
3 c

doi:10.1017/S0956796809990281

JFP 20 (1): 3–18, 2010. � Cambridge University Press 2010

EDUCATIONAL PEARL

“Little language” project modules

JOHN CLEMENTS
California Polytechnic State University, San Luis Obispo, CA, USA

(e-mail: clements@brinckerhoff.org)

KATHI FISLER
Worcester Polytechnic Institute
(e-mail: kfisler@cs.wpi.edu)

Abstract

Many computer science departments are debating the role of programming languages in
the curriculum. These discussions often question the relevance and appeal of programming-

languages content for today’s students. In our experience, domain-specific, “little languages”
projects provide a compelling illustration of the importance of programming-language
concepts. This paper describes projects that prototype mainstream applications such as
PowerPoint, TurboTax, and animation scripting. We have used these exercises as modules in
non-programming languages courses, including courses for first year students. Such modules
both encourage students to study linguistic topics in more depth and provide linguistic
perspective to students who might not otherwise be exposed to the area.

1 Studying the design of (domain-specific) languages

Students (and some faculty!) sometimes wonder why the standard computing
curriculum includes a course on programming languages. In their eyes, most
employers have settled on a small, slowly changing pool of general-purpose languages
that share a common programming idiom. Languages that do not fit this model,
even very popular ones, are often regarded as “scripting” languages which students
can learn on their own as needed. From this perspective, studying the building blocks
and design principles that underlie programming languages seems unnecessary to
students once they have command of one language. In many computer science
departments (at least in America), programming languages is losing its position as
core content (Fisher & Krintz 2008).

Programming-languages researchers cite many benefits of linguistic training:
flexibility as a programmer, ability to design effective abstractions, and appreciation
for different computational models. In our experience, these points are too abstract
to resonate with many mainstream students. To make these points more concrete,
we have developed a series of software construction projects within which students
design and implement domain-specific languages (Bentley 1986; Deursen et al.
2000). Each project has students build a prototype of a mainstream software

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19157542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 J. Clements and K. Fisler

application such as PowerPoint, TurboTax, or an animations-scripting platform
such as Flash. Each of these applications processes complex and context-dependent
data in well-specified ways: PowerPoint displays user-specified slide decks; TurboTax
prompts end-users to fill in forms and fields required by local tax code; animations
platforms provide constructs for coordinating interactions between graphical objects.
Robust implementations of these packages decouple the data specification from the
engine that processes it. In other words, software engineering concerns motivate the
construction of domain-specific languages for these projects.

Grounding language design in software engineering enables using these projects
as modules in courses beyond programming languages. We have used these projects
successfully in two such settings: a software construction course for students in their
third college year, and perhaps more surprisingly, an honors-level programming
course for students in their first college year. In both settings, students confront core
linguistic material: they must define syntax and semantics, identify program errors to
flag, and provide an implementation via an interpreter, compiler, or embedding into
a host language. Our modules therefore support many uses, from providing basic
linguistic content to students who will not take a languages course, to advertising
for languages courses, to providing real-world applications within languages courses.
Given that domain-specific languages are often declarative in nature (Sabry 1999),
these projects also provide a framework for exposing students to functional and
declarative programming.

The paper presents these projects using tax-preparation software as a running
example. Section 2 describes the tax-form problem. Section 3 discusses two imple

mentation techniques and their pedagogic implications. Section 4 discusses advanced
tax-form features and their linguistic consequences. Section 5 describes other domain-

specific language examples that we have used effectively in classes. Section 6 describes
our experience using these exercises as modules outside of programming-languages
courses. Section 7 offers concluding remarks.

