R Development Core Team 2005) to deter-
mine correlations between continuous variables and to
identify interaction terms. If 2 variables were corre-
lated (Pearson's correlation coefficient > 0.3), only the
variable with the lower p value was retained. We then
identified pairwise interaction terms using a classifica-
tion and regression tree (Miller & Franklin 2002). Clas-
sification and regression trees determine a set of if—
then statements that define class membership, and can
express complex non-linear and non-additive relation-
ships among the predictor variables (Miller & Franklin
2002). We included 9 environmental variables in the
classification and regression tree model: CWHR type,
total tree canopy closure, tree size class, tree density
class, slope, February precipitation, minimum Decem-
ber temperature, Tassled-cap greenness, and distance
to water.

After removing correlated predictor variables and
determining interactions, we selected significant pre-
dictor variables using iterative manual stepwise logis-
tic regression; at each run, the least significant variable
was removed until only significant variables remained
(Hastie & Pregibon 1992, Hosmer & Lemeshow 2000).
In addition, at each step the Akaike information crite-
rion (AIC) was used to select the best fitting model.
AIC is a standardized score used to compare models
for best fit relative to the number of parameters in the
model; lower AIC values indicate better fit (Burnham &
Anderson 2002). The 9 environmental variables listed
in the previous paragraph, along with the 2 pairwise
interaction terms identified in the classification and
regression tree model (see ‘Results’), were included in
the stepwise logistic regression weighted by Thiessen
polygon area. The resulting set of significant predictor
variables was used in both the Maxent and logistic
regression models. This allowed for direct comparison
between the 2 modeling approaches. This 2-step
method of using a GLM to select predictor variables
followed by Maxent modeling has been shown to cre-
ate predictions with very high area under the receiver
operating characteristic (ROC) curve (AUC) values
(Wollan et al. 2008). High AUC values indicate low
error, while lower values indicate lower predictability
(Pearce & Ferrier 2000).

Distribution models and model evaluation. We gener-
ated 3 distribution models: a presence-only maximum

entropy method (Maxent) with full region background
pixels (hereafter, MFB), a Maxent model using a subset
of background pixels with similar biases as the occur-
rence data (MSB), and a spatially-weighted presence—
absence logistic regression model (LRW). We used the
default parameters for both Maxent models and gener-
ated outputs in the logistic regression format.

For each approach, we developed the model with a
random subset of 70% of the data and withheld the
remaining 30 % for model evaluation. To determine the
classification accuracy of each model, we used the
evaluation data to identify the optimum cutoff value
that corresponded with high red fox habitat suitability.
Optimum cutoff values were determined by calculat-
ing the true skill statistic (T'SS) across the entire range
of potential cutoff values, and the cutoff value that cor-
responded with the highest TSS was selected as the
optimum cutoff (Allouche et al. 2006, Jones et al. 2010).
We then calculated the AUC to assess predictive
performance (Buckland et al. 1997).

Predictive accuracy could only be tested in the
Lassen Peak region because of the limited geographic
extent of the available data. To compare model perfor-
mance outside the Lassen Peak region, we compared
the distribution and abundance of each model's suit-
able habitat to the other models and to the historic
range map for the Sierra Nevada red fox (Grinnell et al.
1937). We used the optimum cutoff value to determine
the appropriate suitable habitat threshold. To create
the ensemble prediction, the values of each model that
fell below the optimum cutoff value were given a value
of 0.0. The mean probability value from both models
was then assigned to each cell of the study area.

RESULTS

The classification and regression tree identified 2
significant pairwise interaction terms: February pre-
cipitation with minimum December temperature, and
February precipitation with image greenness. The
stepwise logistic regression weighted by Thiessen
polygon area reduced our environmental variable set
to the following 6 variables: February precipitation,
minimum December temperature, Tasseled-cap
greenness, distance to water, the interaction between
February precipitation and minimum December tem-
perature, and the interaction between February pre-
cipitation and greenness. We used these 6 variables to
generate the species distribution models via the 3
approaches described in the above section 'Distribu-
tion models and model evaluation'.

