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Abstract Immiscible water-alternating-gas (WAG) flood-

ing is an EOR technique that has proven successful for

water drive reservoirs due to its ability to improve dis-

placement and sweep efficiency. Nevertheless, considering

the complicated phase behavior and various multiphase

flow characteristics, gas tends to break through early in

production wells in heterogeneous formations because of

overriding, fingering, and channeling, which may result in

unfavorable recovery performance. On the basis of phase

behavior studies, minimum miscibility pressure measure-

ments, and immiscible WAG coreflood experiments, the

cubic B-spline model (CBM) was employed to describe the

three-phase relative permeability curve. Using the Leven-

berg–Marquardt algorithm to adjust the vector of unknown

model parameters of the CBM sequentially, optimization of

production performance including pressure drop, water cut,

and the cumulative gas–oil ratio was performed. A novel

numerical inversion method was established for estimation

of the water–oil–gas relative permeability curve during the

immiscible WAG process. Based on the quantitative

characterization of major recovery mechanisms, the pro-

posed method was validated by interpreting coreflood data

of the immiscible WAG experiment. The proposed method

is reliable and can meet engineering requirements. It

provides a basic calculation theory for implicit estimation

of oil–water–gas relative permeability curve.

Keywords Cubic B-spline model � Immiscible � WAG

flooding � Relative permeability � Numerical inversion

1 Introduction

The relative permeability curve is essential to describe the

complicated multiphase flow characteristics in porous

media (Masihi et al. 2011; Chen et al. 2013). In general,

water–oil or oil–gas relative permeability data can be

obtained from steady- or unsteady-state displacement

experiments with core samples. Such experimental data can

be interpreted using analytical methods, e.g., the Johnson–

Bossler–Naumann (JBN) method. However, due to the

idealized hypothesis, the precision usually cannot be

guaranteed when using analytical methods to calculate the

water–oil or oil–gas relative permeability curve. To

improve the precision of the estimated result, Sigmund and

McCaffery applied a nonlinear regression to the problem of

history matching laboratory coreflood data for the first time

and proposed a numerical inversion method for the water–

oil relative permeability curve (Sigmund and McCaffery

1979). In contrast to the existing analytical methods, when

the numerical inversion methods are adopted to interpret

laboratory coreflood data, production performance prior to

and after water breakthrough can be utilized comprehen-

sively. The estimated result is not only complete but also

highly precise (Daoud and Velasquez 2006; Barroeta and

Thompson 2010). In recent decades, a variety of numerical

inversion methods have been developed to implicitly esti-

mate the relative permeability curve for water–oil or oil–

gas systems (Chen et al. 2008; Li et al. 2009; Eydinov et al.
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2009; Wang et al. 2010; Wang and Li 2011; Li and Yang

2011; Abdollahzadeh et al. 2011; Zhang and Yang 2013;

Xu et al. 2013; Miao et al. 2014).

As planar and vertical reservoir heterogeneity escalates,

it is a great challenge to recover the remaining oil from

mature waterflooded oilfields which suffer from extremely

high water cut and unfavorable recovery performance of

original oil in place (Li 2009; Han 2010). Due to the highly

scattered and relatively enriched distribution of remaining

oil, efficient enhanced oil recovery (EOR) techniques have

become imperative. Water-alternating-gas (WAG) injec-

tion has been identified as a cost-effective EOR process

yielding high recovery in some oilfields (Luo et al. 2013;

Salehi et al. 2014; Laochamroonvorapongse et al. 2014;

Sheng 2015). Nevertheless, considering the complicated

phase behavior and various flow characteristics in hetero-

geneous formations, gas tends to break through early in

production wells due to overriding, fingering, and chan-

neling, which may result in unfavorable recovery perfor-

mance. So far, few attempts have been made to implicitly

estimate water–oil–gas relative permeability curves during

immiscible WAG injection. Taking a synthetic reservoir as

an example, Li et al. proposed a numerical inversion

method for estimation of the three-phase relative perme-

ability curve using the ensemble Kalman filter algorithm

for assisted history matching. However, due to the inherent

limitations confronted by the relative permeability repre-

sentation model, no significant recognitions were achieved

(Li et al. 2012; Chen and Reynolds 2015). Using the

Levenberg–Marquardt (LM) algorithm for automatic his-

tory matching, Hou et al. addressed the optimization of

production performance and relative permeability repre-

sentation models and finally proposed a numerical inver-

sion method for estimation of the radial water–oil relative

permeability curve, which attracts great interest by

researchers in petroleum engineering (Hou et al.

