
Energetic Path Finding across

Massive Terrain Data

Andrew Tsui and Zoë Wood

Abstract. Throughout history, the primary means of transportation for
humans has been on foot. We present a software tool which can help vi
sualize and predict where historical trails might lie through the use of
a human-centered cost metric, with an emphasis on the ability to gen
erate paths which traverse several thousand kilometers. To accomplish
this, various graph simplification and path approximation algorithms are
explored. We show that it is possible to restrict the search space for a
path finding algorithm while not sacrificing accuracy. Combined with a
multi-threaded variant of Dijkstra’s shortest path algorithm, we present
a tool capable of computing a path of least caloric cost across the contigu
ous US, a dataset containing over 19 billion datapoints, in under three
hours on a 2.5 Ghz dual core processor. The potential archaeological and
historical applications are demonstrated on several examples.

1 Introduction

Anthropologists, archaeologists, and historians have spent a great deal of time
uncovering the routes taken by ancient travelers on trade-routes with long-
distance neighbors, or as they foraged for food around their camp [1]. As a
general rule of thumb, humans are often quite proficient in finding the most
efficient path of travel, including those paths that traverse great distances. We
present an algorithm for computing and visualizing human centered paths across
large datasets, for example the contiguous US. To this end, this work explores
graph simplification and various path approximation algorithms in order to cre
ate solutions for massive out-of-core data. This work provides an efficient means
of generating paths by restricting the search to a subset of the original data. In
addition, visualization techniques to compare potential paths, foraging grounds,
and alternate destinations are presented.

The application is interactive and allows the user to select start and end lo
cations, as well as one of several path computation algorithms. Satellite imagery
is utilized to provide a 93,600 by 212,400 elevation and landcover data grid cov
ering the contiguous US. The available path finding algorithms are Dijkstra’s,
Fast Dijkstra’s (a multi-threaded variant of Dijkstra’s introduced in this work),
A∗, and Single-Query Single Direction PRM (a Probabilistic Road Map algo
rithm). Most computations are divided into a global and detailed search phase.
The global search phase identifies a rough path using a simplified dataset. This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19157556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rough path is then used to significantly reduce the total memory and computa
tional time required for the detailed search phase by ensuring that only relevant
areas of the terrain are searched. Our application is written in C++ using the
OpenGL graphics API and Berkeley Database.

Our results show that path computation over massive out-of-core datasets is
possible. We conclude that using our Fast Dijkstra variant provides the best
results in terms of accuracy. The contributions of this work include:

–	 Tools for managing and performing energetic analysis on massive out-of
core datasets. In particular, a restrictive tiling scheme is constructed which
significantly reduces the search space without reducing accuracy.

–	 A multi-threaded bidirectional version of Dijkstra’s shortest path algorithm
that does not suffer any accuracy loss.

–	 A comparison between multiple path computation algorithms in terms of
runtime, memory usage, and accuracy.

–	 Visualizations of the terrain from a human traveler’s perspective.

2 Previous Work

This work utilizes some of the significant work in the area of path finding algo
rithms, namely, Dijkstra’s [2], A∗ [3] and Probabilistic Road Maps [4]. Addition
ally, our application builds on two previous projects involving human centered
paths across terrain data, Energetic Analyst [5] and Continuous Energetically
Optimal Paths [6]. Brian Wood’s Energetic Analyst tool demonstrated the im
portance of using a human-centered, as opposed to distance-centered, metric for
determining the routes of travel for archeology applications. Due to algorithmic
constraints, this work could not be applied to large terrain datasets.

The work of Jason Rickwald, Continuous Energetically Optimal Paths (CEP)
built on Energetic Analyst while utilizing the Fast Marching Algorithm (FM) [7]
for path computations. FM has the benefit of allowing paths to cross a grid face,
rather than being constrained to the grid edges. In addition, Rickwald intro
duced a multi-threaded variant of Fast Marching, which significantly reduced
the runtime but introduced a small error in the energetic path computation.
Rickwald addressed the memory limitations encountered in Energetic Analyst
by providing a mechanism for swapping terrain data between memory and disk.
However, algorithmic and data format issues hindered the capability of analyzing
very large datasets. For example, a path computation across a dataset covering
most of the state of Oregon required almost a full day to compute.