Within the Lassen Peak region, all models had good
fit to the test data, as indicated by high values for TSS,
percent correctly classified, and AUC (Table 1). For all 3



Table 1. Summary of model results for all 3 models of suitable habitat for Sierra Nevada red fox Vulpes vulpes necator. MFB:

Maxent with full background pixels; MSB: Maxent with subset background pixels; LRW: spatially-weighted logistic regression;

AUC: area under the curve; TSS: true skill statistic; LPR SH: suitable habitat (ha) for Lassen Peak Region; SA SH: suitable habitat

(ha) for entire study area; SA-LPR SH: suitable habitat (ha) outside the Lassen Peak Region. Suitable habitat is defined as the area

that contains a probability of red fox occurrence equal to or greater than the optimum cutoff value. Optimum cutoff values were

determined by calculating the TSS across the entire range of potential cutoff values, and the cutoff value that corresponded with
the highest TSS was selected as the optimum cutoff

Model  Correctly classified (%)  AUC TSS (%) Optimum cutoff LPRSH (ha) SA SH (ha) SA-LPR SH (ha)
MFB 91.5 0.9579 83.1 0.333 92187 660479 568292
MSB 90.8 0.9537 81.9 0.157 79754 935362 855608
LRW 86.0 0.9438 75.8 0.184 115530 1546021 1430491

accuracy assessment statistics, the MFB model yielded
the highest values, with the MSB model slightly lower,
followed by the LRW model. All 3 models had low opti-
mum cutoff values, ranging from 0.157 for the MSB
model to 0.333 for the MFB model (Table 1).

Despite their similar accuracy, the 3 models varied in
the location and extent of the suitable habitat area they
predicted (Table 1, Fig. 2). Within the Lassen Peak
region, the MFB and MSB models predicted approxi-
mately 20 and 30 % less suitable habitat, respectively,
than the LRW model (Table 1). This pattern was inten-

sified outside of the Lassen Peak region (Table 1),
where the MSB and MFB models predicted approxi-
mately 40 to 60 % less suitable habitat than the LRW
model. All 3 models approximated the historic range
boundary for the Sierra Nevada red fox, with the LRW
model yielding the closest fit and the MFB model
having the sparsest fit (Fig. 2).

The Maxent models (MFB and MSB) selected
regions with lower minimum December temperatures
and higher February precipitation than the entire
study region (Table 2). The interaction between
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Fig. 2. Vulpes vulpes necator. Predicted suitable habitat for Sierra Nevada red fox based on 3 models: Maxent full background
pixels (MFB), Maxent with subsetted background pixels (MSB), and spatially-weighted logistic regression (LRW). The dashed
line represents the historic range (Grinnell et al. 1937). Figs. 3 to 5 display in detail the 3 geographic regions identified in this map



Table 2. Range, mean, and SD of environmental variables (minimum temperature in December, precipitation in February, greenness,

and distance to nearest body of water) for the entire study area and for suitable habitat areas for Sierra Nevada red fox Vulpes vulpes

necator as predicted by each of the 3 models. MFB: Maxent with full background pixels; MSB: Maxent with subset background pixels;
LRW: spatially-weighted logistic regression

Environmental Study area MFB MSB LRW

variables (units) Min/Max Mean+SD Min/Max Mean+SD Min/Max Mean + SD Min/Max Mean + SD

MIN.TEMP. -15.3/52 -39+34 -104/-24 -53+x10 -153/-36 -6.8+23 -15.3/5.3 -7.4+2.6
DEC (°C)

FEB.PRECIP 26.8/481.6 183.3+80.5 137.7/471.3 240.7 +64.0 147.7/471.3 239.3 +52.8 34.3/471.3 223.9x57.6
(mm)

GREENNESS -2266/1205 52 +247  -1906/1030 39 =217 -2134/881 -125+375 -2134/896 -168.6 +356.3
(Derived)

DIST.TO WATER (m) 0/23350 3912 +3402 0/10331 2051 +1483  0/10657 2038 + 1441 0/13829.3 2715.6 +2110.2

December minimum temperature and February pre-
cipitation accounted for 50 % of the predictor variable
contribution to the Maxent models (Table 3). The LRW
model also included this interaction and predicted
areas with a lower minimum temperature than the
study region as a whole. But unlike the Maxent mod-
els, the LRW model had a February winter precipita-
tion range similar to that of the entire study area,
which included areas that received lower precipitation
(Table 2). The remaining environmental variable sum-
mary statistics were comparable across the 3 models:
suitable habitat was within 2 to 3 km of a water feature,
and greenness values were lower than the study area
mean (Table 2). These variables represented 12 and
2%, respectively, of the predictor variable contribution
in the Maxent models (Table 3).

