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Abstract 

Caenorhabditis elegans is an important experimental organism for the study of recombination during 
meiosis. H ere, we provide methods for the use ofsingle-nucleotide po lymorph isms (SNPs) for the study 
of crossing over in C. elegans. 
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1. Introduction 

Crossing over is a key event during meiosis in Caenorhabditis ele
gans and many other eukaryotes. Crossovers, in conjunction with 
sister chromatid cohesion, form the basis of physical connections 
between homologous chromosomes. These connections play an 
integral role in helping ensure proper chromosome segregation 
at meiosis I anaphase. L1 addition, crossovers result in recombina
tion, the exchange of genetic information between homologous 
chromosomes. Mapping crossover locations involves detection of 
these recombination events and necessitates the use of homolo
gous chromosomes that are distinguishable in some way. H ere, we 
summarize approaches for mapping crossovers through the use of 
single- nucleotide polymorphisms ( SNPs) that exist betvveen two 
laboratory strains of C. elegans. 

Traditional approaches to mapping crossovers in C. elegans 
have relied on use of animals heterozygous for morphological 
markers. The chief limitation of this approach is that studies are 



limited in most cases to two markers (due to the relative paucity 
of morphological phenotypes in C. elegans) . As a result, each 
experiment typically measures crossover frequency within a sin
gle interval, which prevents detection ofchromosomes with mul
tiple crossovers and complicates determination of crossover dis
tribution along chromosomes. In addition, some morphological 
markers can have effects on the viability ofhomozygotes. An alter
native approach, first pioneered by Wicks et al. ( 1) for gene map
ping, involves the use of mapped sequence differences between 
tvvo laboratory strains of C. elegans. 

The wild-type C. elegans strain CB4856 (the Hawaiian strain) 
differs from wild-type N2 Bristol at approximately 0.1% of bases. 
These differences are broadly dispersed throughout the genome 
and provide a dense array of potential genetic markers for use in 
measurement of recombination. These markers have the advan
tage ofbeing phenotypically neutral (in general) and codominant, 
thus avoiding potential complications due to viability and sim
plifying scoring. In addition, multiple markers can be followed 
in a single cross (limited only by the number of PCRs one can 
carry out on the DNA sample obtained). A subset of these poly
morphisms alter (create or destroy) cleavage sites for restriction 
endonucleases. Such polymorphisms, referred to as snip-SNPs, 
have been exploited for use in a PCR-based approach for map
ping genes and measuring meiotic crossing over (1- 3). The basic 
approaches are similar to those used in traditional recombination 
studies; however, analysis of marker segregation involves molec
ular approaches, rather than exan1ination of morphological char
acters. For more detailed background information and additional 
technical notes, see (4 ) and references therein. 

A major advantage of this approach is that multiple intervals 
can be simultaneously assayed for crossing over, allowing deter
mination of the distribution of crossover events along chromo
somes and also allowing detection of chromosomes that have 
enjoyed multiple crossovers. Thus, use of SNP markers has now 
largely supplanted the use of morphological markers for analysis 
of crossover distribution in C. elegans (3, 5- 12 ). Looking for
ward, we envision that the use of multiplex approaches for SNP 
genotyping may supplement current PCR-based approaches for 
mapping crossovers; an example of such an approach is the Illu
mina GoldenGate Assay (12 ). Another recent example involves 
high-throughput SNP genotyping using SNP-specific primers 
and qPCR (6 ). However, these high-throughput approaches 
tend to be expensive and complicated, requiring specialized 
equipment and/or reagents. The PCR-based approach described 
here has the advantage of being both simple and inexpensive; 
thus, this approach is likely to remain an important method 
for detecting crossover recombination in C. elegans in the 
fi.1ture. 



2. Materials 

l. 	1 M Potassium phosphate buffer, pH 6.0: 108.3 g 
KH2P04, 35.6 g K2HP04, H20 to 1 1; autoclave. 

2. 5 mg/ml Cholesterol in 95%ethanol (do not autoclave). 

3. 	NGM plates: Combine and autoclave: 3 g NaCl, 17 g agar, 
2.5 g peptone, 975 ml H20. Cool to 55°C. Add and mix 
well: 1 ml of 1 M CaCh, 1 ml of 5 mg/ml cholesterol 
in 95% ethanol (see above), 1 ml of 1 M MgS04, 25 ml 
of 1 M potassium phosphate buffer (see above ). Dispense 
into 60-mm Petri dishes, using sterile technique. 