2 Tax forms: a running example

The task is to design and implement a tax assistant that helps a taxpayer fill out tax
forms. For this example, we use the United States of America’s federal tax forms
(which residents complete annually); fragments of these forms appear in Figure 1.
The tax assistant program should query the taxpayer for user-supplied fields (such
as wages earned), compute the value of fields that are derived from other fields (such
as total income), and produce the amount of tax. Some fields require completion of
auxiliary forms (called schedules in the U.S. tax code) whose fields are referenced in
computations on other forms; the arrows in Figure 1 show a reference to schedule C
from both form 1040 (the main form) and another schedule (SE). The tax assistant
should prompt for the completion of each form or schedule at most once. As tax
laws can change from year to year, the program should be designed to adapt easily
to different tax forms and to variations of the same form.

Several extensions to this basic problem offer richer features to tax-form authors
and taxpayers using the software:

5 Educational pearl

Fig. 1. Sample tax forms and the flow of information between them.

1 Print the completed tax forms when the user is finished.
2 Include error checking to catch form-specification errors.
3 Capture and check form invariants. For example, taxpayers who earn more

than $1500 in dividends must fill out schedule B.
4 Allow users to prepare their taxes over multiple sessions, each of which resumes

where the previous session ended.

We first discuss implementations of the basic problem, then address the advanced
features.

3 Implementing a basic tax assistant

Different implementation approaches raise different pedagogic issues. This section
discusses two approaches – interpreters and language embeddings via macros – in
detail. Section 7 contrasts these approaches pedagogically in the context of our
projects.

3.1 An interpreter-based approach

Writing an interpreter follows the style of many programming-languages curric

ula (Kamin 1989; Friedman et al. 2001; Krishnamurthi 2007). An interpreter-based
implementation typically requires three artifacts: a concrete syntax in which a
tax expert would describe a tax form, an abstract syntax representation (i.e., a
data structure) that the tax assistant processes, and an interpreter which executes
programs written in the abstract syntax. For simplicity, we assume that the concrete
syntax is textual. Figure 2 shows sample concrete syntax for a portion of the 1040

6 J. Clements and K. Fisler

(form form-1040 (export total-income)
(field wages (prompt "Wages earned"))
(field big-dividends (prompt-checkbox "are dividends > $1500?"))
(field dividends (if big-dividends

(form-ref schedule-b total-dividends)
(prompt "enter total dividends")))

(field total-income (calculated (+ wages dividends))))

(define-struct form (name exports lines))
(define-struct line (label instructions))

(make-form "form-1040" (list "total-income")
(list (make-line "wages" (make-prompt "Wages earned"))

(make-line "dividends"
(make-if	 (make-prompt "are dividends > $1500?")

(make-form-ref "schedule B" "total dividends")
(make-prompt "enter total dividends")))

(make-line "total-income" (make-calculated (make-plus "wages" "dividends")))))

Fig. 2. Possible concrete (above) and abstract (below) syntaxes for a simple tax form .

tax form, including named fields containing both prompted and computed values,
along with a corresponding abstract syntax for the same fragment. The abstract
syntax, as with all code in the paper, is presented in PLT Scheme (Flatt & PLT
2009); each make- operator is a typed record-constructor.

Although it might seem obvious that students should design their concrete syntax
before a corresponding abstract syntax, designing the abstract syntax first nearly
always makes more sense. The abstract syntax is simply a careful definition of the
set of possible inputs to the evaluator. When prototyping a known software package,
students have many examples (such as actual tax forms) from which to identify an
appropriate data structure for the abstract syntax. The concrete syntax, by contrast,
is designed to simplify the task of the specifier by providing syntactic short-cuts; its
design is far more open ended and thus harder as a starting point for novices.

Designing Abstract Syntax: Students encounter certain common problems while
designing abstract syntax, including:

1 The tax-form specification is separate from the data that the tax assistant
gathers from an end-user. Many students include dummy placeholders or
default values in the abstract syntax for the data to be requested on each line,
(e.g. (make-prompt "enter wages" false) in the abstract syntax of Figure 2).
The false serves as a placeholder for the actual wages value that a user
will enter when running the tax program. Students who do this generally cite
principles about keeping related data together, without realizing the competing
principle of separating instructions from data. This difficulty is compounded by
the existence of the tax form’s physical artifact, wherein tax-form instructions
appear next to blank spaces for a user to fill in. This is a nontrivial step for
some students as they learn to think about languages.

