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ABSTRACT 

Three main hypotheses are commonly employed to explain diachronic variation in the relative abun
dance of remains of large terrestrial herbivores: (1) large prey populations decline as a function of anthro
pogenic overexploitation; (2) large prey tends to increase as a result of increasing social payoffs; and (3) 
proportions of large terrestrial prey are dependent on stochastic fluctuations in climate. This paper tests 
predictions derived from these three hypotheses through a zooarchaeological analysis of eleven temporal 
components from three sites on central California's Pecho Coast. Specifically, we examine the trade-offs 
between hunting rabbits (Sylvilagus spp.) and deer (Odocoileus hemionus) using models derived from 
human behavioral ecology. The results show that foragers exploited a robust population of deer through
out most of the Holocene, only doing otherwise during periods associated with climatic trends unfavor
able to larger herbivores. The most recent component (Late Prehistoric/Contact era) shows modest 
evidence of localized resource depression and perhaps greater social benefits from hunting larger prey; 
we suggest that these final changes resulted from the introduction of bow and arrow technology.Overall, 
results suggest that along central California's Pecho Coast, density independent factors described as cli
matically-mediated prey choice best predict changes in the relative abundance of large terrestrial herbi
vores through the Holocene. 

Keywords: 
Foraging, Resource depression, Prestige hunting, Paleoclimatic variability, Human behavioral ecology, Zooarchaeology, Central California 

Introduction 
three main hypotheses have emerged that attempt to explain pat

Factors that cause diachronic variation in the zooarchaeological terned fluctuations in the abundance of large prey. 
abundance of large prey have been the center of much debate in re The first hypothesis states that this patterning is caused by opti
cent decades, Researchers focused on hunter-gatherer populations mal economic decisions that lead foragers to preferentially target 
have attempted to address this issue in many locations around the larger prey over smaller prey, which, over time results in the depres
world, including South Africa (e.g. Binford , 1984; Klein, 1975, sion of large prey populations and a subsequent decline in their 
1976, 1982; Klein et al., 2007), Western Europe (e.g., Binford, archaeological proportions (see Bayham, 1979; Broughton, 1994). 
1983; Grayson and Delpech, 1998,2003; Grayson et al., 2001; Predictions derived from the resource depression hypothesis sug
jochim, 1976, 1998), the Mediterranean Basin (e.g., Stiner, 2001 , gest that the prolonged acquisition of large prey negatively impacts 
2006; Stiner and Munro, 2002 ; Stiner et al., 2008; Stutz et al., their populations (although, see Whitaker, 2008, 2009), leading for
2009) and Western North America (e.g. Bayham, 1979; Broughton, agers to shift to smaller prey which is archaeologically identified by 
2002 ; Broughton and Bayham, 2003 ; Broughton et al., 2008; Butler, (PI a) a reduction in proportion of larger prey to smaller prey (e.g., 
2000; Butler and Campbell, 2004; Byers and Broughton, 2004; Broughton, 1994; Stutz et al., 2009) and (PI b) changes in age struc
Byers and Ugan, 2005 ; Byers et al., 2005; Cannon, 2000, 2003; ture oflarger prey (e.g., Stiner, 2006), both of which may either influ
Codding and jones, 2007a; Hildebrandt and McGuire , 2002; ence, or be influenced by forager settlement and mobility, (PIc) 
Hildebrandt et al., 2010; Hockett, 2005 ; janetski, 1997; jones and resulting in changes in the processing and transport of skeletal 
Codding, 2010; jones et al., 2008a, 2009; McGuire and Hildebrandt, elements from large prey (Cannon, 2000, 2003). 
2005; McGuire et al., 2007; Whitaker, 2009). From the research The second hypothesis proposes that patterns in the proportion 
dealing with remains deposited by behaviorally modern humans, of large prey remains are driven by changes in the size of social 
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groups and/or the frequency of social aggregations both of which 
are linked to the social payoffs of hunting (Hildebrandt and McGuire, 
2002, 2003; Hildebrandt et al., 2010; McGuire and Hildebrandt, 
2005; McGuire et al., 2007, see also Aldenderfer, 2006; Cannon, 
2009; Potter, 1997, 2000; Plourde, 2008). Predictions from the 
prestige hunting hypothesis suggest that an increase in the social 
payoffs of large game hunting should lead to (P2a) a diachronic in
crease in the archaeological visibility of large prey relative to small 
prey, accompanied (P2b) by an increase in the logistic mobility of 
foragers (sensu Binford, 1980) caused by hunters having to travel 
further to acquire large prey at higher costs. 

The third hypothesis suggests that proportional fluctuations in 
large prey remains reflect stochastic climatic variability that differ
entially impacts large terrestrial herbivores over smaller prey. Pre
dictions from the environmental stochasticity hypothesis suggest 
that (P3) climatic changes associated with either mean aridity or 
extreme seasonality negatively impact large herbivore populations 
(i.e., artiodactyls) more severely than smaller prey (i.e., leporids), 
causing a decrease in the encounter rates with large prey and a de
crease in their archaeological visibility (Byers and Broughton, 
2004; Broughton and Bayham, 2003; Broughton et al., 2008; Gray-
son and Delpech, 1998). 

The outcome of these debates has the potential to influence our 
understanding of a suite of issues, including the ecological impacts 
of forager subsistence strategies, the social and ritual role of large 
game hunting, and the effect of environmental variability on hu
man behavior. However, to work thorough these hypotheses, zoo-
archaeological analysis must disentangle the multiple causes that 
may lead to the same material pattern (Klein and Cruz-Uribe, 
1984; see also Grayson, 1984; Lyman, 1993, 2008; Reitz and Wing, 
2008). Here we attempt to accomplish this by testing the above 
predictions with a zooarchaeological analysis of 11 well-dated 
components from three sites on the Pecho Coast of Central Califor
nia (Fig. 1); these sites represent all of the excavated assemblages 
in the study area that have produced significant numbers of faunal 
remains, and our geographic limit focuses our controlled compari
sons (sensu Klein and Cruz-Uribe, 1984) on temporal rather than 
spatial variability. Importantly, it must first be shown that tempo
ral variation in the abundance of large prey within these assem
blages results neither from variation in sample size (see Grayson, 
1978, 1981, 1984; see also Cannon, 2001) nor taphonomic pro
cesses (e.g., Lyman, 1984, 1985, 1994). Then, analysis may turn 
to quantitative tests of foraging models derived from human 
behavioral ecology (for an overview, see Smith and Winterhalder, 
1992; Winterhalder and Smith, 2000; for an archaeologically spe
cific review, see Bettinger, 1991: pp. 83–130, 2006; Bird and 
O’Connell, 2006; Grayson and Cannon, 1999; Lupo, 2007). By deriv
ing predictions from general models applicable to zooarchaeologi
cal data, researchers have been able to successfully unravel the 
possible sources of variation in archaeofaunal assemblages. In this 
paper we test quantitative predictions derived from each alterna
tive hypothesis, focusing on the trade-offs between hunting larger, 
mobile terrestrial prey (deer) and smaller less mobile terrestrial 
prey (rabbits).1 While not the final word on the subject, a careful 
examination of these data will help to shed light on the debates sur
rounding the causes of variation in large prey abundance and con-
The term ‘‘mobility” is here used as Bird et al. (2009), to refer to a prey’s ability to 
evade capture during post-encounter pursuit. While rabbits may indeed be fast over 
short distances, we suggest that at the scale which matters in this context, deer are 
better able to evade a hunter by moving outside the range of hand-held or even 
projectile weapons. This suggests that while deer may be larger than rabbits and thus 
provide a larger harvest, pursuit success may be more variable as a function of their 
mobility (see also Jochim, 1976; Stiner et al., 2000). For this reason, it should not be 
assumed a priori that deer are a higher ranked resource than rabbits. However, 
quantitative experimental work in western North America is needed to confirm this – 
particularly useful would be data on pursuit successes and failures with deer and 
rabbits using various technologies. 

1 
tribute to our overall understanding of prehistoric human–prey 
dynamics. 
Archaeological and environmental background 

After Greenwood’s (1972) initial work in the region, Jones 
(1993, 2003) was the first to systematically integrate material cul
ture sequences along the central California coast with the well 
established cultural chronologies of the San Francisco Bay and Sac
ramento/San Joaquin Delta area in the north (e.g., Bennyhoff, 1978; 
Bennyhoff and Hughes, 1987; Lillard et al., 1939) and the Santa 
Barbara Channel to the south (e.g., King, 1982, 1990; Rogers, 
1929). Most recently, the central coast sequence has been defined 
by six distinct periods (Jones et al., 2007): 

I. Late (700–181 BP*) 
II. Middle–Late Transition (MLT; 950–700 BP*) 

III. Middle (2550–950 BP*) 
IV. Early (5450–2550 BP*) 
V. Millingstone (or Early Archaic; 9950–5450 BP*) 

VI. Paleo-Indian (pre-9950 BP*) 

While the Paleo-Indian Period is marked only by isolated fluted 
projectile points (e.g., Mills et al., 2005), large residential middens 
dating to all of the later periods are common throughout the region 
in varying densities (Jones et al., 2007). The earliest middens dating 
to the Millingstone Period frequently occur on the coast or show 
some connection with the coast (i.e., the presence of shellfish). 
While some sites show an emphasis on marine resources, others 
suggest an emphasis on terrestrial prey; when all the Millingstone 
assemblages in the region are examined together, subsistence ap
pears diverse including shellfish, birds, mammals, fish, seeds and 
other plant resources (Jones et al., 2007, 2002, 2008a, 2009). Milling 
equipment including slabs and hand stones are ubiquitous and pro
jectile points occur less frequently than during later time periods. 