4. 	Escherichia coli OP-50. 

5. 	10 mM Tris- HCl, pH 8.0. 

6. 	10 mg/ml Proteinase Kin H20. 

7. 	2x Single-worm lysis buffer: 100 mM KCl, 20 mM Tris
HCl pH 8.3, 5.0 mM MgCh, 0.9% NP-40, 0.9%Tween 
20, 0.02% gelatin. Immediately before use, add proteinase 
K to 120 ~-tg/ml (using 10 mg/ml stock). 

8. Reagents for polymerase chain reaction: 	Tag DNA poly
merase and PCR buffer (any supplier ); dNTPs (any sup
plier). 

9. Primers: 	 A large and growing number of snip-SNPs 
have been identified, mostly through the efforts of 
the Genome Sequencing Center at Washington Uni
versity at Saint Louis and of Exelixis. Both data sets 
are available on tl1e Web: http://genome.wustl.edu/ 
geno me/celegans/celegans_snp.cgi (Washington Univer
sity) and http://v.rw\v.exelixis.com/discovery_acad_c_ele. 
shtml (Exelixis). For further information and suggestions 
on primer design, see (4 ) and references therein. See also 
Table 13.1. 

10. 	Restriction digestion master mix: The restriction master 
mix contains the appropriate restriction en zyme (specific 
for each snip-SNP marker) and lO x buffer, plus H20. To 
each 15 ~-tl PCR reaction to be digested, add 5 ~-tl of a 
solution containing 2 ~-tl ofthe appropriate 10x restriction 
buffer, 3- 5 U of restriction enzyme, and water to make 
5 ~-tl. 

3. 	 Methods 

Section 3.1 gives an overview of tl1e basic approaches used 
when measuring crossing over using snip-SNP markers, as well as 
providing information about snip-SNP markers that have been 

http:genome.wustl.edu


Table 13.1 
snip-SNP allele sets for assaying crossovers along each of the six C. elegans chromosomes 

Restriction N2 restriction CB4856 restriction 
SNP Cosmid Map position Primer sequence (5'-3' ) enzyme fragments (bp) fragments (bp) 

I Chromosome P 

lA ZC123 -18.6 F:CCTACAACAGGCAAAGAAGC SspI 643 324, 319 
R:AATTCCTACCAAAGCTCCGC 

I B* Y71G12 -12.3 F:GACAATGACCAATAAGACG Bsrl 440, 125 364, 125,76 
R:GATCCGTGAAATTGTTCCG 

IB F32B5 -7.7 F:TAATGTACCACCTCACGTGACG Sful 348 188, 160 

R:CTTTCACCAGAACCCTCTATTC 


I C K04F10 0.9 F:ATCATTCTCCAGGCCACGTTAC Ndel 594 300, 294 

R:CTGAACTAGTCGAACAAACCCC 


I D T07D10 13.6 F:CTTGGTGTGGGGAGAGTATAGG Sau3AI 303,63 207,96,63 

R:TTTGTCCGGATTGACTCTGC 


I E ZK909 28.8 F:CACAAGTGGTTTGGAAGTACCG Hindlll 450 236, 214 

R:CAACAAAGGGATAGATCACGGG 


Chromosome II a 


II A T25D3 -17.9 F:CGGAGATAGTCTCGTGGTACTG Dral 336,93 288, 93, 48 

R:CAGTCATGCTCCAAACATTCTC 


li B R52 - 14.5 F:TCCATCTTCGCAATCAGATTTC Ahul 368 203, 165 

R:AACGTACTGCTTCCCATGCTC 


II C M03A1 - 4 F:TCATCTGTCGAGTGCTTTTG Taql 291,81,80 210, 81, 80, 70 

R:CGATCGCTCAAATGGTTG 


li D F37HB 3.3 F:TTCTCACAACTTCTTTTCCAAG Taql 572, 112, 15 382, 190, 112, 15 

R:TTCACTATTTCCCTCGCTGG 


liE Y38F1 13.6 F:TAGGAAAGTTGTGTCCACCTGG Hinfi 449 288, 160 

R:TGATGACTCCTTCTTCAGCTGC 


II F Y51HI 20.9 F:GATTCGGAATGGGTGTTG Taql 482 340, 142 

R:TCTTGAATGCGTGGTGTG 




Table 13.1 (continued) 