2012a, b, 2015).

As a result of the above-mentioned problems, this paper

presents a novel numerical inversion method for estimation

of the water–oil–gas relative permeability curve during

immiscible WAG processes. The structure of this paper is

organized as follows. In Sect. 2, the formulation and

architecture of the relative permeability representation

model are presented. Section 3 provides a brief description

of the proposed numerical inversion method using the LM

based history matching techniques. In Sect. 4, laboratory

tests including phase behavior studies, minimum misci-

bility pressure (MMP) measurement, and immiscible WAG

coreflood experiments are conducted to understand the

major recovery mechanisms and thus generate accurate

fluid properties under reservoir conditions. Finally, the

reliability and robustness of the proposed method are val-

idated by interpreting coreflood data of the immiscible

WAG experiment to implicitly estimate the water–oil–gas

relative permeability curve.

2 Relative permeability representation model

According to whether it is required to assume the shape of

the relative permeability curve, there are two main cate-

gories in the representation model: the parametric model

and the nonparametric model (Kulkarni and Datta-Gupta

2000). The parametric model uses explicit equations to

generate the two- or three-phase relative permeability

curve, assuming that the relative permeability curve fits into

the shape of a certain type of the functional model (e.g., the

power law model). Nevertheless, the number of degrees of

freedom of the parametric model is not enough for all types

of relative permeability curves for actual reservoirs. Due to

its simplicity, the power law model is widely used (Lee and

Seinfeld 1987; Reynolds et al. 2004). The nonparametric

model is far more general and flexible because there is no

assumption regarding the shape of the relative permeability

curves [e.g., the cubic B-spline model (CBM)], which has

the advantage of being able to accurately represent any set

of relative permeability curves. Thus far, the nonparametric

model most widely used is the CBM (Chen et al. 2008;

Eydinov et al. 2009). For this study, the CBM is adopted to

describe the water–oil–gas relative permeability curve

during the WAG recovery process.

First, the dimensionless fluid saturation is defined as

SwD ¼ Sw � Siw

1� Siw � Sorw
ð1Þ

SowD ¼ 1� SwD ð2Þ

SgD ¼ Sg � Sgc

1� Siw � Sgc � Sorg
ð3Þ

SogD ¼ 1� SgD; ð4Þ

where SwD and SowD are the dimensionless water and oil

saturation for the water–oil system, respectively; SgD and

SogD are the dimensionless gas and oil saturation for the

oil–gas system, respectively; Sw is the water saturation; Siw
is the initial water saturation; Sorw is the residual oil satu-

ration for the water–oil system; Sg is the gas saturation; Sgc
is the critical gas saturation; and Sorg is the residual oil

saturation for the oil–gas system.

The CBM model for the water–oil–gas relative perme-

ability curve is given by

krpðSpDÞ ¼
Xn�1

j¼�3

C
p
jþ2Bjþ3ðSpDÞ; p ¼ w; ow; g; og; ð5Þ

where krp is the p-phase relative permeability at the

dimensionless fluid saturation SpD; n is the number of the
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controlling knots; C
p
jþ2 is the controlling points for the B-

spline approximations of the p-phase relative permeability

curve; and Bj;3ðSpDÞ is the basis function for the CBM

model. For detail, please refer to de Boor (de Boor 1978).