The transition to the Early Period is marked by an increase in 
the number of sites occupied suggesting an increase in population 
density; technological changes include the initial adoption of the 
mortar and pestle and an increase in the quantity of multifunc
tional projectile points, most of which belong to the central coast 
stemmed series (Jones et al., 2007; Stevens and Codding, 2009). 
An increase in exogenous obsidian also suggests a spike in interre
gional trade (Jones et al., 2007; see also Jones, 2003). These trends 
continue through the Middle Period, captured by Jones et al.’s 
(2007) reference to both time periods as a material expression of 
the same ‘‘Hunting Culture” (sensu Rogers, 1929; see also Green
wood, 1972). 

The continuity of the Early and Middle periods is disrupted by 
an abrupt transition phase referred to as the Middle–Late Transi
tion Period. This time period is marked by widespread site aban
donment (Jones and Ferneau, 2002; Jones et al., 2007, 1999) and 
rapid changes in technology including the adoption of smaller, 
more specialized projectile points (Stevens and Codding, 2009) 
and fishhooks (Codding and Jones, 2007a; Codding et al., 2009). 
In many ways this period is a true transition, characterized by a 
combination of traits that when recovered independently, differen
tiate the Early/Middle and Late Periods. 

The Late Period is marked by a proliferation of single compo
nent sites associated with bedrock mortars; these sites occur more 
frequently in the interior, albeit with continued, but proportionally 
reduced occupation of the coast (Jones et al., 2007). Both inland 
and coastal sites show evidence of being occupied year round 
(Jones et al., 2008b). The Late Period is also typified by the adoption 
of small uniform projectile points associated with bow and arrow 
technology (Jones et al., 2007). 



Fig. 1. Site locations situated along the Pecho Coast within the Central Coast Region of California. 
The Pecho Coast 

Situated within the Central Coast Region (sensu Moratto, 1984; 
see also Jones et al., 2007), the Pecho Coast is a 20 km wide penin
sula extending about 8 km into the Pacific Ocean between Morro 
(Estero) Bay and San Luis Obispo Bay in San Luis Obispo County, 
California (Fig. 1). Just east of the coastal terrace, low mountains 
known as the Irish Hills rise sharply to elevations of about 550 ft. 
With this increase in elevation, the landscape transitions from 
mosaics of coast scrub and chaparral to coastal oaks, chaparral 
and grasslands bisected by a series of small, densely wooded drain
ages that flow to the Pacific Ocean. The mouths of these creeks 
form small sandy beaches along a coastline otherwise dominated 
by exposed rocky shores, cliffs and bluffs. 

To date, nearly 50 shell middens are known along the Pecho 
Coast. The first systematic work was performed by Pilling (1951), 
who surveyed the area and described some of the surface findings. 
Since that time, various test excavations have provided informa
tion on temporary camps (e.g., Breschini and Haversat, 1988), how
ever, only three residential sites have been excavated extensively 
enough to produce significant faunal assemblages: CA-SLO-2, CA
SLO-9, and CA-SLO-585 (see Codding and Jones, 2006, 2007a; Cod-
ding et al., 2009; Greenwood, 1972; Jones et al., 2008a, 2009). 
Greenwood (1972) excavated six sites in preparation for the con
struction of Diablo Canyon Nuclear Power Plant in 1968. Two of 
these sites (CA-SLO-2, -585) provided substantial trans-Holocene 
faunal assemblages that were not analyzed until recently (Jones 
et al., 2008a, 2009). Each of the Diablo sites has produced diverse 
artifact assemblages indicating that they functioned as residential 
bases, with no substantive evidence for changes in site function 
through time (Jones et al., 2008a, 2009). The Coon Creek site (CA
SLO-9) was excavated between 2004 and 2007 in order to salvage 
a portion of the midden that was eroding into the Pacific Ocean 
(Codding and Jones, 2007a; Codding et al., 2009). While findings 
from these sites have been discussed individually (Codding and 
Jones, 2007a; Codding et al., 2009; Greenwood, 1972; Jones et al., 
2008a, 2009), results from all of this work are synthesized here 
for the first time. 



Methods and models 

Excavation methods 

CA-SLO-2 and CA-SLO-585 were excavated in 1968 with a mixed 
recovery strategy aimed at generating substantial samples of diag
nostic artifacts, macro and micro faunal constituents. All units were 
excavated in 10 cm arbitrary levels (see Greenwood, 1972; Jones 
et al., 2008a, 2009). After excavation, all material was curated at 
the San Luis Obispo County Archaeological Society Collection Facil
ity in 1972 from which it was retrieved for analysis in 2004. 

Excavations at CA-SLO-2 resulted in a total recovery volume 
of 109 m3 from a deposit that extended to a depth of 3.4 m. 
(Greenwood, 1972). After 32 years of storage, some of the collec
tions (or their provenience) were lost or damaged, but remains 
from 98.9 m3 were still available for analysis in 2004. Most of the 
recovery volume came from 30 1 � 2 m units that were excavated 
by hand in arbitrary 10-cm levels processed with 6-mm (1/4 in.) 
mesh dry screens. In addition, a 0.25 � 0.25 m column sample 
was excavated (0.8 m3) and wet screened with 1-mm mesh; and 
a 1  � 1 m unit, was screened with nested 6-mm (1/4 in.) and 
3-mm (1/8 in.) mesh (see also Jones et al., 2008a). 

At CA-SLO-585, a total of 39.4 m3 was excavated by hand from 
ten 1 � 2 m units screened dry with 6-mm (1/4 in.) mesh, and one 
1 � 1 m control column was used to sample shell and small fish re
mains. In addition to these hand excavated units, 30.0 m3 of depos
it was excavated mechanically with a backhoe for a total recovery 
volume of 69.4 m3 (see Greenwood, 1972; Jones et al., 2009). 

CA-SLO-9 was excavated between 2004 and 2007 through a 
joint partnership between the California State Parks Department 
(Department of Parks and Recreation, DPR) and California Poly
technic State University, San Luis Obispo (see Codding and Jones, 
2006, 2007a; Codding et al., 2009). Nineteen 1 � 2 m units were 
excavated and processed with 3-mm (1/8 in.) mesh and one 
1 � 2 m unit was processed with 6-mm (1/4 in.) mesh. In addition, 
three 1 � 1 m control units were water-processed through 3-mm 
(1/8 in.) mesh and sorted in the laboratory. 

Radiometric determinations and component definitions 

A total of 51 radiocarbon dates was used to define components 
for the current study (CA-SLO-2 = 34; CA-SLO-9 = 7; CA-SLO
585 = 10; see Codding and Jones, 2007a; Jones et al., 2008a, 
2009). Dates were calibrated using CALIB 5.0.2 (Stuiver et al., 
2005) with a local marine correction curve of 290 ± 35 for dates ob
tained from shell (Stuiver and Reimer, 1993). All dates reported 
here are calibrated, as denoted by an asterisk. A chronology was 
developed based on the relationship between depth and the mid
Fig. 2. Component definitions for (a) CA-SLO-2 and (b) CA-SLO-585 based on the relation
relationship between depth and calibrated years BP. Components appear in shaded grey
points of the calibrated radiocarbon dates. Components were then 
contextually situated based on the regional chronology of Jones 
et al. (2007). While this technique cannot increase the chronolog
ical precision of the components, which is often reduced in these 
open-air middens as a result of post-depositional mixing, it does 
accurately categorize components in a less biased way than simply 
lumping faunal remains by cultural time period. Moreover, this ap
proach attempts to define the unit of analysis (the component) at 
the smallest scale allowed by the chronological controls in order 
to avoid problems associated with artifactual patterns that may re
sult from temporal averaging (Lyman, 2003; Jones and Codding, 
2010). 