SNP Cosmid 

Chromosome III b 

Ili A T17H7 


III B H0614 


III C F10E9 


III D T28D6 


III E F54F12 


Chromosome IV c 


IVA 

IVB 

IVC 

IVD 

IVE 

IV F 

IVG 

Y38C1AA 

F52C12 

C09G12 

B0273 

D2096 

KlODll 

T02D1 

Map position 

- 26 

- 10 

0.5 

8.5 


20 


- 2.7 

- 14.9 

- 3.7 

1.8 

3.8 

6.7 

16.8 

Primer sequence (5'-3' ) 

F:CTGCTTATAGTCTTCCTGTCG 
R:GCAACCCCACCTTCAATGAC 
F:AAACCACCTGAAACTGGAGC 
R:CTCGAGATTCTGCGTGAAAC 

F:AGCAGATGAAAGTTCCGACG 
R:CCCCGCTGTGGTTATTATAC 
F:TTTCGTGTACGAACGTCTCC 
R:CATTTCTCCCACTCTTGCTG 

F:TTGACTCTTCTGGAGTAGCTGC 
R:GGATTCCAGGGATTGAAGAG 

F:AAATAACAGGCACCTACCGC 
R:CTTTGAAGGAGGACTAACGG 
F:ACATTTAGTCACGCGTAGGG 
R:GCCCGAATCTAGCACATAAG 

F:TGTCTACCGTATACCTGGAC 
R:ATCCAGCTCAAAAGTGTGCG 
F:AATACAGCAGTCGTTCCGTTC 
R:TGAACTTCATGAACCAGCTTG 

F:ACGAAAAATCACAGAGCGGG 
R:AATCAACAACGGACGACGAG 
F:GATTATTTCAGAGGAGCAGAGC 
R:CATAGCACGTGGAATAACCAC 

F:TGCTTAAAGTCATCGTGTCCAC 
R:TGTAAACCGTATCGAATCCGAC 

Restriction 
enzyme 

SspI 

Spel 

Aeel 

Dral 

Rsal 

X hal 

Hpall 

Rsal 

Dral 

EcoRI 

Hindlll 

Earl 

N2 restriction 
fragments (bp) 

910 

438 

598,225 

500 

385, 76, ll 

882 

191, 137, 22 

163, 131 

288, 144 

648,326 

420 

174,235 

CB4856 restriction 
fragments (bp) 

580, 330 

268, 170 
I 

854 

283, 217 

I 
207, 178, 76, ll 

I 
481, 397 

328, 22 

I 
294 

432 

I 
852 

245, 175 

I 
408 

(continued) 



Table 13.1 (continued) 
Restriction N2 restriction CB4856 restriction 

SNP Cosmid Map position Primer sequence (5'-3') enzyme fragments (bp) fragments (bp) 

