
Design Patterns Go To Hollywood: Teaching Patterns with Multimedia

Adam Dukovich, David S. Janzen
Computer Science Department

California Polytechnic State University
San Luis Obispo, CA 93407

adam.dukovich@gmail.com, djanzen@calpoly.edu

Abstract

Studies indicate that understanding the contexts in which
design patterns are to be used is one of the most (if not
the most) difficult challenge in applying design patterns,
yet little research on the topic attempts to solve the
problem of better teaching the contexts. This paper
discusses a new paradigm through which the teaching of
design patterns can be viewed, one which focuses on
conceptual examples and contexts as the key elements in
teaching design patterns. We created several multimedia
learning modules that use this approach and we
evaluated the modules by comparing them to other
methods of instruction in junior-level software
engineering courses. The context-oriented modules
performed better (or at least not significantly worse) than
traditional lectures on virtually all metrics, and the
videos are easily deployable, making them ideal for uses
like distance learning, and they can save valuable
instruction hours for professors.

Keywords

design patterns; software engineering education;
multimedia; learning modules; context-oriented

1. Introduction

Design patterns were widely popularized with the
publication of Design Patterns: Elements of Reusable
Object-Oriented Software [5]. To say that the book was
influential would an understatement, in light of the prolific
industrial popularity of the patterns [6, 7] and the 13,000+
scholarly citations of Design Patterns, commonly known
as the Gang of Four (GoF) book. The GoF book is neither
the be-all nor the end-all of design patterns, but it was
important in popularizing them.

Since 1994, there has been some investigation into
how best to introduce these patterns to students. After all,

in light of their popularity in industry and academe,
teaching design patterns might seem like a natural topic of
inquiry. However, most attempts to introduce design
patterns into the classroom have focused on using better
examples, simpler models, and better explanations. While
we acknowledge that efforts along this line are very
important, we felt that a more radical approach to design
patterns pedagogy was needed. To this end, we created
several multimedia learning modules (i.e. instructional
videos) that focused on teaching students first and
foremost about the contexts in which the patterns are to be
used. Instead of starting by answering the “how” of these
patterns, we endeavored to answer the “why” first, and we
accomplished this by starting the modules with sketches
that introduced the main idea of the pattern in a non-
computer science context, without getting bogged down in
terminology or UML diagrams (at first). After this, and
after tying the pattern into the CS context, the videos
begin to go into the nuts and bolts of the patterns and how
they are put together. The idea was that starting with the
big picture and drilling down to more specifics afterward
was a better approach than giving the students a tool that
they did not know how to use, all the while telling them
how the tool worked rather than what it did. Such an
approach would not cut mustard in wood shop, nor should
it in computer science.

This paper presents related work, a project statement, a
section that discusses the creation of learning modules,
evaluation and the final results.

2. Related Work

A design pattern is, fundamentally, a pairing between a
common problem in software development and a proven
solution for that problem [11]. The context of a design
pattern can be defined simply the circumstances under
which a pattern is to be used.

Research on design pattern pedagogy focuses
predominantly on teaching design patterns in CS1, as a
complement to an objects-early approach [1, 10, 13].

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.199

684

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.199

684

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19157551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pecinovsky [9] makes this explicit connection, and his
approach follows this desire: in essence, he would like to
simplify the patterns and make them more user-friendly so
that introductory-level students will be better able to
understand the patterns. His approach can be classified as
being a structural method of teaching design patterns,
which emphasizes better examples and simplification as
the key to teaching design patterns.

Pecinovsky's structural method is necessitated by his
audience—CS1 students will have less aptitude for the
level of technical detail that is exhibited, for one, in the
Gang of Four book. However, the teaching of design
patterns cannot simply be about finding a better structure.
Dewan [3] notes that the biggest stumbling blocks to
teaching design patterns were as follows:

1. Students have trouble identifying the
contexts in which design patterns are
applicable.

2. The examples presented are excessively
complex for less mature students.

Many researchers (like Pecinovksy) have opted to
tackle the second problem, but ideas on solving the former
one are still lacking. Head First Design Patterns [4]
makes an attempt to introduce the contexts in which
design patterns appear on a conceptual level, however,
their approach has never been empirically tested. Efforts
by Weiss and Nevison [8, 12] also try what might be
considered a context-oriented approach to teaching design
patterns. Both introduce design patterns in the context of
an already-completed, familiar project that has utilized
design patterns without the overt knowledge of the
students. Such efforts, though, would inevitably tend to be
difficult to implement.