It should be noted that the traditional B-spline curve is

‘‘attached’’ to the controlling knots but does not normally

pass through them. Therefore, to ensure two of its con-

trolling knots C
p
0 and Cp

n for the p-phase relative perme-

ability curve being traversed, two phantom knots C
p
�1 and

C
p
nþ1 are introduced for each curve to clamp the endpoints

of three-phase relative permeability curves. Equation (6) is

proposed to describe the correlation:

C
p
�1 ¼ 2C

p
0 � C

p
1 and C

p
nþ1 ¼ 2Cp

n � C
p
n�1: ð6Þ

Since the water–oil relative permeability and oil–gas

relative permeability are, respectively, normalized by

Ko(Siw) and Ko(Sgc), it leads to Cow
0 ¼ C

og
0 ¼ 1. Moreover,

the endpoints of the fluid saturation Siw, Sorw, Sgc, and Sorg
are regarded as known values, i.e., Cow

n ¼ Cog
n ¼ Cw

0 ¼
C
g
0 ¼ 0. There are n� 1 parameters to be estimated for the

oil relative permeability of the water–oil or oil–gas system,

and there are n parameters to be estimated for the water or

gas relative permeability. Finally, there are total 4n� 2

parameters to be estimated for the water–oil–gas system.

To enforce the monotonicity and convexity of the three-

phase relative permeability curve, a log transformation

from the controlling knots to pseudo-controlling knots is

carried out. For the water-phase or gas-phase relative

permeability curve,

xu1 ¼ ln
Cu
1

1
2
Cu
2 þ 0

� �
�Cu

1

 !
;

xui ¼ ln
Cu
i �ð2Cu

i�1�Cu
i�2Þ

1
2
Cu
iþ1þCu

i�1

� �
�Cu

i

 !
; 2� i�n� 1; u¼w;g

xun ¼ ln
Cu
n �ð2Cu

n�1�Cu
n�2Þ

1�Cu
n

� �
:

8
>>>>>>>>><

>>>>>>>>>:

:

ð7Þ

For the oil-phase relative permeability curve of the

water–oil or oil–gas system,

yv1 ¼ ln
Cv
1 � ð2Cv

2 � Cv
3Þ

1
2
Cv
2 þ 1

� �
� Cv

1

 !
;

yvi ¼ ln
Cv
i � ð2Cv

iþ1 � Cv
iþ2Þ

1
2
Cv
iþ1 þ Cv

i�1

� �
� Cv

i

 !
; 2� i� n� 2;

yvn�1 ¼ ln
Cv
n�1 � 0

1
2
Cv
n�2 � Cv

n�1

 !
:

8
>>>>>>>>>><

>>>>>>>>>>:

v ¼ ow; og :

ð8Þ

To sum up, the vector m of unknown model parameters

of the CBM can be expressed as

m ¼ xw1 ; x
w
2 ; . . .; x

w
n ; y

ow
1 ; yow2 ; . . .; yown�1; x

g
1; x

g
2; . . .; x

g
n; y

og
1 ;

�

y
og
2 ; . . .; yogn�1

�
:

ð9Þ

With regard to the actual estimation of the three-phase

relative permeability curve, the vector m of unknown

model parameters, which is composed of the pseudo-con-

trolling knot vectors (x and y) mentioned above, is adjusted

subsequently using the optimization algorithm. After each

iteration, the controlling knot vectors (Cu and Cv) are

calculated by inverse transforming the pseudo-controlling

parameters. Then, the water–oil and oil–gas relative per-

meabilities satisfying the monotonicity and convexity rule

are obtained from the cubic B-spline model. For this study,

the number of controlling knots n is equal to 7.

Once the water–oil and oil–gas relative permeabilities

are obtained after each iteration, the modified Stone’s

Model II (Aziz and Settari 1979) is further adopted to

calculate the oil relative permeability curve when all three

phases are mobile, which takes the form of

KroðSw; SgÞ ¼ K0
row

KrowðSwÞ
K0
row

þ KrwðSwÞ
� ��

� KrogðSgÞ
K0
row

þ KrgðSgÞ
� �

� KrwðSwÞ þ KrgðSgÞ
� �	

;

ð10Þ

where Krw and Krow are the water and oil relative perme-

ability for the water–oil system, respectively; Krg and Krog

are the gas and oil relative permeability for the oil–gas

system, respectively; and K0
row is the oil relative perme-

ability at the connate water saturation (in oil–water flow),

and at the critical saturation (in oil–gas flow).