3 Algorithms

A goal of this work is to visualize the terrain and optimal path from one point on
the terrain to another. As the dataset for the contiguous United States comprises
over 19 billion data points, it was necessary to develop tools to provide a highly
simplified, yet acceptably accurate, representation of the dataset for real-time

interaction. This simplification was accomplished by first breaking down the
dataset into 434*1,000 non-overlapping rectangular clusters. These dimensions
were chosen as they maintain the approximate latitude to longitude ratio across
the US. As a pre-process, the tool individually loads each cluster and performs a
simplification on those data points to obtain a single representative data point,
using either the average or the median of all the points in the cluster.

Path computation occurs when the user selects two arbitrary points on the
displayed simplified terrain. The latitude and longitude of these two points is
then passed to a variant of Dijkstra’s shortest path algorithm that is optimized
for the particular graph structure. The resulting path serves as an approxima
tion to the actual path and is visually overlayed onto the simplified terrain. See
Figure 1a. To address the problem of the large search space needed with ana
lyzing large datasets, we present a restrictive tiling scheme in which the search
space is drastically reduced. First, the full dataset is divided into several hundred
tiles. Note that these tiles are different than the simplification clusters as they
contain many more datapoints. Next, the tiles crossed over by the approximate
path generated on the simplified dataset are identified. Finally, the algorithm
searches within these tiles to construct the detailed path. For robustness, a con
figurable buffer can be set so that if the path falls near the boundary of a tile,
the neighboring tiles can also be searched. This method is successful in limiting
the search space without compromising the accuracy of the resulting path. This
is a very important feature of our implementation as it prevents a large amount
of data swapping that would occur if the path computation was allowed to run
un-restricted on the full dataset. See Figure 1a.

(a) Path and tiles (b) Fast Dijkstra

Fig. 1. [Algorithm Visualizations] (a) Display of an in progress path computation on
the full dataset. The light squares indicate tiles that are within the search space while
grey tiles are currently loaded in memory. The simplified path (black) used to determine
which tiles to search is also shown. (b) Shows the areas searched by each thread during
a run of the Fast Dijkstra algorithm.

In order to compute a human centered optimal path, we must choose graph
weights that correspond to the amount of energy it would take a human to tra
verse that type of terrain. The equations used in this work to determine the
caloric cost of travel between two points are the same as for Energetic Analysis

and CEP. These equations were determined and verified under various condi
tions [8,9]. First, the metabolic rate for traveling between two points is calculated
based on the physical parameters of the subject and the slope (grade) of travel.
There are two equations, one which computes the metabolic rate when traveling
on a positive grade (uphill), while another is used for a negative grade (down
hill): See [10] for the exact equations used. For this work, the average velocity
when traveling across open ground is 1.34112 m , or approximately 4.8 km . When s hr
traversing water, it has been experimentally determined that swimming at 0.7 m

s
is roughly equivalent to running at 3.3 m [11]. Unfortunately, these equations s
can potentially under-predict the caloric cost when traveling downhill at certain
velocities. Thus, the computed metabolic rate is compared to the metabolic rate
while standing [12], with the larger being used to complete the calculation. The
metabolic rate gives the amount of energy expended over time, thus it is neces
sary to obtain the approximate time required to travel between the two points.
Finally, the caloric cost is calculated and converted to kilocalories.

3.1 Path Finding Algorithms

In order to find a path between the source and destination, a number of possible
path finding algorithms are provided. The available algorithms are Dijkstra’s,
Fast Dijkstra’s (a multi-threaded variant of Dijkstra’s introduced in this work),
A∗, and Single-Query Single Direction PRM (a Probabilistic Road Map algo
rithm). Dijkstra’s shortest path algorithm [2] is a well known and extremely
pervasive algorithm for determining paths of least cost between two points on a
graph. A∗ [3] is a slight modification of Dijkstra’s algorithm which uses a heuris
tic to decrease the computation time. A Probabilistic Road Map (PRM) [4] is
defined as being a discrete representation of a continuous configuration space
generated by randomly sampling the free configurations of a search space and
connecting those points in a graph. PRM algorithms are designed for speed at
the cost of accuracy, however, due to the probabilistic nature of the algorithms,
it is possible to randomly produce an optimal path in a fraction of the time of
other algorithms.