Chromosome V d I 
VA Y38C9B - 20.0 F:TGTAGGGCGAGTAACCAAGC BamHI 318 268, 50 

R:CCGCACTTCCTTCAGAAATG 
VB H10D18 -7.9 F:ATTGATCCCATGATCTCGG 

R:AATCGCTACTTCCGATAACTTC 
SspI 436 263,173 

I 
vc F57F5 3.6 F:ATCAATCACATGATGCCGT Hpy188III 578 326, 252 

R:TTTCAGCTAGACCTCCCATG 
VD F57G8 10.0 F:GGCGGAAAGCAATTTCTATC Dral 528 272,256 

R:AGCTGCAACCAACACTGCTC 

VE F48F5.2 25.00 F:GCTTTGGAGACATTGAGCCGTG Hpy188III 439 258, 181 
R:ATGCTCTTCACATTTTCCTGG 

Chromosome xa 
XA F28C10 - 19 F:GGTATACCGATCCCTTCAACAAG BspHI 208, 156 364 

R:TGGCAAAACACATCCCTGTG 
XB EGAP7 - 15.5 F:AGAATCTGGGAGGTAAATGG Sfcl 700,246 577, 369 

R:CCCATTGAAACTACTCCACCTG 
XC FllD5 - 11.1 F:TCGTGGCACCATAACGATGTGG Dral 243 128,115 

R:GATTCAGATCAAACAGAGGTGG 

XD F45E1 - 0.76 F:GGTTCCTGGACGATAACGATGTGG EcoRI 540,228 768 
R:CGACCTGAAAGATGTGAGGTTCCTTATC 

XE C05E7 10.1 F:GGCTCTGAGAAACCAACAAG Sau3AI 318, 149 467 
R:TGTTTGCGATGACGTGCAG 

XF C33AII 20.8 F:CGAGCAGAGATGCAGAGTTCTCAACTG Haelll 280,300 580 
R:CGACCTGAAAGATGTGAGGTTCCTTATC 

aFrom ( 10 ). 
bFrom (7 ). 
cH enzel, Turner, and Hillers, unpublished. 
dFrom (5). 



3.1. Using Snip-SNP 
Markers to Map 
Crossovers in 
Caenorhabditis 
elegans: Basic 
Approach 

used in previous studies of recombination. Section 3 .2 describes 
a method for measuring crossing over during both oogenesis 
and spermatogenesis in hermaphrodites using snip-SNP markers. 
The major advantage of this approach is its simplicity - recom
bination is assayed by determining the genotype of self-progeny 
of heterozygous individuals ( ll). The chief disadvantage of this 
approach is that crossing over can occur during both sperm and 
egg production; thus, only a subset of double crossover chromo
somes can be unambiguously detected ( ll ). 

As an alternative, crossing over can be assayed during meiosis 
in a single germline; in this case, all double crossover chromo
somes can be detected. Section 3.3 describes a method for mea
suring crossing over during oogenesis in hermaphrodites. This 
approach has the advantage that each progeny worm assayed rep
resents the product of a single meiosis from the heterozygous 
hermaphrodite parent; this allows tmambiguous detection of all 
multiply recombinant chromosomes. In addition , the codomi
nant nature of snip-SNP markers means that crossovers can be 
detected without the additional complication of progeny test
ing (which is necessary to assay recombination during oogenesis 
using recessive markers). Therefore, use of snip-SNP markers to 
assay recombination during oogenesis is preferable to use of tra
ditional recessive morphological markers. Section 3.4 describes 
a method for measuring crossing over during spermatogenesis in 
males. 

When measuring crossing over in meiotic mutants, it is often 
necessary to assay crossover formation in many individuals het
erozygous for linked genetic markers. This is because mutations 
affecting meiosis and gametogenesis typically reduce the num
ber of progeny produced, often drastically. Thus, when measur
ing recombination in meiotic mutants, the following protocols 
should be modified to involve increased numbers ofheterozygous 
parents. 

Mapping crossovers relies upon detectable differences between 
homologous chromosomes. The approach described herein uses 
single-nucleotide polymorphisms that create or destroy restriction 
endonuclease recognition sites (referred to as snip-SNPs) as mark
ers for determining the location ofcrossover events. A large num
ber ofSNPs have been identified in the Hawaiian C. elegans strain 
CB4856; these represent potential markers for use in crossover 
mapping in animals heterozygous for CB4856- and N2-derived 
chromosomes. Several online databases exist which summarize 
identified SNPs (see Section 2 (4 )). Davis et al. (13) identified 
a set of snip-SNPs spanning all chromosomes that can all be ana
lyzed under similar conditions; these represent convenient choices 
for use as markers to map crossovers. 



- -- -- -

A number of studies have used snip-SNPs as markers for 
crossover detection during meiosis (3, 5, 7- ll). Use of the same 
markers in future experiments facilitates comparisons betv.reen 
studies. Table 13.1 provides a set ofsnip-SNP markers on each of 
the six C. elegans chromosomes, as well as primer sequences and 
digestion information. These markers have been used in previous 
studies to map meiotic crossovers (see references in Table 13.1); 
researchers designing new experiments involving snip-SNP map
ping ofcrossovers could do worse than to use these same markers. 

snip-SNPs represent sequence differences between chromo
somes that typically are not associated with phenotypic differ
ences; thus, analyzing segregation of snip-SNP markers requires 
physical detection of the alleles. The basic approach for doing 
so detailed herein involves amplification of the DNA region con
taining the snip-SNP through PCR; once amplified, the DNA is 
digested with a restriction endonuclease whose recognition site is 
affected by the snip-SNP. Digested DNA is then analyzed through 
agarose gel electrophoresis. N2- and CB4856-derived DNA can 
be distinguished by whether or not the restriction endonuclease 
cleaves the DNA sample (Fig. 13.1 ). 