For the two multi-component sites (CA-SLO-2 and CA-SLO-585), 
calibrated midpoint (years BP) values were plotted against mini
mum depth and the relationship was fitted with a smoothing 
spline (k = 10,000; see Fig. 2). Two extreme outliers were excluded 
from the CA-SLO-2 dates. The spline essentially describes the rela
tionship between depth and date by interpolating unknown values 
and without making any strong assumptions about rates of depo
sition. The spline and associated radiocarbon dates were used to 
determine the vertical extent of each occupational deposit in 
1000 and 2000 year increments for CA-SLO-2 and CA-SLO-585 
respectively. One exception was the 500 BP* component at CA
SLO-585, which overlaps with the same component at CA-SLO-2. 
Because of this, these two components were aggregated to repre
sent about the last 1000 years of occupation (the Late Period). 
The defined components relative to time and depth are shown in 
Fig. 2. Table 1 provides a summary of each temporal component 
by depth. Each faunal element was assigned to a corresponding 
1000 or 2000 year period based on depth. For all subsequent anal
yses, each time period was plotted at the midpoint value (e.g., 
1000–2000 BP* is plotted at 1500 BP*). The midpoint for each com
ponent differs, thus each component is referenced by its associated 
calibrated midpoint in years BP*. 

As the assemblage from CA-SLO-9 represents a single compo
nent dating to the Middle–Late Transition Period (see Codding 
and Jones, 2006, 2007a; Codding et al., 2009), and because this 
time period was lacking from both of the Diablo Canyon sites 
(see Jones et al., 2008a, 2009), data from CA-SLO-9 were plotted 
at the 1000 BP* point as it represents the transition between the fi
nal Middle period component centered at 1500 BP* and the Late 
Period component centered at 500 BP*. 

Zooarchaeological methods, measures and models 

All bird, mammal, and reptile remains were identified by Judith 
Porcasi using reference collections from the Los Angeles County 
Museum of Natural History and the Zooarchaeology Laboratory 
ship between depth (cm) and BP* midpoint. Fitted spline (k = 10,000) describes the 
. 
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Table 1 
Component definitions. 

No. Site Depth (cm) BP* midpointa BP* range Cultural periodb Geologic periodc 

1 CA-SLO-2 0–50 500 0–1000 Late Late Holocene 
1 CA-SLO-585 0–50 500 0–1000 Late Late Holocene 
2 CA-SLO-9 0–110 1000 700–1000 MLT Late Holocene 
3 CA-SLO-2 50–130 1500 1000–2000 Middle Late Holocene 
4 CA-SLO-2 130–180 2500 2000–3000 Middle Late Holocene 
5 CA-SLO-585 50–70 3000 2000–4000 Middle Late Holocene 
6 CA-SLO-585 70–90 5000 4000–6000 Early Middle Holocene 
7 CA-SLO-2 180–260 5500 5000–6000 Early Middle Holocene 
8 CA-SLO-585 90–170 7000 6000–8000 Millingstone Middle Holocene 
9 CA-SLO-2 260–300 7500 7000–8000 Millingstone Middle Holocene 

10 CA-SLO-2 300–330 8500 8000–9000 Millingstone Early Holocene 
11 CA-SLO-585 170–220 9000 8000–10,000 Millingstone Early Holocene 

a All dates refer to calibrated years before present. 
b Assigned following the cultural chronology by Jones et al. (2007). 

Assigned by dividing the Holocene (12,000 years) into three even periods. 
at the Cotsen Institute of Archaeology at University of California, 
Los Angeles. All specimens were identified to the most discrete tax
onomic level possible based on diagnostic features. In the absence 
of such features, bones were assigned to classes (e.g., Mammal, 
Aves, etc.) or subclasses (e.g., marine mammal, carnivore, etc.) 
and to size categories (small, medium, or large). In addition, the 
element, part of element, side, age, number, weight, and evidence 
of modification (i.e., burned, gnawed, cut, or worked) were, to 
the degree possible, recorded for each specimen. The age of speci
mens was determined by reference to the degree of epiphyseal fu
sion: detached epiphyses and diaphyses lacking epiphyses were 
classified as juvenile, diaphyses with partially fused epiphyses 
were considered sub-adult and fully fused epiphyses were classi
fied as adult. Data were entered into Microsoft AccessTM. Tabular 
data from each site were then compiled in a database where each 
layer for each site was linked with an associated temporal position 
determined by radiocarbon dates (see above). 

Before the datasets were evaluated relative to the three alterna
tive hypotheses, assemblages were evaluated to determine if pat
terning could be the result of sample size or density mediated 
attrition. The effect of sample size on zooarchaeological prey abun
dance was examined by comparison with the total NISP for each 
component. The effect of density mediated attrition was examined 
following Grayson (1988). Bulk density values from Lyman (1984, 
1985) were assigned to each non-repeatable artiodactyl element 
for each component unit level. Counts were based on the best rep
resented section elements (e.g., distal ends of phalanges, acetabu
lum of the innominate, the glenoid fossa of scapulas, etc.). Limb 
shafts were excluded and only the vertebral body (or centrum) 
and the articular ends of ribs were counted. Only the earliest com
ponent (9000 BP*) from CA-SLO-585 was excluded from the analy
sis because it lacked any elements to which bulk density values 
could be assigned due to small sample size. 

The second and main set of analyses involved deriving and test
ing predictions from each hypothesis within a framework of 
behavioral ecology. Two models were utilized: the prey choice 
model (PCM; see MacArthur and Pianka, 1966; Schoener, 1971; 
Stevens and Krebs, 1986), and a central place foraging model 
(CPF; see Metcalfe and Barlow, 1992; Orians and Pearson, 1979; 
see also Bettinger et al., 1997). Archaeological applications of each 
are reviewed and discussed by Bettinger (1991: pp. 83–130), Bird 
and O’Connell (2006), Grayson and Cannon (1999), Lupo (2007) 
and Shennan (2008). 
Zooarchaeological measures of prey choice 

In order to test predictions derived from the PCM, prey abun
dance and diversity indices were calculated for each temporal 
component. Following the logic outlined by Bayham (1979; see 
also Broughton, 1994), abundance indices were calculated for each 
component as the proportion of the number of specimens identifi
able (NISP) to the larger taxa relative to the number of specimens 
identifiable to the smaller taxa, or: 

P 
NISPa P P 

NISPa þ NISPb 

where NISPa represents the total number of bones identifiable to the 
larger taxa and NISPb represents the total number of bones identifi
able to the smaller taxa at some consistent taxonomic level. So to 
remain comparable with the variety of ways in which abundance 
indices have been calculated in previous work, and to make sure 
that diachronic trends are consistent across levels of taxonomic 
identification, this study calculates three indices: (1) the Odocoileus 
Index (OI) measures the ratio of all Odocoileus hemionus remains rel
ative to all O. hemionus plus Sylvilagus spp. remains; (2) the Artio
dactyl Index (AI) measures the same trade-off but at higher 
taxonomic level, examining the ratio of all Artiodactyl remains rel
ative to all artiodactyl plus Leporid remains; (3) the proportion of O. 
hemionus remains to the total NISP of economically significant ter
restrial taxa identified to the genus level (% Odocoileus), which mea
sures the trade-off between hunting deer or engaging in any other 
terrestrial hunting activity. These indices are designed to measure 
the trade-offs associated with searching (in a patch) and pursuing 
one prey type over another or the trade-offs between deciding to 
hunt one prey type over the other if they occur in two separate 
patches. The latter models prey choice analogous to Smith’s 
(1991) usage. 

Originally, abundance index values were presumed to measure 
the encounter rates with the higher-ranked prey type assuming 
that prey rank scales with prey body size (see Griffiths, 1975; Sim
ms, 1985; Ugan, 2005; Wilson, 1976; but see Stiner et al., 2000). 
Based on this logic, abundance indices should provide a proxy 
measure for overall return rate (see Bayham, 1979). However, re
cent research has shown that body size is not a reliable measure 
of post-encounter return rate due to the positive correlations be
tween prey body size, prey mobility, and pursuit failures (Bird 
et al., 2009; see also Lee, 1968; Sih and Christensen, 2001; Smith, 
1991; Winterhalder, 1981). If prey encounters are rare, a single 
failed pursuit may indeed lead to a failed overall foraging bout 
(and thus a return rate of 0); however, dense patches of larger prey 
may mitigate this risk as a forager’s overall probability of bout suc
cess (that is, returning with something) increases with each 
encounter and pursuit. In this sense, the probability of bout success 
with larger prey may be a more significant predictor of prey choice 
than simply post-encounter return rate. However, unlike a prey 
item’s post-encounter return rate, bout success is expected to 
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change across time and space, potentially with predictable results 
(see Bird et al., 2009; Bliege Bird et al., 2009). In order to deal with 
such issues of prey rank, zooarchaeological analyses should utilize 
multiple measures when evaluating predictions derived from the 
PCM, one of the most useful being assemblage diversity (Lupo, 
2007: 157–158; see also Dean, 2007). 