PRM: The specific PRM algorithm used in this work is the Single-Query Single
Directional PRM (SQPRM) [4]. The idea is to grow a tree type path in random
directions until the destination is found. However, since SQPRM’s expand in
a random fashion, it may require a large amount of time to randomly select
and connect the destination node to the graph. Thus, the algorithm terminates
when a node is examined that is sufficiently close to the destination node. The
detailed pseudo code for the algorithm used for this work is given in [10]. The
PRM class of algorithms are designed to quickly construct a traversable path
in a large search space, but are not concerned with the actual efficiency of the
path. Thus, if a potential edge is not accepted, it can be assumed that that
edge will never be added to the graph. However, in the context of energetic
paths, it is possible that a previously rejected edge may become viable at a later
iteration. The approach taken in this work is to allow a node to be selected and

expanded multiple times, with the cost to reach directly connected (as opposed
to all related) nodes being updated when appropriate. Thus, any change to a
nodes cost may be slowly propagated as the algorithm progresses. While this
does not completely eliminate out-dated information, it does provide a means to
reevaluate certain edges and allows the algorithm to include path efficiency as
a metric. However, the number of times the node is allowed to be updated can
significantly impact the efficiency of the algorithm, which is explained in detail
in [10].

Fast Dijkstra’s: There has been significant recent work on developing paral
lelized path computation algorithms [6,13] to utilize the increasing number of
cores within standard processors. However, the general problem with these algo
rithms is that they provide approximations of optimal cost paths, thus sacrificing
accuracy for speed. This work presents a bidirectional implementation of Dijk
stra’s shortest path algorithm which uses two threads to capitalize on modern
multi-core processors. This algorithm does not disrupt the optimality properties
of Dijkstra’s, thus providing optimal paths with a minimal amount of memory
overhead. In essence, Dijkstra’s algorithm is run separately in two threads with
one thread calculating the cost from the start node to the destination node, while
the second thread simultaneously calculates the cost from the destination to the
start. The two threads meet roughly half-way to their respective goals where one
thread is given priority and is responsible for combining the results of the two
threads. Care is taken to account for bidirectional graphs, which is important
in this work as the caloric cost of traveling uphill differs from traveling downhill
as discussed above. Figure 1b illustrates the merging point of the two threads
fronts, at the termination of the algorithm. For a more detailed pseudo-code for
the fast Dijkstra’s algorithm see [10].

4 Results

To demonstrate the tools effectiveness, a number of paths were constructed on
massive terrain datasets. All results were obtained on a 2.5 Ghz Intel Core 2
Duo MacBook Pro running OS X 10.5.6 with 4 GB 667 MHz DDR2 SDRAM
and a 5400 RPM hard drive.

California Indian Trails: To demonstrate the potential application to the field
of Archeology and Anthropology, a trail was plotted between two Native Ameri
can Indian tribes, one located within a valley between two mountain ranges, and
the other located near the coast. California was chosen as a test site as historical
records show evidence of healthy trade relations among many of the California
Indian tribes. For the exact latitude and longitudes used for the start and stop
locations for this example and all others, see [10]. The distance between these
two tribes necessitates searching most of southern California. Figure 2a displays
the energetic path found by the tools, while Table 1a shows the runtime required
for the different algorithms. As shown in this figure, the computed path closely
follows the route used and documented by James Davis [14].

As can be seen in Table 1a, using the simplified dataset to get an approximate
path and restricting the search space (with a small buffer) on the detailed dataset
can still produce a perfectly accurate path. Notice that the required time is dras
tically reduced for both the Dijkstra's and F ast Dijkstra variant when using
restrictive tiling, but with no error in the path. In addition, A∗ provides a path
with very little error while requiring even less time than the F ast Dijkstra algo
rithm. However, PRM took a substantially longer amount of time to complete
and provided a highly inaccurate path. This does not conclusively determine the
inappropriateness of PRM as the probabilistic nature of it means results may
vary between runs.

Table 1. Path computations: Note that ’Dijk → DijkF ast ’ indicates that Dijkstra’s
was used on the full dataset to determine which tiles to search using the Fast Dijkstra
algorithm. For each result, the error percentage is based on the difference in cost be
tween the indicated method and the cost obtained from running Dijkstra’s unrestricted
on the full dataset (marked with a *). Nodes indicates the number of data points that
were analyzed. All costs are in kilocalories.

Method Nodes Runtime Memory Cost Error
*Dijk 265,024,564 1h 21m 3s 2.36 GB 42,455.5 0.00%

Dijk → Dijk 92,548,510 23m 37s 1.35 GB 42,455.5 0.00%
Dijk → DijkF ast 100,371,403 14m 26s 1.51 GB 42,455.2 0.00%

Dijk → A ∗ 39,576,328 11m 31s 1.35 GB 42,880.5 1.00%
Dijk → PRM 77,423,841 42m 3s 1.19 GB 54,417.4 28.17%

(a) California Indian Trail

Method Nodes Runtime Memory Cost Error
*Dijk 505,896,251 2h 41m 50s 2.34 GB 74,653.2 0.00%