7 Educational pearl

2 Meta-language identifiers are not inherently visible in the object language.
Consider this incorrect program fragment:

(define line1 (make-prompt "Enter your wages"))
(define line2 (make-prompt "Enter your dividends"))
(define line3 (make-calculated (make-plus line1 line2)))

This code’s author imagines that line1 refers at run-time to a number
representing the end-user’s wage, when in fact it refers at compile-time to
a piece of a tax-form abstract syntax.1

3 Languages must be more general than the artifacts they capture. In the
section of tax forms capturing dividend amounts, for example, the printed
form provides a fixed number of lines. The tax assistant, however, should use
an arbitrary-length list rather than expect the number of entries printed on
the form.

4 Arbitrary-size data structures require more interesting naming schemes. Each
entry in a list of dividend amounts, for example, involves several pieces of
information; it is effectively a table with a fixed number of columns and
variable number of rows. Referencing data within tables introduces the need for
addressing schemes, since students cannot introduce fixed names in instances
of the abstract syntax.

Starting with abstract syntax helps students confront these issues directly. Asking
students to define the data structures for their abstract syntax, express a represen

tative subset of an actual tax form in those structures, and load that expression in
the meta-language reveals many of these problems to the students. Ironically, then,
the abstract syntax turns out to be more concrete!

Defining an Interpreter: Conceptually, a tax-form interpreter must process each line
of the form by either prompting the user for data or computing a value based
on previously-entered data. Figure 3 shows a possible fragment of the tax-form
interpreter corresponding to the abstract syntax from Figure 2. Each line in the
form, whether prompted or calculated, constitutes a binding which other lines may
reference. Implementing bindings correctly tends to be the biggest conceptual hurdle
for students: they struggle to separate bindings in the tax language from bindings
in the interpreter, and to devise a run-time data structure to manage the bindings.
Their attempts can generally be grouped into three categories:

1 Define a meta-language variable for each entered datum and reference those
variables as values in other pieces of abstract syntax (as shown in item 2
at top of this page): Inability to rule out this option reflects fundamental
misunderstandings about the idea that programs are data and the differences
between object and meta-language.

1	 Curiously, this can be made to work as part of a macro solution, but the use of the host-language
binding mechanism destroys the ability to, for example, compute the number of lines in a form or
print out the completed form.

8 J. Clements and K. Fisler

;; process-line : line env → env
;; requests or computes data for one tax-form line, storing it for future reference
(define (process-line aline env)

(let ([instructions (line-instructions aline)])
(add-to-env
env
(line-label aline)
(cond [(prompt? instructions)

(begin (printf (prompt-text instructions))
(read-line)]

[(calculated? instructions)
(evaluate-computed instructions)))))

Fig. 3. Fragment of tax-form interpreter corresponding to the line structure.

2 Extend the abstract syntax with a placeholder for the answer, and mutate the
abstract syntax as line values are determined: this approach admits fewer data
structure definitions, but fails to separate abstract syntax from run-time data
and requires repeated searches over the abstract syntax to look up previously-

determined values.
3 Maintain a separate data structure linking forms and line numbers to values:

this is the approach that most successful students eventually settle on.

Defining Concrete Syntax: Making the tax-form language available to tax-form
specifiers requires a specification of concrete syntax and a mechanism to convert the
concrete syntax into the abstract syntax. The specification and conversion method
are closely linked, in that adopting constraints on the form of the concrete syntax
enables different conversion methods. At one extreme, students could choose an
arbitrary concrete syntax, but would need to write a parser to produce the abstract
syntax. At the other extreme, students could adopt the meta-language’s concrete
syntax and avoid writing any conversion method: the bottom half of Figure 2, for
example, is concrete syntax in Scheme that corresponds to the abstract syntax. The
first approach requires more time than a project module might allow (especially if
students aren’t already familiar with parsing). The second is neither compelling nor
motivating: students don’t see data structures as languages.