Margalef’s Index and Simpson’s Index were calculated from the 
economically significant terrestrial fauna (Table 1), which excludes 
potentially invasive burrowing rodents; each index corresponds to 
the two commonly measured components of diversity: richness (S) 
and evenness (D) respectively (see Magurran, 1988, 2004). Marga
lef’s index is essentially the number of taxa in an assemblage (S or 
RTAXA, see Grayson, 1984; Lupo, 2007) with control for sample 
size effects. Evenness measures the degree to which the species 
in an assemblage are equally represented; its opposite, sometimes 
referred to as dominance, is interpreted as the degree to which an 
assemblage is dominated by a single species. Simpson’s index is 
ideal for relatively small samples as it makes no assumption about 
the underling distribution of the population from which the sam
ple was drawn, moreover it has an intuitive interpretation: the 
probability that two individuals randomly drawn from the sample 
will belong to different species (see Magurran, 2004). Simpson’s in
dex was calculated with the following equation: 

ni½ni � 1�
D ¼ 

N½N � 1� 

where ni equals the number of individuals in the ith species and N 
equals the total number of individuals (Magurran, 2004). In order to 
have the index value increase with evenness, it is typically repre
sented as 1/D. Magurran (2004:239) provides a worked out 
example. 

The basic prediction derived from the PCM states that if foragers 
experience declines in encounter rates (or perhaps bout success 
rates) with higher-ranked prey, then foragers should widen their 
‘‘diet breadth” (the evenness component of diversity) by incorpo
rating lower-ranked items into the diet. This also holds true if we 
consider the key variable to be variability in hunting bout success. 
This prediction avoids the troubles with ranking prey as a more di
verse diet should correspond with decreasing encounter (or bout 
success) rates with higher-ranked prey (whatever that prey may 
be) (see e.g., Dean, 2007). While this approach seems to work 
(Jones, 2004), because diversity measures lack any measure of 
rank, they alone are problematic since prey ranking is central to 
the PCM (Winterhalder and Bettinger, 2010; see also Madsen, 
1993; but see Broughton and Grayson, 1993). However, if evenness 
indices are highly correlated with changes in the relative abun
dance of larger prey, then the changes in large prey may be symp
tomatic of overall trends affecting human subsistence patterns, 
including but not limited to, lower overall encounter rates with 
highly ranked prey. In essence, diachronic correlations between 
abundance index values and the evenness component of diversity 
can be thought of as a diagnostic test to determine whether or 
not the prey in question (the sole numerator of the abundance in
dex) is highly ranked. 
Zooarchaeological measures of central place foraging 

While considerations of prehistoric prey choice outline the 
search and handling components of foraging, understanding pre
historic foraging decisions often requires an understanding of the 
processing and transport components of resource acquisition. To 
this end, research here utilized a CPF model. Building on Orians 
and Pearson (1979), Metcalfe and Barlow (1992; alternatively see 
Bettinger et al., 1997) developed a formal model examining the 
trade-offs human foragers face when attempting to transport re
sources from an acquisition location back to a home base. The basic 
model assumes that a given forager’s goal is to maximize the rate 
at which resources are delivered to a central place. Depending on 
the distance (travel time), the number of foragers and the size 
and character of the resource, foragers must decide whether to re
turn home with an unprocessed resource (bulk transport) or differ
entially process resources in the field prior to transport (field 
processing and partial discard). As different parts of the same plant 
or animal resource vary in their potential food utility (e.g., bone vs. 
meat), the model predicts that if foragers are trying to maximize 
the utility of a single load returned home, they should differentially 
process low utility parts (leaving them at the acquisition site) and 
transport high utility parts home. When the distance from the 
acquisition point is large, the model predicts that foragers will dif
ferentially process and discard elements to a higher extent than 
when distances are short. When distances are very short, the mod
el predicts that foragers will field process to the lowest extent pos
sible and make multiple trips to the central place. Cannon (2003) 
incorporated elements of a central place foraging model into a prey 
choice model to develop his central place forager prey choice mod
el. Relying on two archaeologically visible variables (bone counts 
and utility value of bone elements), the model provides a tool for 
examining both the encounter rates with high ranked prey through 
abundance indices and the time foragers were required to travel in 
order to return the acquired prey to a central place. 

The utility of a given element is calculated through Metcalfe 
and Jones’s (1988) Standardized Whole Bone Food Utility Index 
or (S)FUI (see also Binford, 1978). Through an examination of 
(S)FUI values, differential field processing should be reflected at 
the central place by an overall increase in mean (S)FUI, represent
ing the differential deposition of high utility parts. Trends in the 
opposite pattern (i.e., a decrease in (S)FUI values) are also indica
tive of differential butchering, possibly resulting from the removal 
of high value meat from high value bone in the field (see Lupo, 
2001, 2006; O’Connell et al., 1988). To test this prediction, (S)FUI 
values were assigned to each non-repeating artiodactyl element 
or element complex per unit level following Cannon (2003). As
with bulk density values, values were assigned only to the best 
represented section of a given element. One component (9000 
BP*) lacked any artiodactyl specimens to which (S)FUI values could 
be assigned, and two others (5000 BP* and 8500 BP*) had only two 
each, all of these were excluded from further analysis. While (S)FUI 
values require additional refinement (see Lupo, 2006), comparing 
mean (S)FUI values between multiple components through time 
or space can be a useful relative measure of how butchering and 
transport decisions vary. Since, variation in (S)FUI values may ulti
mately be the product of density mediated attrition (Grayson, 
1984, 1989; Lyman, 1984, 1985), the effect of bone density on pat
terns in (S)FUI values needs to be controlled (see above). 

Statistical methods 

As ordinary least squares (OLS) regression requires that the 
dependent variable is an unbound, normally distributed continu
ous variable, it is often an inappropriate model to use with archae
ological data. The typical alternatives adopted in many 
zooarchaeological studies are rank order tests (e.g., Spearman’s 
rho [q]). However, these tests unrealistically rank cases, losing con
tinuous data in the process. To avoid the limitation of rank order 
tests, we utilized generalized linear models (GLM) with a specified 
distribution family (or error structure) and link function. When the 
dependent variable is bound between an upper and lower limit 
(e.g., between 0 and 1), as is the case for all proportional data 
and for most faunal indices of abundance and diversity, a binomial 
family GLM was used with a logit (or logistic) link function (see 
Crawley, 2007:513–526; 569–609; Faraway, 2006; Kieschnick 



Table 2 
Summary of economically significant terrestrial fauna per component (BP* midpoint). 

Class Family Taxon Common name 500 1000 1500 2500 3000 5000 5500 7000 7500 8500 9000 

Reptilia Bufonidae Bufo boreas Western toad 0 0 1 0 0 0 0 0 0 0 0 

Amphibia Testudinidae Clemmys marmorata Western pond turtle 2 0 13 0 0 0 0 0 1 0 0 

Aves Accipitrinae 
Corvidae 
Mimidae 
Phasianidae 
Tytonidae 

Aquila chrysaetos 
Corvus brachyrhynchos 
Mimus polyglottos 
Callipepla californica 
Tyto alba 

Golden eagle 
Crow 
Mocking bird 
California quail 
Barn owl 

0 
0 
0 
0 
0 

0 
0 
1 
0 
0 

1 
2 
0 
2 
1 

0 
1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

Mammalia Leporidae 

Castoridae 

Lepus californicus 
Sylvilagus spp. 
Castor canadensis 

Jackrabbit 
Cottontail rabbit 
American beaver 

0 
38 

0 

1 
52 

0 

2 
185 

0 

0 
52 

0 

0 
2 
0 

0 
1 
0 

1 
64 

0 

0 
7 
0 

0 
23 

1 

0 
3 
0 

1 
13 

0 
Canidae 

Felidae 

Canis sp. 
Urocyon cinereoargenteus 
Vulpes vulpes 
Felis concolor 

Dog/Coyote 
Grey fox 
Red fox 
Puma 

14 
1 
0 
0 

13 
0 
0 
0 

73 
0 
0 
1 

11 
0 
0 
1 

3 
0 
0 
0 

0 
0 
0 
0 

7 
0 
1 
0 

0 
0 
0 
0 

4 
0 
0 
0 

1 
0 
0 
0 

2 
0 
0 
0 

Mustelidae 

Procyonidae 
Cervidae 

Lynx rufus 
Mephitis mephitis 
Taxidea taxus 
Mustela sp. 
Procyon lotor 
Cervus elaphus 
Odocoileus hemionus 

Bobcat 
Striped skunk 
American badger 
Weasel 
Racoon 
Elk 
Black-tailed Deer 

1 
2 
2 
0 
4 
0 

213 

1 
1 
0 
0 
3 
0 
7 

6 
1 
4 
1 
5 
2 

522 

1 
0 
0 
1 
2 
0 

209 

0 
0 
1 
0 
0 
0 
9 

0 
0 
0 
0 
0 
0 
9 

3 
0 
0 
0 
1 
0 

198 

0 
0 
0 
0 
0 
0 

18 

0 
0 
0 
0 
0 
1 

49 

0 
0 
0 
0 
0 
0 
4 

1 
0 
0 
0 
0 
0 
4 

Total 277 79 822 278 15 10 275 25 79 8 21 
and McCullough, 2003). Following Menard (2002), likelihood ratios 
(R2 

L ) were calculated for each binomial-logit GLM as the -2 log-like
lihood (-2LL) value of the difference (GM , or  v2) between the -2LL 
value of null model (D0, which includes only the intercept) and the 
-2LL value of the full model (DM, which includes the intercept plus 
the independent variable or variables) divided by the -2LL value of 
the null model (D0); in other words, R2 

L ¼ GM =D0. In this form, RL 
2 

values are equal to the reduction in unexplained deviance resulting 
from the inclusion of the independent variable(s) and can be inter
preted as analogous to r2 values in OLS regression. For each GLM 
the appropriate weights (or observations) were assigned for each 
component as the total number of possible faunal elements (e.g., 
for OI values, the total NISP of terrestrial fauna identified at the 
genus level). 