One might wonder why there has been such a glut of
attempts to try to teach design patterns to intro-level
students while there have been substantially fewer
attempts to teach patterns to students with more
experience. One might reasonably attribute this to a matter
of ideology. Pecinovsky (and others) see little difference
between OO design and design patterns, and conflate the
two as a necessary part of a CS1 curriculum (as in [9]),
rather than seeing design patterns as more of a sui generis
phenomenon. The ability (or lack thereof) of an
introductory student to understand the sophisticated
concepts represented by design patterns ought to concern
educators, as should the relative lack of attention paid to
illuminating design patterns' respective contexts in the
current literature. What is needed is a new approach to
teaching design patterns.

3. Problem Statement

The goal of this project was to create an easily-
deployable (i.e. multimedia) set of design pattern learning
modules that would be at least as effective, and hopefully
more so, than teaching design patterns with a method
primarily focused on teaching structure.

Ideally, these modules will prove to be an effective
way of teaching design patterns, and could be useful to an
instructor looking to teach design patterns to his or her
students, or to a manager in industry looking for some
quick training for employees.

4. Creation of Learning Modules

The fundamental goal of these modules was to
introduce the patterns' contexts as the key to being able to
eventually understand and use the patterns. Only after
grasping the “why?” of these patterns could students be
reasonably expected to know how to apply them in the
future. This led naturally to a certain structure for the
modules, which will be shortly discussed in section 4.1.

These modules were meant to be targeted at
intermediate-level undergraduate students with some
understanding of OO design practices. This was assumed
to be superior to efforts targeted at introductory CS
students, as students who have a more comprehensive
background in concepts such as the object-oriented
paradigm would likely be more comfortable with the level
of sophistication associated with design patterns than
students who have only recently learned the function of a
for-loop. This base of knowledge would allow more focus
on teaching the pattern contexts, which as Dewan [3]
noted is among the hardest (if not the hardest) elements of
teaching design patterns. Nevertheless, the examples that
the module provides were deliberately meant to be as
simple and abstract as possible, so that detail could be
subsequently added onto the student's understanding.

Figure 1: Still from the Strategy video

685685

Deployability was another one of the most important
factors in creating these modules. We wanted to create
learning modules that could easily be used by instructors
as part of an in-class lesson, a lab, or homework. This
approach was dictated because of the deficiencies of some
of the other approaches that sought to introduce patterns
in the context of a complicated, multi-stage project that
would leave little freedom for instructors with respect to
how they approached the material, which we regarded as
crucial.

We created three short instructional videos which
covered the Adapter, Observer, and Strategy design
patterns, as defined in [5]. These patterns were chosen
because of their utility to students, their varying levels of
complexity, and because each one lent itself fairly
naturally to a conceptual example. These videos contain a
combination of live-action segments and static slides,
which we believed would make the videos dynamic,
enjoyable, and informative. We chose not to use
professional actors in the videos, but rather upper-division
CS students who would already “speak the language.”

Figure 1 shows an image from the Strategy video. Each
video was tied to one short and one longer exercise that
were intended to reinforce the material presented. The
viewer is prompted to pause the video in order to
complete the exercises which can be completed with paper
and pen. The purpose of including these exercises was to
allow for us to assess the effectiveness of our videos,
which is further explained in section 4.2.

4.1. Structure of the Videos

Each video contains four main sections (acts):

1. A skit that introduces the concept of the pattern
in a context entirely unrelated to computer
science. For example, the iPod was used as a
non-CS example of the strategy pattern, as it
allows dynamic selection of songs, videos, etc.,
in comparison to the static ordering of only songs
on a tape player.

2. A section that explains the pattern's context
specifically within computer science, and where
it might be used in a program that they might
write. For example, with the Adapter pattern, the
video mentions the pattern's utility in code reuse.