Using snip-SNP markers to assay meiotic recombination 
involves production of animals heterozygous for N2- and 
CB4856-derived chromosomes. Doing so in an otherwise wild
type background is simple, requiring only a cross between N2 
and CB4856. Use of snip-SNP markers to assay recombination 
in mutant backgrounds, however, requires introgression of 

F R F R 
----- AATATI----- -----AACATT---- 
-----nA.TAA----- -----nGTAA---- 

N2 allele (cuts with Sspl) CB4856 allele (does not. cut with Ssp I) 

Amplify snip-SNP - conta;:ning region by PCR using primers F and R. Digest 

amplified DNA. with SspI. Analyze by agarose gel .electrophoresis. 


Sample Results- schematic Sample Results - real gel 

Homozygous Homozygous Helero·zygous 

N2 CB N~CB 


Fig. 13.1. Basic principle of snip-SNP genotyping. snip-SNPs are sequence differences that result in altered sensitivity 
to a restriction endonuclease (Ssp, in this example). The DNA region containing the snip-SNP is amplified through PCR, 
using primers that flank the snip-SNP and recognize both N2 and CB4856 DNA. Following amplification, DNA is digested 
with restriction endonuclease and analyzed through agarose gel electrophoresis. Analysis of bands seen in each lane 
allows determination of the genotype of the individual tested. See Note 8. 



mutant 01 b2 wild-type h1 112 

! 
X

balancer::Gf :P b1 b2 wild-type h1 h2<:/ cf 
pick GFP(-) pickGFP(+) 

hermaphrodite male progeny 
progeny 

Mate GFP(:) hermaphrodite progeny with GFP(+) male progeny 

wild-type
mutant X -:: :- ()l>a'ancer::GFP ---~ 

wild-type 

pfd<: G FP(+) hermaphrodite progeny and allow them to self; identify 
mutant/balancer individuals and screen among their progeny for individuals 

homozygous for 084856 alleles on the desired chromosome 

Rg. 13.2. Scheme for introgression of CB4856-derived chromosome into mutant back
ground. This scheme assumes that the mutation of interest is balanced by a balancer 
chromosome that expresses GFP. b1 and b2 are N2-derived snip-SNP alleles; h1 and h2 
are CB4856-derived alleles. Note, only two snip-SNP alleles are shown on each chro
mosome for clarity; SNP-based recombination mapping typically involves 5-6 markers 
per chromosome. 

CB4856-derived chromosomes into the mutant strain through 
repeated backcrossing. This can be particularly challenging in sit
uations where the mutation has a substantial effect upon fertility 
or viability. One approach for introgression of CB4856-derived 
chromosomes into a mutant strain is given in Fig. 13.2. 

Once CB4856-derived chromosomes have been introgressed 
into a meiotic mutant background, the next step is pro
duction of animals homozygous for the mutation of inter
est and heterozygous for N2- and CB4856-derived chromo
somes. This is accomplished through crossing, as in Fig. 13.3. 

mutant b1 b2 mutant h1 h2 

balancer::GFP b1 b2 oalancer::GFP h1 h2cf X cj 
~d< """"GFP !

progeny 

mutant mutantb1 b.2 b1 b2C) & c_fmutant h1 h.2 mutant h1 h2 

Rg. 13.3. Scheme for production of animals that are both homozygous for a meiotic 
mutation of interest and heterozygous for snip-SNP markers. Males heterozygous for the 
mutation of interest ("mutant") and a balancer chromosome marked by a gene inser
tion which leads to GFP expression ("balancer::GFP") are mated to hermaphrodite part
ners heterozygous for the mutation of interest (balanced by the GFP-marked balancer 
chromosome) and homozygous for a chromosome derived from CB4856 (unlinked to 
the mutation of interest). Male and hermaphrodite progeny from this cross that do not 
express GFP will be homozygous for the meiotic mutation of interest and heterozygous 
for the linked phenotypic markers. 



3.2. Measuring the 
Incidence of 
Crossing Over During 
Both 
Spermatogenesis 
and Oogenesis in 
Hermaphrodites 
Through the Use of 
snip-SNP Markers 

Meiotic crossing over can be directly assayed among the 
self-progeny of N2/CB4856 heterozygous hermaphrodites 
(Section 3.2). Alternatively, recombination occurring during 
oogenesis in hermaphrodites or spermatogenesis in males can 
be assayed among the outcross progeny of N2/CB4856 het
erozygous hermaphrodites or males (Sections 3.3 and 3.4, 
respectively). 