3 Methodology

3.1 Least-squares objective function

Provided that the predicted production performance is in

accordance with the observed values, a least-squares

objective function needs to be established for estimation of

the water–oil–gas relative permeability curve and can be

described as follows:

OðmÞ ¼ 1

2
ðgðmÞ � dobsÞTC�1

D ðgðmÞ � dobsÞ; ð11Þ

where OðmÞ is the least-squares objective function; m is a

(m� 1) vector of the unknown model parameters; T is a

symbol denoting the transpose of a vector or matrix; dobs is

a (n� 1) vector of the observed (or measured) data; gðmÞ
is a (n� 1) vector of the predicted data; and CD is the

(n� n) covariance matrix. With regard to the actual history
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matching problems, the objective function OðmÞ is usually
nonlinear and the vector of model parameters m should be

confined to a reasonable range according to reservoir

conditions. In this study, the pressure drop, water cut, and

the cumulative gas–oil ratio are considered as the observed

production performance to establish the least-squares

objective function.

3.2 LM algorithm

The LM algorithm (Oliver and Chen 2011), one of the

gradient-based algorithms most widely used, has high

computational efficiency and a quick convergence speed.

When using the LM algorithm to solve the inverse history

matching problems, the smooth transition can be addressed

successively between the steepest descent algorithm and

the Newton algorithm (Barua et al. 1988). The optimization

procedure should satisfy the following principle: if the

least-squares objective function is far from the minimum

point, the convergence direction should be identical to that

of the steepest descent algorithm; if the objective function

is close to the minimum point, the convergence direction is

the same as that of the Newton algorithm. Optimization of

production performance in this paper is performed using

the LM algorithm. In addition, a finite difference method is

adopted to compute the sensitivity matrix of the least-

squares objective function at the unknown model parame-

ters. The generalized form of the LM algorithm is depicted

as Eq. (12):

ðkI þ HðmkÞÞdmkþ1 ¼ �rOðmkÞ; ð12Þ

where HðmkÞ is the Hessian matrix for the kth iteration; I is

an (n� n) identity matrix; k is the damping factor to

guarantee the half-positive definitiveness of the Hessian

matrix; OðmkÞ is the least-squares objective function for

the kth iteration; mk and mkþ1 are, respectively, the vector

of unknown model parameters obtained by the kth and

(k ? 1)th iterations, and dmkþ1 ¼ mkþ1 � mk; and r is the

Hamiltonian operator.

The following is the specific calculation procedure of

using the LM algorithm for automatic history matching.

First, input the initial damping factor k0. After each

iteration, it is necessary to adjust the values of the

damping factor. The principle for adjustment is summa-

rized as follows: (1) Calculate the vector of unknown

model parameters mkþ1. If Oðmkþ1Þ�OðmkÞ, the itera-

tion is regarded as a failure, and then k ¼ k� 10. If

Oðmkþ1Þ\OðmkÞ, the iteration is regarded as a success,

and then k ¼ k� 10. (2) Submit the damping factor k
adjusted to Eq. (12) and carry out the next iteration. The

iteration described previously is repeated until the termi-

nation condition is satisfied.

The termination condition of iteration utilized takes the

form of Eq. (13):

Oðmkþ1Þ � OðmkÞ


 

\e1 or count[ countmax; ð13Þ

where e1 is the convergence precision (fraction); count is

the iteration times (integer); and countmax is the maximum

iteration times (integer). For this study, e1 ¼ 10�6 and

countmax ¼ 100.