3. A section that looks at the structure of the design
pattern and how the parts interact with one
another. This section introduces the short
problem for the pattern. For the Strategy video,
students have to match up classes from a code
example with classes from the Strategy pattern.

4. A section that introduces the longer problem.
Students are given a piece of code and then
refactor it such that it implements the pattern
being taught.

This structure stresses the contextual elements of each
pattern first, before moving on to the structure and
internal relationships. This represents a conscious reversal
of most of the research on this subject, in hopes of finding
out which approach works better at teaching the patterns.
Each video is about ten minutes long.

4.2. Assessment

As indicated earlier, each video included two
associated exercises. One was a short exercise (either
multiple choice, true/false, or matching) to test students'
basic comprehension of the pattern, and the other was a
longer exercise to test students' ability to apply the pattern
by refactoring an existing piece of code to utilize the
design pattern in question. The short and long exercises
are intended to take students approximately one and 10
minutes, respectively.

Our three primary objectives with the videos were that
the students be able to comprehend the patterns, that they
be able to apply them, and that they be able to retain the
basic knowledge of what patterns accomplish. We
assessed the first two via the exercises previously
discussed: comprehension is tested by the student's
performance on the shorter question, and application by
the longer question. Retention was tested after the fact,
with a final exam question that tested how well students
retained the concepts of the design patterns they were
taught.

5. Experiment Design

In order to evaluate the efficacy of the learning
modules, we conducted a controlled experiment in two
undergraduate software engineering courses (CSC 307
and 309) at Cal Poly, San Luis Obispo. The courses are
intended for third-year computer science and software
engineering majors. There is some danger that the
students in these courses already know the design patterns
presented, but we control for this eventuality by having
students state on a questionnaire whether or not they have
already used the patterns. The experiment involved two
parallel sections of CSC 309 taught by the same
instructor, with 40 students altogether in both sections.
The experiment was performed once again in a slightly
different setting with 20 CSC 307 students, who had
comparable levels of experience. The data reflects all of
these sections. CSC 309 was the second in a two-course

686686

software engineering sequence. CSC 307 is a one-course
software engineering alternative.

The experiment proceeds as follows: one section is
shown a full video on one of the patterns (e.g. Strategy).
After this, the same section will observe an in-person
lecture on another pattern (Adapter) and then will be
shown a video on the third pattern (Observer) but without
an initial skit. The second lab section will receive parallel
instruction on the patterns in the same order, but the
methods will be different. In the second lab section, the
strategy pattern will be taught with the video minus the
skit, followed by the adapter pattern taught by the video
with the skit, and concluded with the observer pattern
taught by lecture. Table 1 summarizes the experiment
organization.

Pattern Section 1 Section 2

Activity 1 Strategy Video with skit
(Long video)

Video w/o skit
(Short video)

Activity 2 Adapter Lecture Video with skit

Activity 3 Observer Video w/o skit Lecture
Table 1: Experiment design for CSC 309

Why proceed in this manner? Before we compare our
context-oriented approach to teaching design patterns to
what other researchers have done in the past, it is
important to make sure that the method we chose to use to
create the videos does not handicap the material.

Earlier, we mentioned a section of CSC 307. The
experiment for that class was similar to the one in CSC
309, except we used an even shorter version of the videos
that included no information on contexts (here referred to
as the shorter video). The graphs reflect both experiments.

Just to make sure that the variables in play here are
understood: the order in which the patterns are presented
is constant, as are the exercises used to evaluate students'
understanding of the patterns. The independent variable
for each pattern is the method of instruction—context-
oriented videos, lecture, or video without the skit. The
lecture material will be substantially the same as the video
without the skit, and both will still have information on
the context in which a pattern is to be used.

6. Expected Outcomes

We expected to find that our approach to teaching
design patterns, which we have dubbed “context-
oriented,” is more effective than the prevailing model of
teaching the structure of the patterns as the primary aspect
of design patterns. In addition, we hope that the learning
modules we create will become widely used among
educators and professionals in the field as a way of
introducing these particular patterns.