Chi-square (v2) tests were also utilized to assess the differences 
in bone counts across assemblages. A Monte Carlo simulation (with 
2000 iterations) was used to generate possible cell counts under 
the conditions imposed by the structure of the actual data (i.e., 
the number of cells plus row and column totals), from which a 
v2 value is calculated and an alpha (p) value assigned based on 
comparing the observed values to the iterated simulation (Hope, 
1968; R Development Core Team, 2009). Secondary contingency 
table analysis examined the contribution of each individual cell 
count to the overall difference in the contingency table. To deter
mine the contribution of each cell count to the significance of the 
v2 test, the probability that each cell count could occur was calcu
lated based on expected values generated from row and column to
tals. Drawing on the binomial probability theorem, this approach 
calculates the probability (P) of some observed count, or ‘‘success” 
(k) occurring in some number of trials (n) when the probability of 
‘‘success” on any one trial is known (p).2 The probability of a count 
occurring can be estimated by using expected counts generated from 
row and column totals, as in a v2 test (Everitt, 1977). Grayson and 
Delpech (2003) perform a similar analysis following Everitt 
(1977:46–48), but here alpha values were calculated by a function 
written in R (R Development Core Team, 2009). The benefit of this 
2 This analysis was executed in R (R Development Core Team, 2009) using a 
function written by Ian G. Robertson (Stanford University) based on a suggestion by 
James Allison. The same analysis can be done with the TWOWAY function in Kintigh’s 
(2009) Tools for Quantitative Archaeology. 
approach is its ability to discriminate between multiple bone counts 
that contribute to variation in a single measure, of particular interest 
in this case, being the differential effect of deer (or artiodactyl) and 
rabbit (or leporid) bone on indices of taxonomic abundance. 

In other cases where the means from two non-normally distrib
uted samples (or components) with unequal sums were being 
compared, a Kruskal–Wallis rank sum test was performed (R 
Development Core Team, 2009). As this test makes no assumptions 
about the distribution of cases, it is more appropriate than com
mon tests (e.g., a t-test) for data that cannot be shown or assumed 
to be normally distributed. All analyses were performed in JMP 7.0 
(SAS Institute Inc. 2007) and/or R 2.6.2 (R Development Core Team, 
2009). 
Results 

Of 18,432 complete bones or bone fragments, 3102 non-intru
sive elements were identified to the genus or species level. Of 
these, 1889 represented terrestrial fauna (Table 2). These data indi
cate that O. hemionus remains dominate all but two of the compo
nents (9000 BP* and 1000 BP*; Table 3). Prior to testing the 
hypotheses proposed above, four diagnostic tests of the dataset 
were run: the first determined if trends in deer remains are consis
tent across taxonomic levels of identification, the second examined 
whether or not trends in the relative abundance of deer are corre
lated with the overall diversity of the resources taken, and the 
third and fourth tested to see if the relative trends in deer bone 
counts are only a function of sample size or density mediated 
attrition. 

There is a significant positive relationship between OI and AI 
(R2 

L ¼ 0:0843, p < 0.0001; Table 4), indicating that patterns in the 
abundance of deer relative to rabbits are consistent across taxo
nomic levels of identification. There is also a strong positive rela
tionship between OI and the abundance of deer remains relative 
to all economically significant terrestrial faunal remains (% Odocoi
leus; R2 

L ¼ 0:0820, p < 0.0001) suggesting that the variation in deer 
remains is consistent relative to all other terrestrial taxa, not just 
rabbit remains. These results indicate that the diachronic patterns 
observed in these data are not an artifact of a single index. 



Table 3 
Abundance and diversity indices for economically significant terrestrial fauna per component. 

Index Measure 500 1000 1500 2500 3000 5000 5500 7000 7500 8500 9000 

OI Odocoileus/Sylvilagus 0.85 0.11 0.74 0.80 0.82 0.90 0.76 0.72 0.68 0.57 0.24 
AI Artiodactyl/Leporid 0.91 0.22 0.82 0.86 0.88 0.94 0.84 0.85 0.76 0.67 0.30 
% Odocoileus Odocoileus/sum NISP 0.76 0.09 0.64 0.75 0.6 0.9 0.72 0.72 0.62 0.5 0.19 
S (RTAXA) Diversity (richness) 9 8 17 8 4 2 7 2 6 3 5 
Margalef’sa Diversity (richness) 1.60 1.60 2.38 1.24 1.11 0.43 1.07 0.31 1.14 0.96 1.31 
(1/Simpson’s)a Diversity (evenness) 1.6 2.2 2.2 1.7 2.6 1.3 1.7 1.7 2.1 3.1 2.5 

a See Magurran (1988, 2004). 

Table 4 
Summary of results from the generalized linear models. 

Dependent variable Independent variable DF Estimate v2 (GM) D0 R2 
L 

p 

OI AI 1 5.18 184.75 2192.81 0.0843 <0.0001 � 
OI % Odocoileus 1 4.92 179.86 2192.81 0.0820 <0.0001 � 
OI Simpson’s 1 �1.87 197.26 2192.81 0.0900 <0.0001 � 
OI Total NISP 1 <0.01 0.18 2192.81 0.0001 0.6686 
Mean bone density BP* midpoint 1 <0.01 0.92 2509.63 0.0004 0.3368 
Mean bone density Mean (S)FUI 1 <0.01 0.04 650.86 0.0001 0.8499 
OI BP* midpoint 1 <0.01 2.96 2192.81 0.0013 0.0856 
OIa BP* midpoint 1 <0.01 14.10 1996.39 0.0071 0.0002 � 

a Model with the Middle–Late Transition component (1000 BP*) excluded from the analysis. 

Table 5 
Mean bulk artiodactyl bone density per component. 

BP* n Mean bulk densitya 

500 73 0.40 
1000 2 0.51 
1500 203 0.40 
2500 88 0.38 
3000 4 0.33 
5000 3 0.39 
5500 73 0.39 
7000 13 0.37 
7500 26 0.38 
8500 1 0.25 
9000 0 – 

a Values assigned following Grayson (1988). 
As predicted by the PCM, the evenness component of diversity 
(Simpson’s Index) has a significant and negative effect on OI 
(R2 

L ¼ 0:0900, p < 0.0001). This shows that when the relative abun
dance of deer decreases relative to rabbits, the overall evenness of 
terrestrial prey acquired increases. In other words, when the rela
tive abundance of deer declines, foragers are not focusing on an
other single species, but on a more even distribution of many 
species. This suggests that, at least in this case, deer were highly 
ranked prey because a decline in their relative abundance leads 
to an overall increase in proportion of all other terrestrial prey ta
ken on encounter. Whether this is the result of increasing bout fail
ures with deer or simply fewer encounters, this result matches the 
prediction derived from the PCM, showing that a decrease in the 
relative abundance of highly ranked prey is also associated with 
an increasing diversity (evenness) in the number of resources 
taken. 

If patterns in the relative abundance of large game are only epi
phenomenal to problems with sample size, then measures of prey 
abundance should exhibit strong co-linearity with total assem
blage size (Grayson, 1981, 1984; see also Orton, 2005). Here, there 
is no significant relationship between sample size (total NISP) and 
OI (R2 

L ¼ 0:0001, p = 0.7156; Table 4), indicating that patterns in the 
abundance of large game are not an artifact of sampling. 

If variation in the relative abundance of large prey is due to 
taphonomic processes, then the mean density of artiodactyl bones 
in should increase with age (Grayson, 1988, 1989; Lyman, 1984, 
1985, 1994). An analysis of variance on 486 non-repeatable ele
ments indicates that there is not a significant relationship between 
mean artiodactyl bone density and time (p = 0.7277; see Table 5). 
As these data are technically non-parametric (Shapiro–Wilk 
W = 0.92, p < 0.0001), this result was also checked with a bino
mial-logit GLM (R2 

L ¼ 0:0004, p = 0.3368), which confirmed the re
sult. There was also no significant relationship between (S)FUI 
values and mean bulk density of artiodactyl bones (R2 

L ¼ 0:0001, 
p = 0.8499). This suggests that density mediated attrition does 
not contribute significantly to temporal variation in either the 
abundance of artiodactyls or variation in (S)FUI values. 
Hypothesis 1: resource depression 

The logic of the resource depression hypothesis is derived from 
the PCM, which, when supplemented with the assumption that 
prey body size scales with return rate (see above), leads to the pre
diction that large prey (in this case deer) should always be pursued 
on encounter to the exclusion of other prey until the encounter 
rate with large prey declines to a point where the overall return 
rate (search and pursuit; E/T) is lower than the post-encounter 
(e/h) return rate for smaller prey; that is, when the inclusion of 
lower ranked prey increases the overall return rate. If human pre
dation causes large prey populations to decline, then this process 
should happen overtime as a function of increased hunting pres
sure. Archaeologically, this hypothesis has been tested with bone 
count data, large prey age structure, and through an examination 
of differential butchering. 