3.3 Procedure of parameter estimation

The procedure for implicitly estimating the three-phase rel-

ative permeability curve using LM based history matching

techniques is briefly described as follows: (1) initialize the

unknown controlling parameters of the CBM to generate prior

knowledge of the three-phase relative permeability curve; (2)

implement reservoir simulation using the prior curves to

generate the predicted production data; (3) establish a least-

squares objective function to reflect the discrepancy between

the predicted and observed values of production performance;

and (4) advance the minimization of the least-squares

objective function using the LM algorithm to subsequently

adjust the unknown controlling parameter vector of the CBM

until all the observed production data are assimilated. Finally,

the water–oil–gas three-phase relative permeability curve is

achieved and evaluated.

4 Laboratory tests

Using synthetic core samples, laboratory tests including

phase behavior studies, MMP measurements, and immis-

cible WAG coreflood experiments were conducted to

understand the major recovery mechanisms of immiscible

WAG injection and thus generate accurate fluid properties

under reservoir conditions.

4.1 Phase behavior studies

Well product and dissolved gas were collected from a low-

permeability classic sandstone reservoir in the Jidong Oil-

field, China. The density and viscosity of the well product

were measured to be 0.871 g/cm3 and 8.477 mPa s at 20 �C
and at atmospheric pressure, respectively. The injection gas

with a molar mass of 20.6 g/mol and a relative density of 0.71

came from a neighboring reservoir. The compositions of the

well product, dissolved gas, and the injection gas are listed in

Table 1. For this study, a synthetic oil sample was prepared

from the well product and the dissolved gas according to the

initial dissolved gas–oil ratio of 70.58 m3/sm3.

Single-phase flash and saturated pressure measurements

were performed on the synthetic oil sample at the reservoir

510 Pet. Sci. (2016) 13:507–516
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temperature of 120.8 �C. The dissolved gas–oil ratio and the

saturated pressure were measured to be 69.0 m3/sm3 and

14.1 MPa, respectively, which are so close to those deter-

mined under the initial reservoir conditions that the synthetic

oil sample satisfies the requirement of phase behavior studies.

4.1.1 Influence of hydrocarbon gas injected on saturated

pressure

The integrated experimental apparatus (Guo et al. 2000)

provided by the Ruska Instrument Corporation, United

States, was used to understand the influence of hydrocar-

bon gas injected on saturated pressure at a reservoir tem-

perature of 120.8 �C. This apparatus consisted of a fluid

property measurement device and a high-pressure falling-

ball viscometer. Figure 1 shows the correlation of relative

volume with pressure under various mole fractions of

hydrocarbon gas injected.

Figure 1 demonstrates that there is a distinct breaking

point indicating the saturated pressure, especially when the

mole fraction of hydrocarbon gas injected is relatively low.

Meanwhile, the fluid phase behavior changed significantly

as the experimental pressure dropped. With an increase in

the mole fraction of hydrocarbon gas injected, the corre-

lation of relative volume with pressure gradually shifted

toward the right accompanied by the disappearance of the

breaking point, which indicates that the continuous solution

of injected hydrocarbon gas results in an increase in the

saturated pressure and a reduction of discrimination

between gas–liquid phases to a large extent.

4.1.2 Influence of hydrocarbon gas injected on fluid

properties

Using the constant composition expansion test, differential

liberation test, and the swelling test under the reservoir

temperature of 120.8 �C, the influence of various mole

fractions of hydrocarbon gas injected on variation of fluid

properties was investigated, as presented in Figs. 2 and 3.

The results show that, with the escalation of hydrocarbon

gas injected, the saturated pressure increased gradually

along with a decrease in oil density and viscosity, which

shows a closer similarity between gas and liquid phases,

and as such better fluid properties will be achieved.

4.2 MMP measurement

A long slim-tube displacement experiment was conducted

to determine the minimum miscibility pressure (MMP)

between the synthetic oil sample and hydrocarbon gas.

