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Abstract— Typical Multi-Robot Systems consist of robots coop-
erating to maximize global fitness functions. However, in some
scenarios, the set of interacting robots may not share common
goals and thus the concept of a global fitness function becomes
invalid. This work examines Multi-Robot Communities (MRC),
in which individual robots have independent goals. Within
the MRC context, we present a task allocation architecture
that optimizes individual robot fitness functions over long time
horizons using reciprocal altruism.

Previous work has shown that reciprocating altruistic rela-
tionships can evolve between two willing robots, using market-
based task auctions, while still protecting against selfish robots
aiming to exploit altruism. As these relationships grow, robots
are increasingly likely to perform tasks for one another without
any reward or promise of payback. This work furthers this
notion by considering cases where an imbalance exists in
the altruistic relationship. The imbalance occurs when one
robot can perform another robot’s task, thereby exhibiting
altruism, but the other robot cannot reciprocate since it is
physically unable (e.g. lack of adequate sensors or actuators).
A new altruistic controller to deal with such imbalances is
presented. The controller permits a robot to build altruistic
relationships with the community as a whole (one-to-many),
instead of just with single robots (one-to-one). The controller
is proven stable and guarantees altruistic relationships will
grow, if robots are willing, while still minimizing the effects of
selfish robots. Results indicate that the one-to-many controller
performs comparable to the one-to-one on most problems, but
excels in the case of an unbalanced altruistic relationship.

I. INTRODUCTION

As the population of mobile robots increases, more robots
will be forced to share common workspaces. Unlike typical
Multi-Robot Systems (MRS), in which robots are designed,
owned, or operated by a single individual or organization
with the purpose of achieving a common goal, there will be
an increase in the frequency of situations in which robots are
deployed by different individuals with different goals.

We consider a Multi-Robot Community (MRC) to be
a collection of robots 1) sharing a common workspace,
and 2) that are designed, owned, or operated by several
individuals or organizations that may have different goals.
This greatly affects the dynamics of the community because
individual robots may be designed to accomplish their own

(a) (b)

Fig. 1. Two views of altruism in a MRC. (a) Where an edge from robot ri
to rj represents the willingness of ri to incur a cost for doing one of rj ’s
tasks (one-to-one). (b) Alternatively, the edges can represent the willingness
of ri to incur a cost for any robot in the MRC (one-to-many). The edges
in opposite direction represent the reciprocal altruism.

goals without concern for the goals of other robots. That is,
robots in a MRC may be selfish.

Autonomous robots acting in such a MRC must learn
how to interact with the other robots in the community. The
ideal situation occurs when all relationships become mutually
beneficial; in which case the community would behave as
a MRS. In a MRC, however, individual robots must offer
varying levels of “help” to other robots. This help, termed
an altruistic action, decreases the fitness function of the
helping robot without any guarantee of reward or repayment.
However, this altruistic action may later be reciprocated,
leading to a net increase in fitness functions for both robots
over the long term.

This work presents two altruistic controllers that build
altruistic relationships between willing robots, while offering
protection against selfish robots (see Fig. 1). Both controllers
model altruism based on Robert Trivers’ theory of reciprocity
[15]. The first altruistic controller, termed one-to-one, allows
for tit-for-tat type increases in the altruism one robot has to-
wards another robot. The second altruistic controller, termed
one-to-many, more closely resembles the altruism typically
modeled in the social sciences [17], in that altruism increases
between one robot and the whole community.

In [6], it was demonstrated that the one-to-one controller
successfully improves the individual cost functions of robots
in a MRC (see Fig. 2). Unlike the work from [6], this work
considers unbalanced altruistic relationships. An unbalanced
relationship exists when robot A cannot, or will not, assist
with any of robot B’s tasks, but robot B can assist robot A.