DISCUSSION

We used presence-absence (logistic regression) and
presence-only (maximum entropy) methods to create
the first spatially explicit habitat suitability model, based
on climatic and remotely sensed variables, for the Sierra
Nevada red fox, a threatened species under the Califor-
nia Endangered Species Act. The resulting model pre-
dictions can guide future surveys to locate additional
populations of this rare subspecies, and also illustrate
the relative performance of these modeling approaches.
Our analysis is one of the first empirical tests of the
revised algorithm in Maxent to reduce the effect of geo-
graphically biased occurrence data and improve its abil-
ity to transfer to new study regions (Phillips 2008).

Predictor variables
Our findings support the conclusion by Laurent et al.

(2005) that wildlife may have a response to the contin-
uous environmental gradient present in unclassified

spectral data that are not captured in predetermined
classification schemes. In our study, image greenness
emerged as a predictor variable over 3 predetermined
classification schemes: tree density, tree size class, and
CWHR category. This suggests that the vegetation
associations of the Sierra Nevada red fox are better
characterized by the unclassified spectral data than by
these predetermined classification schemes. This find-
ing is significant because few studies leverage the ben-
efits of remotely-sensed data in their species distribu-
tion modeling (Turner et al. 2003, Gillespie et al. 2008).
In addition, predetermined classification schemes are
often not available, are time consuming and expensive
to produce, and are often inconsistent between
regions. Not having to rely on vegetation maps for
habitat modeling can greatly reduce needed resources
because satellite imagery is often free and readily
available. Additionally, using satellite imagery instead
of predetermined classification schemes creates a
more parsimonious model by decreasing the number of
variables needed.

Both the logistic regression and maximum entropy
modeling approaches indicated that climate was a
major component of habitat suitability for the Sierra
Nevada red fox. Recent phylogenetic analyses have
indicated that the Sierra Nevada red fox and its con-
specifics in the Cascade and Rocky Mountains (Vulpes
vulpes cascadensis and V. v. macroura, respectively)
comprise a distinct genetic lineage separate from much
of the rest of North America (Aubry et al. 2009). This
lineage was more widespread during the height of the
Pleistocene glaciation but retracted to the high eleva-
tions of the western mountains when the glaciers
retreated. These historic range expansions and con-
tractions coincide with regional climate change, indi-
cating that the Sierra Nevada red fox may be physio-
logically and ecologically constrained to subalpine
climate zones (Aubry et al. 2009).

Both modeling approaches identified areas with low
winter minimum temperatures, but the models varied




Table 3. Variable coefficients for logistic regression (LR) model and percent con-
tributions for Maxent models. See Table 2 for definitions of variables and units.

na: not applicable

the species’ entire range and at a more
localized scale of the original popula-
tion centers of the Sierra Nevada red

fox as described by Grinnell et al.

Variable LR: Maxent: (1937). Although all 3 models pre-

coefficient % contribution dicted high habitat suitability through-

Constant 0.3067 na out the historic range of the Sierra

FEB.PRECIP —-0.0001483 30.4 Nevada red fox, the MSB model pre-

MIN.TEMP.DEC 0.008398 5.3 dicted slightly more habitat than the

GREENNESS -0.00483 2.0 MFB model, and the LRW model pre-

DIST'TQ WATER ~0.0003856 11.9 dicted far more suitable habitat than
Interaction: FEB.PRECIP x MIN.TEMP.DEC -0.000000636 50.3

Interaction: FEB.PRECIP x GREENNESS 0.000000144 0.1 either Maxent model. For example,

in how they represented the effect of precipitation. The
Maxent models predicted areas with winter precipita-
tion well above the regional minimum, whereas the
LRW model predicted areas with lower winter precipi-
tation (Table 2). This likely accounted for much of the
spatial difference between the model predictions.
Within the Lassen Peak region, for example, the LRW
model predicted more suitable habitat than the Max-
ent models, and predicted more habitat in the eastern
portion of the area (Fig. 3). Field surveys occasionally
detected red fox east of Lassen Peak, but far less fre-
quently than in the western portion of the area region,
where the projections of the Maxent models were con-
centrated (Perrine 2005).