Generally, if the recovery factor is greater than 80 % when

hydrocarbon gas breakthrough occurs or the ultimate oil

recovery reaches 90 %–95 % after 1.2 pore volume (PV)

hydrocarbon gas is injected, it is treated as a state of

miscibility. The experimental setup was provided by the

Ruska Company, United States, and consisted of an

Table 1 Compositions of the well product, dissolved gas, and the

injection gas

Component Composition, wt%

Well product Dissolved gas Injection gas

CO2 0.06 0.12 0.32

N2 0.07 0.14 0.19

CH4 30.67 61.79 83.62

C2H6 8.76 17.64 7.64

C3H8 5.96 11.98 3.78

i-C4H10 0.72 1.46 0.97

n-C4H10 1.55 3.13 1.52

i-C5H12 0.27 0.54 0.66

n-C5H12 0.26 0.53 0.56

C6? 51.69 2.67 0.74
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injection system with a positive displacement pump, a slim

tube, a backpressure regulator, a differential pressure

transducer, a temperature-controlling system, a sample

collection system, and a gas chromatograph. The long slim-

tube model was approximately 18 m in length and 4 mm in

diameter, with a pore volume of 125 cm3 at 20 �C and at

atmospheric pressure.

Prior to displacement, the long slim-tube model was

fully saturated with the synthetic oil sample at the reservoir

temperature of 120.8 �C and under the ambient pressure

above the bubble point. The experimental pressures were

25.0, 26.6, 30.0, and 33.0 MPa, respectively. The long

slim-tube displacement experiments were performed at a

constant gas injection rate of 0.167 cm3/min until 1.2 PV

of hydrocarbon gas was injected. It should be noted that the

pressure regulator must be adjusted sequentially during the

displacement process in order to retain the ambient pres-

sure close enough to the experimental pressure with its

fluctuation range less than 0.05 MPa. As shown in Fig. 4,

miscibility between the synthetic crude oil and hydrocar-

bon gas would be achieved as the experimental pressure

reached 30.0 MPa. The MMP was further obtained using

the interpolation method and its value was 29.0 MPa,

which is significantly higher than the current reservoir

pressure 27.0 MPa. That is to say, miscibility cannot be

achieved under the current reservoir conditions.

4.3 Immiscible WAG coreflood experiment

Core samples were prepared to conduct the immiscible

WAG coreflood experiments using a total of 12 represen-

tative samples taken from the same low-permeability

sandstone reservoir. The physical properties of the actual

reservoir core samples are listed in Table 2. The synthetic

core sample was approximately 66.8 cm in length and

2.5 cm in diameter with a pore volume of 71.6 cm3, while

the corresponding average porosity, average permeability,

and rock compressibility were determined to be 21.95 %,

39.35 9 10-3 lm2, and 5.2 9 10-6 MPa-1, respectively.

The brine was composed of NaHCO3 and distilled water

with a salinity of 4664 mg/L. Oil samples and hydrocarbon

gas injected were the same as those used in the phase

behavior studies. Figure 5 presents the schematic diagram

of the WAG coreflood experiment. The core sample holder

had one inlet located in the left side and one outlet in the

right side. The production was performed at a constant

outlet pressure, and the injection was performed at a con-

stant surface injection rate. In this displacement experi-

ment, the initial oil saturation, residual oil saturation of the

water–oil system, critical gas saturation, and the residual

oil saturation of the oil–gas system were accurately mea-

sured to be 0.60, 0.44, 0, and 0.40, respectively.

Based on the measured MMP, an immiscible WAG

coreflood experiment was carried out under the reservoir

temperature of 120.8 �C and a backpressure of 27 MPa.

The production performance, such as pressure drop, dis-

placement efficiency, water cut, and cumulative gas–oil

ratio, was simultaneously recorded with the advancing of

the displacement. For the water flooding stage, the gas was

injected at a constant rate of 0.3 cm3/min. As the water cut

reached 85.7 % at the water flooding stage, WAG injection

was initiated with a WAG ratio of 3:1 (0.24 PV water vs.

0.08 PV gas) and with four WAG cycles. Soon afterward,

the subsequent water flooding was further carried out.