Consider two ground robots and an Unmanned Aerial
Vehicle (UAV) equipped with cameras for surveillance tasks
in a nearby area. One of the ground robots (call it robot
A) is tasked to obtain images of high-priority targets using a
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Fig. 2. Average path cost versus altruism level (α). As the level altruism
increases, robots tend to help each other more and the average paths to
complete all tasks decreases.

high-resolution camera. The UAV, given the task of obtaining
images of local air vehicles, has a camera capable of taking
images for itself and robot A. The other ground robot (B) has
a low-resolution camera enabling it to only obtain images
of the quality necessary for its targets and the UAV’s. In
addition, robot A can acquire images for robot B, but cannot
point its camera upward and thus cannot assist the UAV in
taking pictures of nearby air vehicles.

An altruistic triangle is formed in which A can only aid
B who can only aid the UAV who can only aid A. From
robot A’s point of view, it can take two courses of action
with respect to altruism:

1) Not help robot B - since there’s no possible reciprocity
directly from B

2) Help robot B, hoping it receives equal or greater help
from the UAV

This work looks at whether robot A should act altru-
istically, by helping robot B, and will demonstrate the
advantages for do so.

II. BACKGROUND

Multi-Robot Systems have been an active area of robotics
research due to several potential advantages over single robot
systems. Namely, they offer the possibility for greater spacio-
temporal sampling, force multiplication, and robustness to
failure. Hence, advancements in the areas of MRS mission
planning, MRS motion planning, MRS localization, MRS
mapping, and the most relevant subject of MRS task alloca-
tion have occurred over the last two decades.

Task Allocation: In a MRS task allocation problem, the
MRS must accomplish a set of tasks often characterized by
their geographic location. The problem seeks to determine
the optimal assignment of task points to robots, and the
optimal sequence for robots to visit these task points while
minimizing the time to visit all task points. This is a varia-
tion of the Multi-Traveling Salesperson Problem (MTSP), a
problem with many applications, which has no polynomial
time solution (e.g. [14]). Regardless, many good heuristic
driven methods have been developed that yield sub-optimal
solutions.

One popular method of assigning tasks to robots in a
MRS is to use a Market-Based Auction approach [8]. In this

method, tasks are auctioned off to robots with the highest
bids. Bids are typically based on the ability of the robot to
accomplish the task, while considering the additional cost of
traveling to the task site. While this method is not guaranteed
to find optimal solutions, it is efficient and can lead to near
optimal solutions.

Altruism: In the literature on robotics, there are extensive
treatments of cooperation among robots (e.g. [4], [3], [12],
and [10]), but little mention of altruistic behaviors. Coop-
eration may in fact involve altruism, but it is generally not
described in those terms.

Work directly involving altruism includes that of [13] and
[9] who describe robot behaviors in terms of a “satisfaction
index” and transmission/reception of signals from other
robots. A robot’s progress in a given task can be measured by
its “satisfaction” in the task, which corresponds to the fitness
or performance index indicated above. Thus, a robot needing
help with a task may emit an attraction (“please help me”)
signal. Robots receiving this signal may stop their current
task and assist the caller, thus exhibiting altruistic behavior.
Clearly, such behaviors can be quantified. Lucidarme et. al.
propose an “altruism vector” based on the satisfaction index
of a robot and the signals emitted by other robots; a given
robot decides on altruistic behavior based on the magnitude
of this vector.

Similarly, [1] and [2] describe a software architecture for
robot colonies based on robot tropisms, defined as their
“likes” and “dislikes”. Reinforcement of particular behaviors
strengthens them in future scenarios. Here too, a robot can
call for help to other robots when it needs assistance in
moving heavy objects beyond its capability.

The emergence of cooperative behaviors has been studied
extensively in game theory, under the name “Prisoner’s
Dilemma”, e.g.[11]. However, the winning strategies in this
situation call for cooperation, not altruism.

In [5], altruism and spite are modeled within a traffic
routing setting, considering traffic flow in a graph. Latency is
shown to be bounded for general topologies. As opposed to
[5], the work here aims to use control and estimation theory
to place bounds on the negative effects of selfish behavior.

Reputation Management: Reputation Management (RM)
occurs when an agent evaluates the actions of other agents,
forms opinions about those agents, and then uses these
opinions to adjust its own actions. The field of RM involves
analysis of such processes with applications ranging from
interpersonal relationships to economics. A survey of RM
with an emphasis on its application to the online marketplace
is presented in [7].