Outside of the Lassen Peak region, the differences in
prediction area were exacerbated, both on the scale of

MFB

north of Lassen Park, the LRW model
predicted all of Mount Shasta to be
suitable habitat, whereas the MSB model selected
Shasta's eastern slope and a small portion of its peak
and western slope, and the MFB model selected only
its eastern slope (Fig. 4). The discrepancy became
more pronounced with increased distance from Lassen
Peak, the location of the occurrence data. In the south-
ernmost historic population center, the Sequoia and
Kings Canyon National Parks region of the southern
Sierra Nevada, the LRW identified most of the region
as suitable habitat (196 855 ha; Fig. 5). In contrast, the
MFB predicted only a small amount of suitable habitat
(23234 ha), and the MSB model predicted an interme-
diate amount (84496 ha). The pattern of Maxent and
logistic regression models yielding similar AUC values
but predicting slightly different suitable habitat areas
is consistent with prior findings (Gibson et al. 2007).
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Fig. 3. Vulpes vulpes necator. Predicted suitable habitat for Sierra Nevada red fox in the Lassen Peak region, relative to presence-
absence test data. MFB: Maxent with full background pixels; MSB: Maxent with subset background pixels; LRW: spatially-
weighted logistic regression. See Fig. 2 for the location of the Lassen Peak region in California



Fig. 4. Vulpes vulpes necator. Predicted suitable habitat for Sierra Nevada red fox in the Mount Shasta region of northern Califor-
nia. MFB: Maxent with full background pixels; MSB: Maxent with subset background pixels; LRW: spatially-weighted logistic
regression. See Fig. 2 for the location of Mount Shasta in California
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Fig. 5. Vulpes vulpes necator. Predicted suitable habitat for Sierra Nevada red fox in the Sequoia and Kings Canyon National Parks
region in the southern Sierra. MFB: Maxent with full background pixels; MSB: Maxent with subset background pixels; LRW: spa-
tially-weighted logistic regression. See Fig. 2 for the location of the Sequoia and Kings Canyon National Parks region in California

Because evaluation data were available only within
the Lassen Peak region, our assessment of model per-
formance beyond this region was limited to compar-
isons between models and with the species’ historic
range (Grinnell et al. 1937). The MSB model, which
used subsetted background pixels to match the biases

in the occurrence data, yielded a prediction area and
extent that was intermediate between the MFB model
and the LRW model (Fig. 2). Although the MFB model
yielded high accuracies within the occurrence data re-
gion, it predicted less suitable habitat in areas farther
away from the occurrence data than the MSB model.



These results are consistent with general expectations
for geographically biased presence data (Phillips
2008). The MSB model, which used a subset of back-
ground pixels, greatly reduced the effect of geographic
bias. In contrast to the Maxent models, the LRW model
predicted abundant suitable habitat outside of the
Lassen region, confirming prior findings that logistic
regression models can transfer well to similar study
areas (Randin et al. 2006, Barbosa et al. 2009).

Our range predictions for the Sierra Nevada red fox,
like all species distribution models, are hypotheses that
should be tested by the collection of new data, espe-
cially in predicted areas that were previously unsam-
pled (Olivier & Wotherspoon 2006, Parra & Monahan
2008, Wollan et al. 2008, Costa et al. 2009). The
increased use of automatic camera stations for carni-
vore inventory and monitoring on public lands
throughout the Sierra Nevada holds great promise for
additional detections of Sierra Nevada red fox. Fortu-
itously, in autumn 2010 Forest Service biologists
obtained photographs of several putative Sierra
Nevada red foxes in the Sonora Pass region of the
northern Sierra Nevada, approximately 75 km south
of Lake Tahoe (A. Rich and S. Lisius pers. comm.).
Although final confirmation via molecular genetic
methods is still underway, preliminary analyses and
the fact that several foxes were detected in close prox-
imity indicate that these animals represent the first ver-
ified population of Sierra Nevada red fox detected out
of the Lassen area in nearly 2 decades (B. Sacks pers.
comm.). These detections lend further support to the
logistic regression model over the 2 Maxent models.
The logistic regression identified these detection sites
as high quality habitat for Sierra Nevada red fox; the
subalpine woodland is virtually identical structurally to
occupied Sierra Nevada red fox habitat in the Lassen
region, despite being composed of whitebark pine
Pinus albicaulus as opposed to mountain hemlock in
the Lassen region. The Maxent model with subsetted
background pixels identified the Sonora Pass site as
medium-quality habitat for Sierra Nevada red fox,
whereas the original Maxent algorithm did not identify
it as potential habitat at all.

The ability to subset background pixels is relatively
new to Maxent (Phillips 2008), and few studies to date
have used or evaluated these methods (Anderson &
Raza 2010). Our findings support the conclusion of
Anderson & Raza (2010) that calibrating the study
region or subsetting background pixels to the occur-
rence data area yields a Maxent model with a larger
predicted area that is less concentrated around the
occurrence data region. Our study emphasizes the
importance of subsetting background pixels in Maxent
when using geographically biased presence data,
which are common with rare species. Moreover, our

results indicate that while subsetting significantly
reduces the effects of geographically biased presence
data in Maxent, it does not completely resolve the
problem. Despite the risk of false absences, the LRW
model did quite well predicting both within and out-
side of the Lassen Peak region, leading us to conclude
that in this case the potentially false absences were less
problematic than the transferability issues inherent to
the Maxent models.