1. Generation 	of heterozygous hermaphrodites: On a small 
(60 mm) NGM plate seeded with E. coli, mate Bristol 
N2-derived hermaphrodites homozygous for a selected 
morphological marker to homozygous Hawaiian CB4856 
males. Mter 48 h, remove both male and hermaphrodite 
parents from the plate and allow progeny to develop (see 
Notes l and 2). 

2. Pick 	 heterozygous (phenotypically wild type) F1 
hermaphrodites (as L4 or younger) individually to 
small seeded NGM plates. 

3. Move F1 hermaphrodites to new plates every 12- 24 h until 
they cease producing progeny (see Note 3). 

4. 	Scoring markers transmitted to self-progeny: As F2 
progeny reach adulthood, pick individually into 0 .2-ml, 
thin-walled tubes containing 10 ~-t l of 10 mM Tris- HCl, 
pH 8.0 (see Not es 4 , 5, and 6). 

5. 	To each tube, add 10 ~-tl of2x single-worm lysis buffer and 
mix well. 

6. Lyse worms: Freeze at - 80°C, incubate at 65°C for 1 hand 
95°C for 15 min (see Not e 5). 

7. 	PCR analysis: Each snip-SNP marker is amplified using 
a specific primer pair. Thus, PCR conditions should be 
empirically optimized for each marker to be analyzed. 
However, the following general conditions have worked 
well in our hands: use 0.5 ~-tl ofworm lysate in each 15 ~-t l 
reaction. PCR cycling: 94°C for 2 min; 35 cycles of {94°C 
for 20 s; 60°C for 30 s; 72°C for 40 s}; 72°C for 10 min 
(see Note 7). 

8. Restriction 	 digestion: Add an appropriate volume of 
restriction enzyme master mix to each PCR reaction and 
digest for 4 h overnight. 

9. Agarose gel analysis: Restriction enzyme-digested PCR 
products can be analyzed through agarose gel elec
trophoresis. As expected, DNA fragments are often small 
(<300 bp), we use 2.5% agarose gels in 0.5 x TBE. 

10. 	After electrophoresis, score each sample for the presence 
or the absence of the N2- and CB4856-specific band(s). 



3.3. Measuring the 
Incidence of 
Crossing Over During 
Oogenesis in 
Hermaphrodites 
Through the Use of 
snip-SNP Markers 

In cases ofambiguity, PCR analysis and restriction enzyme 
digestion should be repeated. See Note 8. 

11. Identifiable recombinant progeny will fall into t\~o types: 
(a) those in which crossing over between the assayed 
markers occurred during production of either sperm or 
egg but not both. This case results in progeny heterozy
gous for one marker and homozygous for the other (e.g., 
[bl h2/bl b2], where bl and b2 represent N2-derived alle
les at loci 1 and 2, respectively, and hl and h2 repre
sent the CB4856 alleles) and (b) those in which crossing 
over between the assayed markers occurred during pro
duction of both sperm and eggs. Detectable recombinants 
in this case will be homozygous for recombinant chromo
somes (e.g., [bl h2/bl h2]). Note that an equal number of 
progeny resulting from this case will be heterozygous for 
both alleles (e.g., [bl h2/hl b2]) and thus indistinguishable 
from non-recombinants. 

12. 	The recombination frequency (p) is calculated using 
the following equation: p = 1 - ( 1 - R )112 , where R = 
((number of animals heterozygous for one marker and 
homozygous for the other) + 2 x (number of animals 
homozygous for recombinant chromosomes))/total num
ber ofanimals scored ( 14). 

l. 	Generation of heterozygous hermaphrodites: On a small 
(60 mm) NGM plate seeded with E. coli, mate Bristol N2
derived hermaphrodites homozygous for a selected pheno
typic marker to homozygous Hawaiian CB4856 males. Mter 
48 h, remove both male and hermaphrodite parents from the 
plate and allow progeny to develop (see Notes 1 and 2 ). 

2. Pick 	 heterozygous (phenotypically wild type) F1 
hermaphrodites (as L4 ) individually to small seeded 
NGM plates along with 5-8 males of N2 background. 
To aid in identification of outcross progeny, it is often 
convenient to use GFP-expressing males (see Note 9 ). 