A related example can be found in [16], where reputation
management is applied to the general area of “Electronic
Communities”. This work demonstrates the positive devel-
opment of altruistic relationships in which the trust of other
agents can be built up over time. This has close similarities
to the application within a MRC, but [16] uses the trust to
assess the quality of information from other agents. Here, we
use this trust to determine if robots should be altruistic to
one another, thereby improving individual performance over
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the long-term.

III. PROBLEM DEFINITION

In this work, a Multi-Robot Community (MRC) is defined
as a set of n robots that can interact through some shared
workspace W :

MRC = {r1, r2, ..., rn}. (1)

In this community, each robot ri will have a set of Li
individual tasks to accomplish described by the possibly
dynamic set:

Ti = {ti1, ti2, ..., tiLi
}. (2)

A task tij can be of several types. Example task types
include visiting a location in the workspace to obtain a sen-
sor measurement (e.g. for surveillance, scientific sampling,
mapping), manipulating some object in the workspace (e.g.
picking up trash, delivering light), and moving to a desired
location (e.g. for delivery tasks). Task types are assumed to
have a corresponding definition of completion, with some
quantifiable measure of completeness. Also, it is assumed
that a particular tasks may be completed by any robots within
the MRC that can fulfill the level of completeness on the
task. Therefore, once tasks are assigned, each robot ri plans
a sequence of tasks Si to complete, ideally in some order
that maximizes the robot’s individual fitness function:

Si = {tkn, tlo, ..., tmp}. (3)

Where indices k, l,m, n, o, p are arbitrary, reflecting the
possibility that robot ri’s task sequence Si may include any
of the nth, oth, or pth tasks belonging to any of the kth, lth,
or mth robots within the community.

A. The Fitness Function

To characterize the performance of individual robots, we
define a fitness function Fi, as the difference between the
rewards Ri gained from tasks in Ti being completed and the
costs Ci incurred to complete such tasks. If a robot completes
only those tasks assigned to it, its fitness function would be:

Fi =
∑

Ri(tio) Ci(tio). (4)
t

−
io∈Ti tio

∑
∈Ti

However, if robots can perform each other’s tasks, then
the fitness function generalizes to the rewards gained from
all tasks in Ti being completed minus the costs incurred
completing all tasks in Si:

Fi =
∑

Rj(tio, Sj) Ci(tkp, Si). (5)
t ∈T

−
io i tk

∑
p∈Si

It is important to note that the rewards for having a task
completed will be dependent on which robot is completing
the task. This is highlighted in (5) by the fact that the fitness
for robot i is based on how well robot j completes robot i’s
task tio to produce reward Rj . Consider a surveillance task
where a robot must obtain images from different locations in

an environment. The reward could be based on the quality of
the image (e.g. pixel resolution) so that if robot 0’s camera
obtains a 640x480 image and robot 1’s camera obtains a
1280x960 image, the resulting rewards for obtaining the
same image would satisfy R1 > R0.

Furthermore, costs to complete tasks are dependent on the
robot completing the task. The fitness for robot i is dependent
on the cost Ci incurs on itself when accomplishing a task
tkp that belongs to the kth robot.

It is also noted that both rewards Rj and costs Ci in (5)
are functions not just of the tasks, but of the task sequences.
For example, if robot 2 is to complete task t43, it will be
required to move to a new location in the workspace. The
additional energy cost incurred in moving to this location
will clearly be a function of the robot’s current path dictated
by visiting the locations of other tasks in the sequence S2.

B. Community Classes

Generally, each robot will have altruistic relationships with
some of the robots in the MRC and will act selfishly toward
the others. Thus, the general case will involve some altruistic
imbalance in the community. Yet, to facilitate analysis and
discussion, the following classes will be used:

1) Balanced Communities: In balanced communities,
each robot ri, i = 1..n has the capability to perform altruistic
actions for all other robots rj , j = 1..n, j = i in the robot
community. Fig. 3a provides an example of a balanced robot
community.

2) Unbalanced Communities: In unbalanced communi-
ties, each robot ri, i = 1..n has the capability to perform
altruistic actions for β other robots in the robot community,
where β < n− 1.