Management implications

As a carnivore closely associated with montane tree-
line habitats, the Sierra Nevada red fox may be acutely
affected by climate changes. Since 1920, California’s
average annual temperature has warmed by 1.7°C,
with greater warming occurring with daily minimum
temperatures and at higher elevations (Kapnick & Hall
2009). In the central Sierra Nevada, December mini-
mum temperatures have increased by 0.23°C decade™
in Yosemite Valley (1220 m elevation) and 0.32°C
decade! at Lake Tahoe (1900 m; Thorne et al. 2006).
Recent surveys in the Sierra Nevada have documented
range shifts by small mammals (Moritz et al. 2008),
birds (Tingley et al. 2009), butterflies (Forister et al.
2010), and conifers (Thorne et al. 2006), consistent with
responses to climate warming. Despite the recent
detection of at least 1 Sierra Nevada red fox in the
northern Sierra, the lack of recent documented detec-
tions in the southern extent of its historic range (Per-
rine et al. 2010) may indicate that its range has
retracted northward in response to climate change. It is
unclear whether climate has a direct or indirect impact,
such as facilitating coyotes Canis latrans or other com-
petitors or changing understory structure through
altered fire regimes.

If such range retraction has already occurred, the
Sierra Nevada red fox may have little future in Califor-
nia. Climate warming is expected to continue if not
accelerate in the coming century, although forecasts of
the amount and rate of change depend greatly on the
specific climate model and emissions scenario used
(Hayhoe et al. 2004). Nevertheless, montane regions
are likely to experience the greatest warming (Snyder
et al. 2002), with mean annual temperatures in the
Sierra Nevada and southern Cascades projected to rise
3.0 to 3.5°C by 2070 to 2099 (Ackerly et al. 2010). These
changes will likely have a profound effect on the
ranges, elevations, and associations of California's
biota (e.g. Loarie et al. 2008, Parra & Monahan 2008,
Wiens et al. 2009, Ackerly et al. 2010, Forister et al.
2010) The Sierra Nevada red fox may follow the
pattern of another alpine-associated carnivore, the
wolverine Gulo gulo, which disappeared from Califor-



nia by the 1930s, with populations persisting only in
higher latitude states such as Washington, Montana,
and Idaho (Aubry et al. 2007). Predicting the future
range of Sierra Nevada red fox based upon its historic
range and the anticipated climate changes is an impor-
tant next step toward its effective conservation.
Locating additional Sierra Nevada red fox popula-
tions outside of the Lassen Peak area is critically
important (Perrine et al. 2010) to better document the
taxon's true spatial extent and to acquire additional
specimens to refine its phylogenetic relationships with
other red fox populations (e.g. Perrine et al. 2007,
Aubry et al. 2009, Sacks et al. 2010). One of our pri-
mary goals for these analyses was to provide guid-
ance for range-wide field surveys. To test our model
predictions, field surveys should target areas of model
discrepancy, such the Sequoia and Kings Canyon area
of the southern Sierra Nevada (Fig. 5). However,
surveys attempting to locate additional populations
as efficiently as possible should instead target areas
of model agreement, as indicated by our 2-model
ensemble (Fig. 6). The highest survey priority should
be to determine the extent of the newly discovered
Sonora Pass population. Additional high priority areas
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Fig. 6. Vulpes vulpes necator. Ensemble habitat suitability

model for Sierra Nevada red fox, based on spatially-weighted

logistic regression (LRW) and Maxent with subset back-
ground (MSB) models

include the Mount Shasta region (Fig. 4), which is the
largest predicted area north of the extant Lassen pop-
ulation, and the Sequoia and Kings Canyon region,
which is the southernmost of the historic population
centers (Grinnell et al. 1937) and an area of profound
model discrepancy. Such surveys should incorporate
the collection of specimens for genetic analysis
because photographs alone cannot conclusively iden-
tify Sierra Nevada red foxes (Perrine et al. 2010).
Additionally, the Lassen population should be closely
monitored for changes in size or extent, as it remains
the only known actively reproducing population of
this endangered taxon (Perrine et al. 2010). If no other
reproductive populations exist outside of the Lassen
region, then the Sierra Nevada red fox likely warrants
a higher level of state or federal protection and active
management than it currently receives.
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