3. After 24 h , each heterozygous hermaphrodite should have 
mated with the N2 males present on the plate. Thus, 
progeny produced after 24 h of mating are likely to be 
outcross progeny (allowing measurement of crossing over 
that occurred solely during oogenesis). Move heterozy
gous hermaphrodites to new plates. Each 24 h there
after for several days (or until they cease producing out
cross progeny), move individually to fresh plates (see 
Note 3 ). 

4. Scoring 	 markers transmitted to progeny: As the out
cross progeny of the heterozygous hermaphrodite 



3.4. Measuring 
Crossing Over in 
Males Using 
snip-SNP Markers 

reach adulthood, pick individually into 0.2 -ml, thin
walled tubes containing 10 I-ll of 10 mM Tris- HCl, 
pH 8.0 (see Notes 4, 5, 6, and 9 ). 

5. 	To each tube, add 10 I-ll of2x single-worm lysis buffer and 
mix well. 

6. Carry 	 out worm lysis, PCR, restriction analysis, elec
trophoresis, and scoring as in Section 3.2, steps 6- 10. 

7. 	For each interval assayed, outcross progeny will fall 
into four classes: homozygous N2 (nonrecombinant; bl 
b2/bl b2), heterozygous N2/CB4856 (nonrecombinant; 
bl b2/hl h2), heterozygous for marker 1 (recombinant; bl 
b2/hl b2), and heterozygous for marker 2 (recombinant; 
bl b2/bl h2). (bl and b2 represent N2-derived alleles and 
hl and h2 represent CB4856-derived alleles.) 

8. 	The recombination frequency p = R, where R is the fraction 
ofprogeny with recombinant genotypes. 

l. Generation of heterozygous males: On a small (60 mm) 
NGM plate seeded with E. coli, mate Bristol N2-derived 
hermaphrodites to homozygous Hawaiian CB48 56 males 
(or vice versa). After 24 h ofmating, remove all the male par
ents from the plate, which will facilitate detection ofprogeny 
males in step 2 (see Note 2). 

2. Pick heterozygous F1 males individually 	to small seeded 
NGM plates with several N2-derived late L4 stage 
hermaphrodites homozygous for some phenotypic mutation 
(e.g., unc-3). 

3. 	After 24 h ofmating, transfer the mated hermaphrodite part
ners (but not the heterozygous males) individually to fresh 
plates. Each of these animals should have mated with the 
heterozygous males and will thus produce outcross progeny. 
Transfer these mated hermaphrodites to fresh plates every 
24 h for several days (or until they cease production of out
cross progeny) (see Note 3). 

4. 	Scoring markers transmitted to progeny: Outcross progeny 
from mated hermaphrodites will consist of phenotypically 
wild-type hermaphrodites and males (if the hermaphrodite 
partners are homozygous for an X-linked marker such as 
unc-3, outcross males will be mutant (and thus distinguish
able from their phenotypically WI fathers)). As outcross 
progeny reach adulthood, pick individually into 0 .2-ml, 
thin-walled tubes containing 10 I-ll of10 mM Tris- HCl, pH 
8.0 (see Notes 4, 5, and 6 ). 

5. 	To each tube, add 10 I-ll of2 x single-worm lysis buffer and 
mix well. 



6. Carry 	 out worm lysis, PCR, restriction analysis, elec
trophoresis, and scoring as in Section 3.2, steps 6- 10. 

7. 	For each interval assayed, outcross progeny will fall 
into four classes: homozygous N2 (nonrecombinant; bl 
b2/bl b2), heterozygous N2/CB4856 (nonrecombinant; 
bl b2/hl h2), heterozygous for marker 1 (recombinant; bl 
b2/hl b2), and heterozygous for marker 2 (recombinant; 
bl b2/bl h2). (bl and b2 represent N2-derived alleles and 
hl and h2 represent CB4856-derived alleles.) 

8. 	The recombination frequency p = R, where R is the fraction 
ofprogeny with recombinant genotypes. 

4. Notes 

1. 	The N2-derived parent in this cross is homozygous for a 
recessive morphological marker to facilitate identification of 
outcross progeny, which will be wild type; self-progeny will 
be a homozygous mutant and thus morphologically distin
guishable. This is not necessary but simplifies identification 
ofoutcross progeny. Alternative approaches for identification 
of outcross progeny are detailed in Note 9. 