Figures 6 and 7 show the production performance of the

immiscible WAG displacement experiment. The recovery

efficiency was significantly improved during the immisci-

ble WAG processes. With regard to the four slugs of

immiscible WAG injection, it was mainly the second WAG

cycle that resulted in the greatest improvement of pro-

duction performance.
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5 Estimation of water–oil–gas relative
permeability curve

Considering the above-mentioned immiscible WAG core-

flood experiment and history matching results of fluid

properties as well as MMP, a one-dimensional composi-

tional model was established using the reservoir simulator

CMG. A grid system of 50 9 1 9 1 was selected to rep-

resent the physical model in the experiment, resulting in a

grid block size of 1.34 cm 9 2.23 cm 9 2.23 cm. The

controlling conditions of compositional simulation were

the same as those of laboratory WAG coreflood experi-

ments most widely used. Moreover, the influence of cap-

illary pressure was neglected.

On this basis, the proposed numerical inversion method

was employed to interpret coreflood data of the immiscible

WAG experiment and to implicitly estimate the water–oil–

gas relative permeability curve. Figures 8 and 9 display the

estimated water–oil and oil–gas relative permeability

curves, respectively, and the dashed lines denote the pre-

sumed water–oil and oil–gas relative permeability curves

when the iteration was initialized using the LM algorithm

Table 2 Properties of the

actual reservoir core samples
Core number Length, cm Diameter, cm Porosity, % Absolute permeability, 10-3 lm2

1 6.90 2.50 17.2 70.0

2 7.09 2.52 20.4 75.3

3 5.65 2.51 19.7 94.7

4 5.10 2.51 21.2 49.7

5 5.71 2.50 23.7 86.9

6 4.05 2.52 20.0 49.5

7 5.62 2.52 22.9 62.4

8 5.75 2.51 17.8 33.2

9 4.65 2.52 18.3 38.6

10 5.90 2.51 21.8 98.0

11 5.65 2.50 22.2 107.1

12 4.76 2.50 23.4 127.0
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Fig. 5 Schematic of the immiscible WAG coreflood experiment system
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for automatic history matching. Fitting results of production

performance including pressure drop, water cut, and cumu-

lative gas–oil ratio are plotted in Figs. 10 and 11, respec-

tively. To compare the estimation accuracy, Eq. (14) was

used to calculate the average absolute error between the

predicted result and the observed production data including

water cut, pressure drop, and cumulative gas–oil ratio:

R ¼ 1

np

Xnp

i¼1

fij j fi ¼ si � s0i
� �

; ð14Þ

where R is the average absolute error; si is the real value of

the ith data point (fraction); s0i denotes the estimated value

of the ith data point (fraction); np is the total number of

data points; and fi is the absolute error of the ith data point

(fraction).

From Figs. 8, 9, 10, and 11, it can be found that the

predicted production data including pressure drop, water

cut, and cumulative gas–oil ratio are in good agreement

with the observed values, with an average absolute error of

13.6 %, 2.3 %, and 1.7 %, respectively, which indicates

that the estimated three-phase relative permeability curve is

reliable. It also demonstrates that the proposed numerical

inversion method is reliable and can meet engineering
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requirements, which provides a basic calculation theory for

implicit estimation of water–oil–gas relative permeability

curve during immiscible WAG processes.

6 Conclusions

(1) The cubic B-spline model (CBM) was used to

describe the three-phase permeability curve. The

optimization of production performance including

pressure drop, water cut, and cumulative gas–oil

ratio was performed by adopting the LM algorithm

to subsequently adjust the vector of unknown model

parameters of the CBM. Finally, a novel numerical

inversion method was proposed to implicitly esti-

mate the water–oil–gas relative permeability curves

during immiscible WAG flooding processes.

(2) Actual core samples were used for phase behavior

studies, MMP measurements, and immiscible WAG

coreflood experiments to understand the major recov-

ery mechanisms and thus to generate the fluid

properties under reservoir conditions. Based on his-

tory matching results of fluid phase behavior and

MMP, the proposed method was used to interpret

coreflood data from the immiscible WAG experiment

in order to implicitly estimate the water–oil–gas

relative permeability curve. Results indicate that the

proposed method is reliable and can meet engineering

requirements. It provides a basic calculation theory for

implicit estimation of three-phase relative permeabil-

ity curve during immiscible WAG processes.
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