Dijk → Dijk 184,985,532 46m 5s 1.80 GB 74,653.2 0.00%
Dijk → DijkF ast 181,351,914 26m 9s 1.95 GB 74,655.7 0.00%

Dijk → A ∗ 164,865,746 47m 54s 1.95 GB 75,776.5 1.50%
Dijk → PRM 164,464,736 2h 22m 29s 1.94 GB 97,402 30.47%

(b) Between Old Fort Boise, ID and Oregon City, OR

Method Nodes Runtime Memory Cost Error
*Dijk 735,795,927 3h 18m 39s 2.36 GB 107,723 0.00%

Dijk → Dijk 252,449,787 1h 14m 59s 1.94 GB 107,723 0.00%
Dijk → DijkF ast 285,154,704 37m 15s 1.95 GB 107,726 0.00%

Dijk → A ∗ 230,861,134 1h 12m 18s 1.91 GB 112,149 4.11%
Dijk → PRM 185,307,75 2h 24m 31s 1.94 GB 123,435 14.59%

(c) Between Moundville, AL and Hopewell, OH

(a) California Indian Trai (b) Oregon Trail - Detailed View

Fig. 2. (a) An energetic path, possibly corresponding to the trails mapped by James
Davis [14] shown in the upper right. (b) An energetic path overlayed with an estimate
of the historic Oregon Trail [15].

Oregon Trail: To demonstrate a comparison against previous work while
demonstrating a historical application, a path was computed following the Ore
gon Trail, which is a well known trail taken by settlers journeying to the western
United States in the mid 1800’s. This example begins at Old Fort Boise in Idaho
and ends at Oregon City in Oregon. Figure 2b shows the paths generated on
the full dataset, while Table 1b presents the results. As clearly demonstrated in
Figure 2b, the computed path closely follows the historical trail.

Constructing a path across Oregon using previous work, CEP, required most
of the day. By contrast, the restrictive tiling scheme presented in this work
significantly reduces the amount of time to typically less than an hour while still
producing accurate paths. The results are comparable to those of the California
Indian Trail in that both the Dijkstra and F ast Dijkstra methods produced
accurate paths.

Moundbuilders: To demonstrate a path computation over a significant dis
tance, an energetic path is computed that may have been used between two
prominent Moundbuilder villages; Moundville, Alabama and Hopewell, Ohio.
Ancient burial and ceremonial mounds constructed by the Moundbuilders have
been found all along the central and eastern United States. Excavation from
these mounds have revealed flint from the Rocky Mountains, shells from the
Gulf of Mexico, and other artifacts of distant origin [16]. This indicates that the

inhabitants engaged in extremely long-distance trade, although the actual trade
routes remain somewhat of a mystery. Figure 3a visualizes the least cost caloric
path between the two sites and the results are presented in Table 1c.

This longer path required increased runtimes and a larger number of nodes
to be searched for each method. Notice that, compared to the results for the
previous paths, PRM is able to construct a relatively accurate path in a small
fraction of the time required by Dijkstra when run unrestricted on the full
dataset. However, F ast Dijkstra is still able to produce a far more accurate
path in similar time while consuming considerably less memory.

Fig. 3. (a) A possible trade route utilized by the Moundbuilders. While the paths
from the simplified (dark grey) and full (light grey) datasets differ significantly, the
simplified path is still sufficient to determine which full dataset tiles to search. (b)
California archaeological sites with the caloric radius visualization. Likely boundary of
foraging region is banded black and white regions. The dark body of water seen at the
top of the image is Morro Bay in California.

California Archaeological Sites: In the archaeological community, a tradi
tional means of determining a tribes hunting and foraging grounds is to draw a
circle on a map, focused on the tribes camp, with a radius of several kilometers.
However, this method does not account for the terrain type. For example, a hunt
ing party can travel much further on flat terrain (thus extending the radius) as
opposed to very rocky or sloped terrain. Thus, a better metric for determining a
tribes hunting ground may be a caloric measure. Figure 3b shows archaeological
sites in central California, designated CA-SLO-9 respectively. The caloric radius
visualization shows the area for which the tribes located at these sites may have
searched for food. Notice that when the elevation remains level, such as along
the coast or through valleys, a much greater distance can be reached, while the
converse it true for hilly regions.

Visualizations: In addition to the specific results examples, the system al
lows for visualizations for further analysis of the paths and the terrain from the

(a) Moundbuilders - Hopewell to
Moundville

(b) CA-SLO-9

perspective of a walking human. Figure 4 demonstrates potential paths that
end near the original destination and neighboring areas on a path that could
be traversed without adding significant cost to the original path. These types
of visualization are intended to help visualize other potential regions of interest
when searching for a historical path.