Such communities occur when some robots simply cannot
accomplish other robot’s tasks. Fig. 3b provides an example
of an unbalanced community in which each robot has altru-
ism towards only two of the four other robots.

3) Maximal Unbalanced Communities: In maximal un-
balanced communities, each robot ri, i = 1..n has the
capability to perform altruistic actions for only one other
robot rj in the community, and rj cannot perform altruistic
actions for ri. The case involving 2 robots and one UAV in
Section I is one such example.

This scenario exemplifies a case of maximal unbalanced
altruistic relationships and no pairwise relationship can

6

(a) (b) (c)

Fig. 3. Community classes as graphs. (a) The balanced class occurs
when each edge is bi-directional. (b) The unbalanced class presents itself
when only one directed edge connects any two particular robots. In (c), the
maximal unbalanced class occurs when each robot has an indegree of 1 and
an outdegree of 1, with each edge to a different robot in the MRC.
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evolve. In graph theory terms, when the altruism graph be-
comes a single-cycle connected graph the MRC has entered
this case (see Fig. 3c). In order for altruism to exist in this
situation, the robots must allow some form of reciprocity
toward the community or else allow the MRC to disband
into disjoint sets of non-interacting robots.

IV. TASK ALLOCATION USING ALTRUISTIC BIDDING

Proposed is an auction-based bidding scheme for MRC.
Each robot rj can auction any of its own tasks from Tj . Other
robots can choose to bid on robot rj’s tasks, thus acting in
an altruistic manner if they win the bid and complete the
task. This choice to bid is based on the level of altruism,
termed α, the robot ri may have towards the robot rj :{∑

Rewards−
∑
Costs if α > C

bidi = i
. (6)

−∞ else

Where Ci is the additional cost incurred by the altruistic
robot in order to complete the other robot’s task. The robot
with the highest bid will win the auction and be assigned the
task. This auction is conducted for each task in the MRC,
however, tasks are auctioned and completed in epochs, or
batches. During each epoch the robot cost functions are reset
to zero. The tasks may repeat or change between epochs,
although they remained the same for this analysis.

A. Altruistic Controllers

The level of altruism used during bidding is updated at
the end of each epoch using a linear controller. The goal is
to set the level of altruism to match the reciprocating robot’s
altruism. Two different controllers of altruism are proposed.
To be precise, we use the two following definitions, one for
each controller:

Definition 1: One-to-One The level of altruism robot ri has
towards robot rj is αij ∈ [0,∞], which equals the decrease
in fitness robot i is willing to incur in completing robot j’s
task (see Fig. 1a).

Definition 2: One-to-Many The level of altruism robot ri
has towards a community MRC is αiw ∈ [0,∞], which
equals the decrease in fitness robot i is willing to incur in
completing tasks belonging to any robot from a subset of the
MRC (see Fig. 1b).

Each of the two proposed controllers model altruism
differently, yet both controllers update based on a standard
discretized linear time-invariant state space model:

αt+1 = Aαt +But. (7)

At this stage of research, A and B are set to 1. By
setting u as a proportional controller, the update step for
each individual altruistic value variable can be:

αt+1 = αt +K(αtreciprocal + ε− αt). (8)

The purpose of this controller is to match the level of work
(i.e. altruistic actions) a robot is willing to do for another
robot, or set of robots, to the level of work reciprocated,

termed αreciprocal (see Fig. 4). The ε allows for a small
amount of work that the robot is willing to do beyond the
reciprocal work, allowing αto grow over time and K is the
control gain constant. Each of the two different controllers
use (8), but have different meaning for α, αreciprocal, and ε.

V. ONE-TO-ONE ALTRUISTIC CONTROLLER

This controller applies the theory of reciprocal altruism on
a strictly pairwise basis. Relationships use only the reciprocal
altruism of the other robot when updating their respective
level of altruism. The controller protects against selfish
robots and is guaranteed to increase the level of altruism
over time when the other robot reciprocates. See [6] for the
stability analysis and extensive treatment of this controller.