The first prediction of the resource depression hypothesis (P1a) 
states that if the abundance of large game varies in response to hu
man predation pressure, then sustained human exploitation 
should lead to a decrease in the proportion of large prey remains 
relative to small prey remains over time (e.g., Bayham, 1979; 
Broughton, 1994; Cannon, 2000, 2003; Janetski, 1997; see also 
Grayson, 2001). A test of this prediction shows that there is not a 
significant relationship between Odocoileus index values and time 
(R2 

L ¼ 0:0013, p < 0.0856; Table 4), indicating that there is no evi
dence for a decrease in the proportion of deer remains to rabbit re
mains through time. In fact, a close inspection of Fig. 3 suggests 
that if the Middle–Late Transition (1000 BP*) component were ig
nored, the overall trend throughout the Holocene would be a gen
eral increase in the abundance of deer in the Early–Middle 



Fig. 3. Odocoileus index values per component plotted by years BP* midpoint. The relationship is described by a loess regression (a = 0.5) with predicted values fit per year 
(solid black line) and 95% confidence intervals based on the standard error of the fit (dashed black lines). 

Table 6 
Representation of artiodactyl elements identifiable by age per component. Counts are 
observed values, expected values were generated based on the v2 test. 

BP* Adult Juvenile Sub-adult Total
 

Count Expected Count Expected Count Expected
 

500 102 101.66 15 13.63 4 5.71 121 
1000 4 4.20 1 0.56 0 0.24 5 
1500 352 339.41 35 45.52 17 19.07 404 
2500 130 133.58 18 17.91 11 7.51 159 
3000 6 5.04 0 0.68 0 0.28 6 
5000 4 4.20 1 0.56 0 0.24 5 
5500 144 150.38 24 20.17 11 8.45 179 
7000 10 12.60 4 1.69 1 0.71 15 
7500 28 28.56 6 3.83 0 1.61 34 
8500 1 0.84 0 0.11 0 0.05 1 
9000 2 2.52 1 0.34 0 0.14 3 

Total 783 105 44 932 

v2 = 17.971, p = 0.5152. 

Table 7 
Summary of artiodactyl (S)FUI values per component and the results of a Kruskal– 
Wallis test comparing (S)FUI values from each component to the (S)FUI values from a 
null (complete) set of elements. 

BP* N Mean (S)FUI v2 DF P 

500 53 29.40 9.75 1 0.0018* 

1000 2 21.10 1.54 1 0.2144 
1500 172 37.94 1.38 1 0.2400 
2500 75 36.46 2.80 1 0.0940 
3000 3 57.97 0.64 1 0.4242 
5000 1 37.00 – – – 
5500 62 39.02 0.80 1 0.3713 
7000 7 32.21 0.80 1 0.3715 
7500 20 41.85 0.00 1 0.9951 
8500 1 19.40 – – – 
9000 0 – – – – 

Complete 118 38.22 – – – 

Note: because the components centered at 5000 BP* and 8500 BP* only had a single 
specimen to which (S)FUI values could be assigned and the 9000 BP* component 
had none, they were excluded from this analysis. 
Holocene with relative stability through the Middle–Late Holo
cene; the opposite of the result predicted by the resource depres
sion hypothesis. Indeed, if the Middle–Late Transition component 
is excluded from analysis, the proportion of deer relative to rabbits 
(OI) increases significantly as a function of time (BP*; R2 

L ¼ 0:0071, 
p = 0.0002; see Table 4). This finding is not entirely unexpected gi
ven Whitaker’s (2008, 2009) recent work which suggests that, 
based on their life-history traits, deer may be much less suscepti
ble to anthropogenic resource depression than previously thought. 
With the Middle–Late Transition component excluded, this trend 
resembles at least superficially patterns described by Hildebrandt 
and McGuire (2002) who explain the departure from the predic
tions of the resource depression hypothesis with reference to the 
prestige hunting hypothesis; however, further analysis is required 
to examine if deer acquisition costs also increase collinearly with 
the increase in deer relative to rabbits (see below). 

Broughton (1995, 1997, 1999, 2002) and others (Stiner et al., 
2000; Butler, 2000) suggest that an examination of prey age struc
ture can also provide or corroborate evidence of resource depres
sion: if prey age profiles indicate a significant shift in the 
exploited age structure of prey, then these changes are probably 
due to human overexploitation leading to a change in the available 
prey. A test of the second resource depression hypothesis (P1b) 
supports the results from P1a, showing that there is no significant 
change in the age structure of artiodactyls exploited through time 
(v2 = 17.971, p = 0.5152; Table 6). This result shows that the age 
structure of deer that hunters acquired did not vary through time 
any more than could be due to chance. 

Cannon (2000, 2003) proposed a third measure of resource 
depression, suggesting that anthropogenic overexploitation could 
be ‘‘invisible” when examined by bone counts, but could be identi
fied by the food utility of elements deposited in archaeological 
sites. Based on the logic of the PCM and CPF models, (P1c) if local 
resource depression forces foragers to travel further to acquire 
large prey, an acquired carcass will be field processed (butchered) 
to a greater extent in order to maximize a single load transported 
back to a central place, resulting in an increase in (S)FUI values. The 
results of a Kruskal–Wallis test show that the mean (S)FUI values 
per component differ significantly from one another (v2 = 14.69, 
DF = 7,  p = 0.0402; Table 7). However, this result is entirely depen
dent on the Late Period component centered at 500 BP*. When this 
component is excluded from the analysis, the other components do 
not differ significantly from one another (v2 = 5.59, DF = 6,  
p = 0.4702), nor do they differ from a null set of artiodactyl ele-
ments (i.e., a complete skeleton; see Table 7). This suggests that 
prehistoric foragers along the Pecho Coast did not differentially 
butcher and transport artiodactyl carcasses until the Late Period, 
when mean (S)FUI values are significantly lower than a null set 



of elements (v2 = 9.75, DF = 1,  p = 0.0018; see Table 7). This implies 
that during the Late Period, foragers were selectively butchering 
and returning lower utility artiodactyl remains to the central place 
than would be expected by chance alone. While this result is the 
opposite of Cannon’s (2003) resource depression prediction, it is 
still indicative of differential processing, potentially resulting from 
foragers stripping high value meat from high value bones in order 
to transport carcasses over longer distances (see Lupo, 2001, 2006; 
O’Connell et al., 1988). This suggests that artiodactyl populations 
were being locally suppressed by human hunting during the Late 
Period. 

Hypothesis 2: prestige hunting 

Cannon’s (2003) model also provides a set of predictions that 
can be used to test the prestige hunting hypothesis. Initially build
ing on ethnographic work by Hawkes (1991, 1993) and others, 
Hildebrandt and McGuire (2002, see also Hildebrandt and 
McGuire, 2003) proposed that the abundance of large prey varies 
through time in response to changes in social organization which 
alter the rewards associated with acquiring large prey. Later cast 
in the framework of Costly Signaling Theory (McGuire and Hilde
brandt, 2005; McGuire et al., 2007; see Bliege Bird, 2007; Bliege 
Bird and Smith, 2005; Bliege Bird et al., 2001; Hawkes and Bliege 
Bird, 2002; Smith and Bliege Bird, 2000; Smith, 2004; Smith 
et al., 2000; Zahavi, 1975), the prestige hunting hypothesis predicts 
that an increase in group size or the frequency of social aggrega
tions will lead to a synchronous increase in the benefits individuals 
gain from acquiring large game: as group size increases, a success
ful hunters’ audience increases as well, providing a greater poten
tial payoff for signaling strategies. While this may lead to an overall 
decrease in the archaeological abundance of large prey (see Cod-
ding and Jones, 2007b; Jones and Codding, 2010), it is hypothesized 
by Hildebrandt and McGuire (2002, 2003; McGuire and Hilde
brandt, 2005) that the relative abundance of large taxa will in
crease, leading in turn to a relative increase in acquisition costs 
because foragers engaged in a signaling strategy should differen
tially seek out larger prey, ultimately having to travel further to 
encounter artiodactyls (McGuire et al., 2007). As predicted by the 
CPF, foragers should then spend a greater amount of time differen
tially processing acquired prey to increase the utility of a single 
load returned to the central place. In the terms of Cannon’s 
(2003) model, (P2a) an increase in the relative abundance of large 
prey coupled with (P2b) an increase in mean (S)FUI could support 
this hypothesis (see also Jones et al., 2008a). 