In a greater sense, we hope that this work will incline
instructors away from the practice of “design patterns-
early,” which we feel is problematic, and focus more
toward teaching the patterns at a later time in the
undergraduate curriculum with a context-oriented
approach.

7. Results

We present the results in three parts. The first part will
look at how well students responded on the questions that
they answered immediately upon viewing the videos. The
second part will look at how students did on the test
question as a test of retention, and the third part will look
at how the students graded the videos based on subjective
measures.

Figure 2: Adapter Exercise Results

7.1. In-class Exercises

The results from these exercises can be partly found in
Figures 2, 3, and 4. These figures report the average
student score on the longer exercise that tested students'
ability to apply the pattern by refactoring an existing piece
of code to utilize the design pattern. (The parentheticals
indicate on what class the experiment was performed.)

Figure 3: Strategy Exercise Results

In general, lecture was consistently found to be the best

687687

method of instruction, and the video completely devoid of
contextual information was consistently found to be the
worst. The comparisons between different methods of
instruction are broken down in Figures 2, 3 and 4 by the
three different design patterns. As Table 1 showed, not all
approaches were used with all patterns. The experience
columns show how well students did on the exercise
against their experience with the patterns. We included the
data in the paper, but it was ultimately inconclusive.

These results do not really show one type of
presentation method as vastly superior to the others.
Lecture is best, and the shorter videos fare the worst.
These trends are present but muted, suggesting that the
effect of which method is used to teach the patterns—at
least as measured by the ability to immediately apply the
pattern in question—is less urgent. All in all, it is not
possible to say that any other method of instruction is
significantly better than the context-oriented videos.

7.2. Test Questions

Table 2 shows the performance of the students in CSC
309 on the test question. These questions were embedded
in the course final exam, thus measuring student retention
of the patterns over time. The numbers represent the
students who successfully answered the question.

Problem 1: Strategy

Section 1
(Long/Context-
Oriented Video)

Section 2
(Short/Non-CO
Video)

Correct 14 5

Incorrect 6 15

No Answer 4 4

Problem 2: Adapter

Section 1
(Lecture)

Section 2 (CO
Video)

Two parts correct 4 8

One part correct 11 11

No parts correct 6 3

No answer 3 2
Table 2: Final Exam Question Results

In both questions, it is clear from visual inspection that
the students watching the context-oriented videos did
better than their counterparts experiencing other types of
instruction. Based on these results, it is safe to conclude
that the context-oriented videos perform better in terms of
retention than non context-oriented videos (p=0.0024),
and since the video element is the only variable that is

changed here, one can conclude that the context-oriented
approach is better than the approach that does not
emphasize context when it comes to getting students to
remember the basic ideas of the pattern.

Figure 4: Observer Exercise Results
In comparison to lecture, though, which contains

context material, the context-oriented video still does a
better job, though the result is not statistically significant
(p=0.13). It would appear that teaching with video is not
significantly superior to teaching with lecture, but drawing
such conclusions was never the purview of this paper.

7.3. Subjective Data

This section breaks down some of the self-reported
subjective data that was supplied by students. These
questions appeared on a postmortem survey that students
answered after each experiment, and they were asked to
rate the videos on a scale from one to five (five being very
well) with respect to how well the videos taught the
context, the structure of the patterns, and just how much
they liked the videos. Table 3 reports the question results.

Teaching
Method

Conveys
Context

Conveys
Structure

Like

Long Video 3.48 3.22 2.98

Lecture 3.31 3.30 2.52

Short Video 3.09 2.85 2.48

Shortest Video 3.29 2.93 2.64
Table 3: Subjective Data

According to Table 3, students felt the long video was
superior in terms of conveying the context, and they liked
it more than other methods of instruction. The lecture just
narrowly beat out the long video in terms of conveying
structure. These results indicate that, in the opinions of the
students who participated in the experiments, that the long
video succeeds at its main goal—focusing on the context
—and it's a more satisfying experience overall. However,
these results should perhaps be taken with a grain of salt,

688688

as statistical validation is once again hampered by the
small sample size for the shorter video.