A. One-to-One Control Law

In the one-to-one control strategy, each robot ri will
attempt to set its altruistic level αij towards another robot
rj to be that which the other robot has toward it (αji). The
controller follows the proportional control law:

αt+1
ij = αtij +K(αtji + ε− αtij). (9)

The control gain K > 0 determines the rate at which αij
approaches the desired value of αji + ε. The first term in
this desired value is the reciprocal altruism that robot rj has
towards robot ri. The second term, ε > 0, indicates how
much more altruistically robot ri will act towards robot rj .

B. One-to-One Bidding

Each robot ri will, or may, be given an opportunity to bid
on each of rj’s tasks based on the auctioning protocol for
the MRC. Robot ri, using the one-to-one controller, will bid
using the following bidding law:{∑

Ri −
∑
Ci if αij > Ci

bij = . (10)
−∞ else

This law allows for a certain level of altruistic action
because if robot ri wins the auction it will incur some cost,
which may not be recouped from robot rj .

(a) (b)

Fig. 4. Example of reciprocal altruism and response to selfishness. (a)
The αvalues should grow when reciprocal altruism exists. (b) The αvalues
for an (initially) altruistic robot decrease when paired with a selfish robot.
Note: specific slopes and steady state values depend on the control law
parameters. Each timestep is an epoch.
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VI. ONE-TO-MANY ALTRUISTIC CONTROLLER

This controller applies the theory of reciprocal altruism
from one robot to a set of robots. The relationships form
between individual robots and the set of all other robots in
the MRC. The controller does not directly protect against
isolated selfish robots, yet it does protect against a selfish set
of robots. A robot ri determines a set of robots to be selfish
when no robot in the set offers non-zero altruism towards ri.

A. One-to-Many Control Law
In the one-to-many control strategy, each robot ri will

try to set its altruistic level αiw towards the world (the ‘w’
signifies the set of robots in the MRC or world) to be that
which the set of robots has toward it (αwi). The total altruism
that the robots in the MRC has toward robot ri equates to:

n

αwi = αji, j = i. (11)
j=1

Where each of the values

∑
αji in (11) represent the al-

truistic level of robot rj toward robot ri. This leads to the
proportional control law to track αiw to αwi:

αt+1
iw = αtiw +K(αt t

wi + ξε− αiw). (12)

Where the value of ξ equals the number of robots to which
robot ri applies the one-to-many controller. In other words,
for a MRC of n robots, there are n − (ξ + 1) robots that
robot ri cannot be altruistic towards. For example, consider
a MRC of 7 robots. If robot A has no altruistic relationship
to 4 robots (possibly due to inability to complete tasks), but
uses the one-to-many for the 2 remaining robots, then ξ = 2.

Because αiw contains the altruism of all ξ robots, the
altruism level for each of these robots must be averaged:

1
αij = αiw, j = i. (13)

ξ

B. One-to-Many Bidding
Each robot ri will, or may, be given an opportunity to bid

on each of rj’s tasks based on the auctioning protocol for
the MRC. Robot ri, using the one-to-many controller, will
bid using the following bidding law:

R
bij =

{
i − i if 1αiw > Ciξ . (14)

∑
−∞

∑
C

else

C. Stability of the One-to-Many Controller
In the one-to-many control strategy, each robot ri will

try to set its altruistic nature αiw towards a community of n
robots as shown in (12). Consider the resulting state model of
the altruistic relationship between robot ri and the remaining
n− 1 robots in C.

 t+1 K K
α1w


1− ... Kξ ξ

α w  K
2 1=
...


α

ε

 1

t

 ..ξ −K . Kξ

... ... ... ...
0 0 ... 1

 w

α   2w

...
ε


(15)



6

6

The stability of the system can be evaluated through a
coordinate transformation ei = αiw − αwi for i = 1...n.
Given this transformation, the system can be restated in error
dynamics:

et+1
iw =

(
(1 + ξ)

1−K
)
etiw. (16)

ξ

Hence if |1−K 1+ξ
ξ | < 1 the error dynamics will be stable

and it follows that (αiw − αwi)→ 0 as t→∞.
If we consider a desired rate of change of altruism to

be Kε, then the error in the rate of change of altruism is
et+2
i+n = (αt+1

wi − αtwi) − Kε and it can be shown that as
t→ +∞, then ei+n → eiw → 0. More explicitly, the rate of
change of altruism (αt+1

iw −αtiw) stabilizes to Kε. Thus, for
gain conditions 0 < K < 2 ξ

1+ξ , the mutual altruisms αiw
and αwi will both match each other and grow over time in
a stable fashion.