Fig. 4. Nearby path visualizations

Notes on the Results: Note that the results occasionally show a slight differ
ence in cost between Dijkstra’s shortest path algorithm and the Fast Dijkstra
variant. This is caused by floating point rounding differences during the caloric
cost calculations, not an actual difference in paths produced. Also note that the
results provided for the PRM algorithms are for a specific run. Due to the prob
abilistic nature of the algorithms, each run will likely produce a different result.
In addition, A∗ generally utilizes an admissible heuristic function to estimate
the cost from the current node to the destination. Admissible indicates that the
heuristic must not overestimate the cost to the destination. For this work, the
heuristic uses the Euclidean distance from the current node to the destination,
combined with the metabolic rate associated with the corresponding grade, to
estimate the total caloric cost. Unfortunately, this heuristic is not admissible in
certain rare cases, which introduces a small error into some path computations.

5 Conclusions and Future Work

We present a set of tools that can be used to analyze massive out-of-core terrain
datasets. We have demonstrated the efficiency and possible historical applica
tions of our tools by performing several experiments to construct energetic paths
across large distances using a variety of algorithms. Using our multi-threaded
Dijkstra variant combined with restrictive tiling, we are able to construct an
accurate energetic path across the United States in under three hours – a large

(a) Nearby Paths: Black path indicates an
alternate path

(b) Path Regions: Reachable areas (shown
as light regions near the path), are drasti
cally decreased through valleys

improvement over previous work in which a path across the state of Oregon
required most of a day.

Avenues for future work include exploring alternate datasets from around the
world. Additionally, more advanced simplification methods may provide more
accurate paths, allowing for the use of smaller tiles to further reduce the search
space. Also, PRM optimizations could be explored, such as utilizing the fast
runtime by running PRM multiple times and presenting the best result or a
bidirectional approach for further speed increases.

References

1. Jones, T.: Personal Correspondence (2009)
2. Dijkstra, E.W.: A	 note on two problems in connexion with graphs. Numerische

Mathematik 1, 269–271 (1959)
3.	 Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina

tion of minimum cost paths. IEEE Transactions on Systems Science and Cyber
netics 4, 100–107 (1968)

4.	 Hsu, D., Claude Latombe, J., Motwani, R.: Path planning in expansive configura
tion spaces. International Journal of Computational Geometry and Applications,
2719–2726 (1997)

5. Wood, B.M., Wood, Z.J.: Energetically optimal travel across terrain: visualizations
and a new metric of geographic distance with anthropological applications. In:
SPIE, vol. 6060, p. 60600 f. (2006)

6. Rickwald, J.: Continuous energetically optimal paths across large digital elevation
data sets. Master’s thesis, California Polytechnic State University, San Luis Obispo
(2007)

7. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc.	 Natl.
Acad. Sci. USA, 8431–8435 (1998)

8. Duggan, A., Haisman, M.F.: Prediction of the metabolic cost of walking with and
without loads. Ergonomics 35, 417–426 (1992)

9.	 Pandolf, K.B., Givoni, B., Goldman, R.F.: Predicting energy expenditure with
loads while standing or walking very slowly. Journal of Applied Physiology 43(4),
577–581 (1977)

10.	 Tsui, A.N.: Energetic path finding across massive terrain data. Technical Report
CPSLO-CSC-09-02, Department of Computer Science, California Polytechnic State
University, San Luis Obispo, California (2009)

11. Prampero, P.E., Pendergast,	 D.R., Wilson, D.W., Rennie, D.W.: Energetics of
swimming in man. Journal of Applied Physiology 37, 1–5 (1974)

12. Harris, J.A., Benedict, F.G.: A biometric study of basal metabolism in man. Cornell
University, Mann Library, Ithaca, New York (1919)

13. Weber, O., Devir, Y.S., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Parallel
algorithms for approximation of distance maps on parametric surfaces. ACM Trans.
Graph. 27, 1–16 (2008)

14.	 Davis, J.T.: Trade Routes and Economic Exchange Among the Indians of
California. University of California Archaeological Survey, CA (1961)

15. City, H.O.: End of the oregon trail interpretive center (2009),
http://www.historicoregoncity.org/HOC/index.php?view=article&id=57

16. Fagan,	 B.M.: From Black Land to Fifth Sun: The Science of Sacred Sites.
Addison-Wesley, Reading (1998)

http://www.historicoregoncity.org/HOC/index.php?view=article&id=57