2. Measurement of recombination in animals homozygous for 
mutations affecting meiosis requires construction of worms 
homozygous for the meiotic mutation under study and het
erozygous for linked genetic markers. However, many mei
otic mutants become aneuploid only after a few generations 
(due to the chromosome missegregation induced by many 
mutations affecting meiosis); this can greatly complicate both 
genetic and physical measures of recombination. Thus, it is 
vitally important to assay recombination in tl1e germlines of 
euploid mutant animals derived from parents that were het
erozygous for ilie meiotic mutation in question. The simplest 
approach for doing so involves use of balancer chromosomes 
marked with a GFP insertion. One way to do so is shown 
in Fig. 13.3 . Note that animals heterozygous for balancer 
chromosomes should not be used as "wild -type" controls 
for experiments measuring crossing over in meiotic mutant 
backgrounds. In balancer chromosome heterozygotes, non
homologous chromosome synapsis occurs, witl1 subsequent 
effects on meiotic recombination (e.g ., (15 , 16)). For more 
information about balancer chromosomes in C. elegans, see 
(17). In cases where a suitable balancer chromosome is 
not available, worms of the appropriate genotype should be 
derived as in (18 ). 



3. A single 	hermaphrodite produces 250-300 progeny over a 
3- to 4 -day period. For measurement of recombination fre
quencies, it is important to assay all progeny produced by 
the animal under study during a given time period. By mov
ing hermaphrodites every 24 h, "broods" of roughly l 00 
progeny are collected. As all of these animals hatched from 
eggs produced during a single 24-h period, they will all reach 
adulthood within a relatively narrow time window (but see 
Note 4); this greatly simplifies subsequent analyses. 

4. As different genotypes may have different 	growth rates, it 
is important to score all progeny produced during a given 
time period; failure to do so may result in undercounting the 
number of individuals in certain genotypic class( es) and thus 
reduce the accuracy of the map distance measurement. Thus, 
each plate ofprogeny (each "brood"; see Note 3) should be 
checked for progeny multiple times over a span of several 
days; this will increase tl1e likelihood that all progeny will be 
scored. 

5. 	At th.is point, samples can be stored at - 80°C until ready for 
further analysis. 

6. Analysis can also be carried out in 96-well plates. 

7. Always amplify N2 and CB4856 controls for amplification 
and digestion. 

8. Incomplete digestion by 	the restriction endonuclease can 
give spurious uncut bands, wh.ich can complicate analysis 
of results. Thus, it is important to always include N2 and 
CB4856 controls for amplification and digestion on each gel. 
True heterozygotes will have N2 and CB alleles in equal 
abundance. Thus, the uncut band (wh.ich is larger and binds 
more ethidium bromide) will be brighter than the cut bands; 
for example, see lanes l and 2 (from L) in Fig. 13.1. Incom
plete digestion can commonly be distinguished from het
erozygosity because the smaller bands will be brighter than 
the larger band, as in lanes 3 and 6 (from L) in Fig. 13.1. 

9. 	To measure the frequency of recombination in the oocyte 
germline, it is important to only score outcross progeny from 
the heterozygous hermaphrodite. In crosses ofth.is sort, out
cross progeny can be identified in a number ofways: 
• 	 Only score hermaphrodite progeny picked from plates with 

roughly equal numbers ofmales and hermaphrodites; these 
should represent outcross offspring. However, if the ani
mals being assayed are mutant for meiotic function, then 
self-progeny may also have a h.igh proportion ofmale off
spring (the Him phenotype); in that case, use one of the 
following approaches. 



• 	 Generate outcross progeny using males homozygous for a 
third, dominant, marker. One example that has been suc
cessfully used is the transgene insertion ccls4251, which 
expresses GFP w1der control of the myo-3 promoter (19). 
In this case, outcross progeny can be distinguished due to 
GFP expression. 

• 	 In experiments measuring recombination in animals 
homozygous for a deletion allele of a gene of interest 
(such as a gene involved in meiosis), outcross progeny will 
be heterozygous for the deletion allele, while self-progeny 
will be homozygous for the deletion. These genotypes can 
be assayed by PCR; this allows the researcher a molecular 
assay to confirm that each progeny animal assayed is truly 
outcross. 
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