As shown above, there is no significant correlation between OI 
and time, showing that there is no diachronic increase in OI as pre
dicted by the prestige hunting hypothesis (see Table 4). However, 
as noted above, when the decrease in OI associated with the Mid-
dle–Late Transition (1000 BP*) component is ignored, the trend 
does show a significant increase in the proportion of deer relative 
to rabbits through time. This is marked by a low abundance of deer 
in the two early Holocene components that later increases in the 
Early–Mid Holocene. Although this general trend is predicted by 
the prestige hunting hypothesis (Hildebrandt and McGuire, 
2002), it could also be a function of environmental changes that 
benefited deer populations in the leading to a higher encounter 
rate with deer (Byers and Broughton, 2004). To support the pres
tige hunting hypothesis, the data would have to show an increase 
in deer acquisition (i.e., an increase in OI) in despite of high acqui
sition costs. 

However, as shown through the analysis of butchering and 
transport practices above, there is no change in acquisition costs 
through these time periods. In fact, the deer remains deposited 
during this transition do not differ significantly from a complete 
deer carcass, suggesting that deer were only acquired at low costs 
within a distance where the transport of nearly entire carcass was 
feasible. This implies that foragers acquired deer when locally 
available near their central place, and did not incur greater costs 
to travel long distances (passing over other resources in the pro
cess) to differentially acquire deer. 

The only evidence for differential butchering possibly consis
tent with the prestige hunting hypothesis occurs not during the 
Early–Mid Holocene increase in deer, but in the Late Holocene. 
The Late Period component (centered at 500 BP*) shows evidence 
of differential butchering and transport, suggesting a more logistic 
hunting strategy than during other time periods (Table 7). This also 
implies greater acquisition costs during this time period. While not 
proving that male hunters gained prestige from hunting large 
game in the daily business of foraging, these data suggest that for
agers were acquiring deer at a higher overall cost; if such costs are 
paired with an increase in deer remains relative to rabbits, this 
may support the prestige hunting hypothesis. Further clarification 
of these trends may be found through tests of the environmental 
stochasticity hypothesis. 
Hypothesis 3: environmental stochasticity 

If the abundance of large prey varies as a result of large-scale 
environmental factors, then relative measures of prey abundance 
should scale with stochastic fluctuations in paleoclimate that dif
ferentially impact one prey type over another. Contemporary stud
ies of deer ecology have shown that population densities decline 
with prolonged aridity (Lawrence et al., 2004; Mackie et al., 
1982, 2003). Rabbits, like most other fast-breeding small mam
mals, are less affected by large-scale trends in precipitation than 
slow-breeding ungulates. If this is the case, (P3) then particularly 
arid or seasonally arid time periods should be associated with 
archaeological signatures that show significantly less deer and sig
nificantly more rabbit remains resulting from declines in the 
encounter rates with deer. Based on previous research in western 
North America, this should be the case in the Early to Mid Holocene 
(see Byers and Broughton, 2004; Byers et al., 2005; Kennett et al., 
2007) and during the Middle–Late Transition component centered 
at 1000 BP* which is associated with the Medieval Climatic Anom
aly (aka the Medieval Warm Period; see Brunelle and Anderson, 
2003; Graumlich, 1993; Jones and Schwitalla, 2008; Jones et al., 
1999; Kennett and Bottman, 2006; Pilloud, 2006; Raab and Larson, 
1997; Stine, 1994, 2000; Wiess, 2002). 

Examining the probability that each deer and rabbit bone count 
would occur shows that both predictions are upheld, with the ear
liest Holocene and Middle–Late Transition components showing 
lower deer bone counts and higher rabbit bone counts than would 
be expected by chance alone (Table 8). These results show that OI 
values for earliest component centered at 9000 BP* are low as re
sult of significantly fewer deer remains than expected (p = 0.005) 
and significantly more rabbit remains than expected (p = 0.0007), 
suggesting that climate differentially impacted deer populations 
in the Early Holocene. However, the relative abundance of deer in
creases dramatically after this component. That the predicted in
crease in deer abundance occurred much earlier along the Pecho 
Coast than elsewhere in western North America (see e.g., 
Broughton et al., 2008), suggests an important local difference in 
precipitation, water availability or seasonality; as others have sug
gested (see Hockett, 2005; Jones and Waugh, 1997; Zeanah, 2004) 
such local variability may be more important than large scale 
trends. The second specific prediction was also met for the Mid-
dle–Late Transition component centered at 1000 BP*, which shows 
significantly fewer deer bones than expected (p < 0.0001) and sig
nificantly more rabbit bones than expected (p < 0.0001). This sug
gests that OI values during this time represent the impact of the 



Table 8 
Observed, expected, standardized residuals and binomial probabilities associated with counts of deer (Odocoileus hemionus) and rabbit (Sylvilagus spp.) bones per component. 
Significant values are marked with an asterisk. The direction (positive or negative) of the significant trends are shown by the standardized residuals. 

BP* Deer (Odocoileus hemionus) Rabbits (Sylvilagus spp.) 

Observed Expected Residual Probability Observed Expected Residual Probability 

500 
1000 
1500 
2500 
3000 
5000 
5500 
7000 
7500 
8500 
9000 

213 
7 

522 
209 

9 
9 

198 
18 
49 

4 
4 

185.34 
43.57 
522.05 
192.72 
8.12 
7.38 
193.46 
18.46 
53.17 
5.17 
12.55 

2.03 
�5.54 
�0.00 
1.17 
0.31 
0.59 
0.33 
�0.11 
�0.57 
�0.51 
�2.41 

0.0187 
<0.0001 
0.5107 
0.1144 
0.4246 
0.3220 
0.3755 
0.5190 
0.3104 
0.4111 
0.0050 

� 
� 

� 

38 
52 

185 
52 

2 
1 

64 
7 

23 
3 

13 

65.66 
15.43 
184.95 
68.28 
2.88 
2.62 
68.54 
6.54 
18.83 
1.83 
4.45 

�3.41 
9.31 
0.00 
�1.97 
�0.52 
�1.00 
�0.55 
0.18 
0.96 
0.86 
4.06 

0.0001 
<0.0001 
0.5098 
0.0223 
0.4510 
0.2641 
0.3143 
0.4799 
0.1947 
0.2777 
0.0007 

� 
� 

� 

� 

v2 = 165.06, p = 0.0005. 
Medieval Climatic Anomaly on local deer populations which 
caused a decline in hunters’ encounter and success rates. 

Two other statistically significant patterns, not clearly predicted 
by the environmental stochasticity hypothesis, also appear (see 
Table 8). The first significant pattern shows fewer rabbits than ex
pected at 2500 BP* (p = 0.0223) without a significant accompanying 
difference in deer remains. While significant, this trend does not 
appear to have a discernable interpretation when viewed in asso
ciation with other trends and does not have clear implications 
for any of the other hypotheses tested here; although, it could indi
cate that hunting bout success with deer during this time was so 
high that foragers spent little time pursuing rabbits. The other 
significant pattern occurs in the Late Period component centered 
at 500 BP*, where there are significantly more deer remains than 
expected (p = 0.0187) and significantly fewer rabbit bones than 
expected (p = 0.0001). When viewed in context with the evidence 
for differential butchering during this time period (Table 7) this 
result seems to support both the resource depression and the pres
tige hunting hypotheses which has interesting implications for the 
interactions between localized resource depression and the social 
role of hunting. 
Discussion and conclusion 

Analyses of the Pecho Coast assemblages suggest that dia
chronic patterns in deer abundance were neither a product of sam
pling size nor density mediated attrition. Moreover, the relative 
patterns in the importance of deer were robust across all levels 
of taxonomic identification and co-vary negatively with measures 
of evenness. As predicted by the PCM, this suggests that deer were 
a highly ranked prey item and/or that when hunting bout success 
with deer was relatively reliable, foragers spent little or no time 
pursuing other terrestrial resources. Of the three hypotheses pro
posed to explain diachronic variation in the abundance of large ter
restrial prey, findings suggest that climatically-mediated prey 
choice is the most significant factor. Throughout most of the Holo
cene, foragers along the Pecho Coast exploited a robust population 
of deer, but against this backdrop, three components stand out as 
anomalous. 