VII. RESULTS

A. Simulation

A series of experimental simulations were run involving
communities of five differential drive robots operating in a
8m x 8m 2D workspace. Each experiment consisted of 25
epochs (batches), where altruism value updates occur after
each epoch. In each epoch, 40 tasks, each at a random
location, were individually assigned to random vehicles.
These vehicles are committed to the completion of the tasks
assigned to it, but they may auction them off to the highest
bidder. However, the bidding occurs at the beginning of
each epoch only. Within these experiments, fitness functions
Fi were calculated with rewards Rj being equal to 1 for
each task completed and costs Ci being equal to additional
euclidean path costs. The controller gains K were set to
0.25 and ε was set to 0.25. Experiments were run 500 times
and path cost results below are the average over these 500
experiments.

Within these experiments, the two approaches to control-
ling altruism, one-to-one and one-to-many, were applied to
the three different cases. These cases corresponded to the
three different community classes described above: balanced,
unbalanced and maximal unbalanced.

Fig. 5 shows the resulting path costs from these ex-
periments. In the balanced community case (a), both the
one-to-one and one-to-many demonstrated almost identical
decreases in path cost as the altruistic relationships evolved
(shown in Fig. 5a). Although not optimal in the MTSP sense,
over time the balanced communities lead to the lowest path
costs possible in the MRC market bidding scheme.

To demonstrate controller performance in an unbalanced
community, all five vehicles were only allowed to act altru-
istically to 2 of the 4 other robots. As shown in Fig. 5b, the
one-to-many controller reduces the path cost an additional
15% when compared to the one-to-one controller.

To demonstrate controller performance in a maximal un-
balanced community, all five vehicles were only allowed to
act altruistically to 1 other robot. As shown in Fig. 5c, the
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Fig. 5. Average path costs from simulations. Both the one-to-one and
one-to-many controllers’ path costs are shown for (a) balanced, (b) the
unbalanced, and (c) the maximal unbalanced communities.

Fig. 6. Average task completion time on Dr. Robot X80 robots. Using a
balanced community, the average completion time decreases as the altruism
increases.

one-to-many controller continues to reduce the path cost over
the one-to-one controller. The one-to-one controller still does
have some path cost reduction because robots are willing to
perform ε more work than the reciprocating robot.

B. On-Robot Tests

Preliminary tests were conducted using 4 Dr. Robot X80
mobile robots, with a total of 15 random task locations
assigned per epoch. One-to-one altruism control was used
in a balanced community. The average time required to
complete all tasks in an epoch decreased considerably as
time went by and the altruism increased (see Fig. 6).

VIII. CONCLUSION AND FUTURE WORK

This paper presents the idea of a Multi-Robot Community
in which several robots sharing a common workspace are
attempting to complete their individual tasks. It was shown
that altruistic actions, where robots assist with each other’s
tasks, can lead to decreased path costs for individual robots.

Two controllers were compared in three different cases:
balanced communities, unbalanced communities and maxi-
mal unbalanced communities. In all cases the new one-to-
many controller did as good as or outperformed the one-to-
one controller. However, it is postulated that the one-to-one
controller will outperform the one-to-many controller when
dealing with selfish robots that try to exploit the system. Pre-
vious work demonstrated the one-to-one controller’s ability
to protect against selfish robots, yet, more work is required to
maintain protection when using the one-to-many controller.

Other future work includes developing better methods of
estimating another robot’s altruism achieved, dealing with
situations with uneven task distributions (i.e. 5 tasks for one
robot and 100 for another; in which case the 5-task robot may
be disadvantaged by acting altruistically), adding uncertainty
into task completions (i.e. probability of completion rather
than binary), and further testing on real robots. In addition, a
controller consisting of a weighted average of the controllers
presented here may deal with their limitations.
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