8. Conclusion

As can be seen in Section 7, students who viewed
videos with a context-oriented approach not only did
significantly better on the test questions (although there
exist some significant caveats for the second experiment),
but also preferred the context-oriented videos on two of
the three criteria measured. The data on the in-class
exercises is, to be sure, muddled, and larger sample sizes
are necessary to determine statistical significance.
However, it is safe to say that there is no reason, given the
data, to believe that the context-oriented videos are
significantly worse than the other methods of instruction
that excluded contextual material. In fact, use of the
videos could be preferable considering the advantages that
the videos have in the other metrics, as well as some of the
less quantifiable but nevertheless tangible advantages that
they have over, say, lecturing. For instance, one can
simply outsource lecture on Strategy to the videos and not
need to worry that students are significantly worse off,
based on the data and its corresponding analysis.

In addition to the information and analysis about the
performance of the videos that included context-oriented
content relative to the non-context alternatives, it is worth
noting that there is some anecdotal evidence to further
back up the case of the videos. Several students, after
viewing the context-oriented modules, were immediately
able to recall what the pattern did because of the
conceptual examples provided. For example, a student
reported that he was able to remember that Strategy
allows a user to select an algorithm at runtime because, in
his mind, as soon as he heard “strategy” he immediately
made the connection to the iPod, as was made in the
movies. This was reported in several surveys as well, and
should not be surprising in light of context-oriented
students' superior retention by the metric of test scores.

All in all, the videos that we created during the course
of this project—videos that taught the Strategy, Adapter,
and Observer patterns—were successful according to the
metrics that we set up at the outset of the project. There is
more work to be done, but it is our hope that the success
of this experiment shows the feasibility of a context-
oriented approach to teaching design patterns.

9. Availability

The videos discussed in the paper are available at
http://users.csc.calpoly.edu/~adukovic/DesignPatterns.html

10. References

[1] F. Arcelli, S. Masiero, and C. Raibulet. Elemental
design patterns recognition in Java. 13th IEEE
International Workshop on Software Technology and
Engineering Practice, pages 196-205, 24-25 Sept.
2005.

[2] K. Beck, R. Crocker, G. Meszaros, J.O. Coplien, L.
Dominick, F. Paulisch, and J. Vlissides. Industrial
experience with design patterns. Proceedings of the
18th International Conference on Software
Engineering, pages 103 - 114, 25-29 Mar 1996.

[3] Prasun Dewan. Teaching inter-object design patterns
to freshmen. SIGCSE Bull., 37(1):482-486, 2005.

[4] Elisabeth Freeman, Eric Freeman, Bert Bates, and
Kathy Sierra. Head First Design Patterns. O'Reilly
Media, Inc., 1st edition, 2004.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[6] Timothy C. Lethbridge. What knowledge is important
to a software professional? Computer, 33(5):44-50,
2000.

[7] Tracy L. Lewis, Mary Beth Rosson, and nones
Manuel A. Pérez-Qui. What do the experts say?:
teaching introductory design from an expert's
perspective. In SIGCSE '04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 296 - 300, New York, NY, USA,
2004. ACM.

[8] Chris Nevison and Barbara Wells. Teaching objects
early and design patterns in java using case studies. In
ITiCSE '03: Proceedings of the 8th annual
conference on Innovation and technology in
computer science education, pages 94-98, New York,
NY, USA, 2003. ACM.

[9] Rudolf Pecinovský, Jarmila Pavlícková, and Lubos
Pavlícek. Let's modify the objects-first approach into
design-patterns-first. SIGCSE Bull., 38(3):188-192,
2006.

[10] David Reed. Incorporating problem-solving patterns
in cs1. In SIGCSE '98: Proceedings of the twenty-
ninth SIGCSE technical symposium on Computer
science education, pages 6-9, New York, NY, USA,
1998. ACM.

[11] Yonglei Tao. Teaching software tools via design
patterns. In ACSE '00: Proceedings of the
Australasian conference on Computing education,
pages 248 - 252, New York, NY, USA, 2000. ACM.

[12] Stephen Weiss. Teaching design patterns by stealth.
SIGCSE Bull., 37(1):492-494, 2005.

[13] Michael R. Wick. Kaleidoscope: using design
patterns in cs1. SIGCSE Bull., 33(1):258-262, 2001.

689689