First, the component centered at 9000 BP* represents the behav
ior of some of the first inhabitants of this region. Data from this 
early Millingstone component is marked by relatively low deer re
mains relative to rabbits, a pattern that has been noted elsewhere 
in the region (Lebow et al., 2007; Stevens et al., 2004) and else
where in California (Erlandson, 1994; McGuire and Hildebrandt, 
1994; but see Hildebrandt and Carpenter, 2006:290). When the 
data showing significantly fewer deer remains and more rabbit re
mains than expected is coupled with previous paleoenvironmental 
work, this pattern is best explained by evidence of climatically de
pressed deer populations, as suggested by other studies in western 
North America (e.g., Broughton et al., 2008; Byers and Broughton, 
2004; Byers et al., 2005); although, the subsequent increase in deer 
seems to occur earlier on the Pecho Coast than elsewhere in wes
tern North America. As there is no evidence for changes in settle
ment or mobility during this transition (Jones and Codding, 
2010; Jones et al., 2008a, 2009; Table 7), this change in the abun
dance of deer is probably due to local ecological differences that af
fected deer populations. However, as noted by other researchers, 
patterns in the Early Holocene do suggest a difference in foragers’ 
gender division of labor than what is evident during the Middle 
and Late Holocene; specifically, early California foragers may have 
experienced greater overlap between men’s and women’s prey 
choice due to the low abundance of larger prey (Hildebrandt and 
McGuire, 2002; Jones, 1996; McGuire and Hildebrandt, 1994; Zea
nah, 2004; but see Kuhn and Stiner, 2006). Immediately following 
this time period, the abundance of deer increases, and remains rel
atively stable for the majority of the Holocene until about 1000 BP* 

(see Fig. 3). 
The Middle–Late Transition occupation centered at 1000 BP* is 

the second component that stands out relative to all of the others. 
It is marked by the lowest OI values of all the assemblages, driven 
by both deer bone counts that are significantly lower than ex
pected and rabbit bone counts that are significantly higher than ex
pected (Table 8). As deer are impacted more severely than rabbits 
by droughts, this trend is interpreted as a local expression of the 
Medieval Climatic Anomaly; which has been shown to have severe 
impacts throughout California (Jones et al., 1999; Jones and 
Schwitalla, 2008). The restructuring of the terrestrial resource base 
caused by the Medieval Climatic Anomaly may also have driven 
foragers to acquire prey more frequently in marine patches, as sug
gested by other work along the California coastline where evidence 
shows that foragers relied increasingly on the marine environment 
to dampen the effects of a depressed terrestrial ecosystem (e.g., 
Jones and Kennett, 1999; Kennett, 2005; Kennett and Kennett, 
2000). Overall, these patterns suggest that the Medieval Climatic 
Anomaly initiated a dramatic shift in the available resources and 
perhaps altered human population densities, shifting conditions 
towards something similar to what foragers experienced in the 
Early Holocene. In response to these changes, it appears that coast
al California foragers rapidly adapted by altering their subsistence 
strategies to the new environment. Such environmental changes 
may also have influenced variation in gender division of foraging 
labor: if men were primarily responsible for acquiring deer and 
environmental conditions caused deer populations to collapse 
which reduced both encounter and bout success rates with deer; 



then men’s overall contribution to subsistence may have decreased 
(see Bliege Bird et al., 2009), or men may have targeted alternative 
resources. While men’s continued pursuit of deer may have been 
rewarded with increased social benefits (including prestige) due 
to an increase in acquisition costs, such a strategy could not have 
been maintained by a large portion of the population and thus, 
could not have contributed significantly to these faunal remains 
(see Codding and Jones, 2007b). 

Immediately following this interval of anomalous climate, con
ditions superficially return to the former pattern showing a high 
proportion of deer remains relative to rabbits. On closer inspection, 
however, the Late Period component centered at 500 BP* repre
sents the third atypical assemblage. During this time rabbit bone 
counts were significantly lower than expected and deer bone 
counts were significantly higher than expected. Moreover, (S)FUI 
values indicate that these bones were of lower overall food utility 
than a complete deer carcass, indicating higher transport and 
search costs. While variability in the previous time periods sup
ports the environmental stochasticity hypothesis, these changes 
in the final component suggest an interaction between the other 
two hypotheses. First, the changes in butchering practices suggest 
that foragers had to travel further in order to successfully acquire 
deer. This pattern may be a product of more permanent human set
tlements along the Pecho Coast in the Late Holocene (see Jones 
et al., 2008b) which either increased deer mortality rates, or led 
to behavioral resource depression where deer avoided areas fre
quented by human hunters (see Charnov et al., 1976). The bone 
count data suggests the latter, as foragers acquired more deer than 
expected during the late period, suggesting that any negative im
pact foragers may have had on deer populations was only a local 
phenomena and acquisition was still possible by incurring higher 
travel costs. Such costs may have been mitigated by increased so
cial benefits to those who could successfully acquire larger prey, as 
predicted by the prestige hunting hypothesis (Hildebrandt and 
McGuire, 2002; McGuire and Hildebrandt, 2005). These interac
tions suggest an interesting dynamic between ecological, demo
graphic and social factors where human populations depressed 
local deer populations, simultaneously increasing the benefits 
and costs of hunting deer. 

These combined impacts may be due to introduced technology 
that increased return rates or hunting bout success rates with deer. 
Grayson and Cannon (1999) discuss how archaeologists utilizing 
foraging models tend to hold the impacts of changes in technology 
on return rates constant through time, despite evidence for pro
found affects of technology on prey acquisition (e.g., Bettinger 
et al., 2006; Lupo and Schmitt, 2002, 2005; O’Connell and Hawkes, 
1984; O’Connell and Marshall, 1989; Winterhalder, 1981). As the 
Late Holocene marks dramatic changes in flake stone technology 
along California’s Central Coast, including changes in projectile 
point morphology suggesting the adoption of the bow and arrow 
(see Jones et al., 2007; Stevens and Codding, 2009), the unexpected 
increase in deer remains may be the result of changing return rates 
and/or pursuit success rates resulting from newly introduced 
weapon technology. However, this may require a better under
standing of how exactly changes in projectile technology affect 
hunting return and/or success rates with deer and other large 
ungulates. 

Other than these anomalous departures from the generalized 
Holocene pattern, the relative homogeneity of the other assem
blages has interesting implications for understanding prehistoric 
human–prey interactions. These data show that foragers along 
the Pecho Coast were able to exploit a large, stable population of 
deer throughout the Holocene without negatively impacting or 
suppressing their populations. However, this should not be taken 
as evidence of conservation-oriented behavior, especially since an 
extreme case of the opposite pattern is also evident in the faunal 
remains from these sites: human caused extinction of the flightless 
duck (Chendytes lawi; see Jones et al., 2008a,c). Rather, these results 
imply that even over long time periods, human–prey interactions 
involving large ungulate species may be more regulated by density 
independent factors (i.e., factors unrelated to predator–prey popu
lation dynamics) than density dependent ones (i.e., random exter
nal effects). Specifically, while we should predict that increases in 
human population densities and decreases in foraging mobility 
(effectively increasing the number of foragers per unit area) should 
negatively impact prey populations (see Winterhalder and Lu, 
1997), possibly leaving clear archaeological signatures of such a 
process (e.g., Stutz et al., 2009), we should also expect that differ
ent prey species should respond in different ways to human preda
tion depending on their behavior and life-history characteristics 
(Whitaker, 2008, 2009). Those species with relatively ‘‘faster” life 
histories should be less affected than those with ‘‘slower” ones. 
While deer should be more susceptible to overhunting than rab
bits, they may be less so than some marine mammals (e.g., Califor
nia sea lions [Zalophus californianus]) and even other terrestrial 
mammals (e.g., elk [Cervus elaphus]) which has important implica
tions for the predicted effects of human hunting on prey popula
tions (Whitaker, 2008, 2009). There may be requisite threshold 
levels in human population densities resulting in sustained preda
tion pressure before deer populations can be severely depressed by 
human hunting. Given that elk should be more susceptible to over-
exploitation than deer and that their populations did not disappear 
from regional archaeological faunas until ca. 1500 BP* (Table 1; see 
also Jones and Codding, 2010; Lebow et al., 2005), prehistoric 
human populations in the region may have not reached such a 
threshold. If this is the case, it may be that the local extirpation 
of elk resulted from the extreme aridity associated with the Medi
eval Climatic Anomaly; however, a more regional systematic anal
ysis is required to answer this question with certainty. 

These findings from the Pecho Coast suggest that throughout 
the Holocene, human hunting pressure and fluctuations in the so
cial role of large game hunting had less of an impact on diachronic 
patterns in relative deer abundance than did stochastic environ
mental factors that differentially impacted deer over rabbits (e.g., 
the Medieval Climatic Anomaly). In other words, when controlling 
for spatial variability, temporal variation in the abundance of large 
prey relative to small prey is best described as climatically-medi
ated prey choice. This does not, however, mean that humans had 
no impacts on prey populations or that hunting carries no prestige; 
indeed, it may be that the overriding impact of climatic variation 
on prey density simply masks or drowns out important demo
graphic and social variation liked to human–prey interactions. As 
such, it may be that such patterning is not easily visible at archae
ological time scales. 

While the trends examined here may not hold in other regions 
of western North America, these results suggest that (1) any single 
hypothesis is unlikely to provide an adequate explanation of pre
historic variability in human hunting decisions and (2) incorporat
ing theoretical and statistical models that allow (rather than 
ignore) stochastic variability may be critically important in 
explaining diachronic patterns in prey choice. By systematically 
approaching zooarchaeological data in such a way, researchers 
may ultimately come to a better understanding of the interrelated 
articulations between human behavioral variability, ecological 
dynamics and specific moments in prehistory. 
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