Hygienic macros can provide a gentle solution between these extremes. The macro
system’s pattern language constrains the shape of the concrete syntax in exchange for
producing abstract syntax via rewrite rules. There are many hygienic macro systems
for functional languages (Kohlbecker et al. 1986; Dybvig et al. 1988; Clinger &
Rees 1991; Mauny & de Rauglaudre 1992; Cardelli et al. 1994; Herman & Wand
2008), some of which are syntactically quite complex. We find that simple Scheme
macros in the syntax-rules system pose little difficulty for students, especially given
the abstract syntax to guide development of the rules. Indeed, our experience is
that students find macros amusing and even fascinating; some try to create more
elaborate compilations that require richer macro systems (such as syntax-case). Even
within syntax-rules, we augment the macros with checks for syntax errors to inspire
students to use macros in more sophisticated ways.

9 Educational pearl

(define-syntax form
(syntax-rules (export)

[(form name (export var . . .) entry . . .) ;; ⇒
(define name (form-internals (export var . . .) entry . . .))]))

(define-syntax form-internals
(syntax-rules (export field)

[(form-internals (export var . . .) (field name content) entry . . .) ;; ⇒
(let ([name content]) (form-internals (export var . . .) entry . . .))]

[(form-internals (export var . . .)) ;; ⇒

(list (list ’var var) . . .)]))

Fig. 4. Form expansion macros.

3.2 Language embedding

Tax-form evaluators can be implemented without interpreters. For advanced stu

dents, we instead espouse reuse: build the tax form as an embedded language atop
an existing one (Hudak 1996; Clements et al. 2001, 2004). Rather than specifying
an abstract syntax and an interpreter for it, students define a concrete syntax that
is an extension of a host language, and use hygienic macros to map this syntax
onto the native abstract syntax of the existing evaluator.2 They give up control
over the surface syntax of the language, and in return they get to reuse the existing
evaluator.

In a design such as this, there is no need to specify abstract expression forms
(e.g. make-plus) or to define their meanings; tax-form specifiers can simply reuse
the + of the host language. This approach concretely demonstrates the advantages of
reuse, not just in an implementation but also in a design sense. Reuse is particularly
important in prototyping, where the goal is to produce a working program in a
limited time.

Figure 4 shows a simplified set of macros for expanding forms. For brevity, these
examples omit error-checking clauses. The tax-form expansion is implemented as a
simple two-level macro. Each tax-form expands into a single (define . . .) statement,
containing a cascaded (let . . .). Each form binds its name to an association list
containing pairs of exported field names and their associated values.3

The macros do not show the (calculated . . .) terms from the language in Figure 2,
but handling them is literally trivial: (calculated exp) expands into exp. The syntax
of these terms is simply that of Scheme itself. This is the most vivid illustration of
the work saved by working with macros; rather than implementing a heavyweight
interpreter for calculations in dozens of lines, a two-line macro suffices.

2 There are competing definitions of the term “domain-specific embedded language”. We use it to refer
to a simple extension of the host-language semantics using macros.

3 Using host-language variables for form values is appropriate in the macro context, whereas it constituted
an error in the interpreter context. This reinforces the distinction between meta and object language,
which is blurred in the macro context.

10 J. Clements and K. Fisler

Students confront several issues in writing the macro-based embedding:

•	 The seeming lack of work involved: Macros can confound students at first,
because students expect programs as complex as a tax assistant to require
a substantial amount of code. We frequently see students steer themselves
away from elegant solutions in macros that seem too easy. This experience is
useful for helping students think differently about languages; many gain new
appreciation for programs as data through writing macros for nontrivial tasks.

•	 Tradeoffs between exposing implementation details and complicating the
macros: as an example, consider tables (item 4 on page 7). Scheme has a well-

developed set of operations on lists. The student could represent a table as a
list, and simply expose this list to the author of the form. Exposing the Scheme
list (and its accompanying library functions) in the domain-specific language
makes expansion simple, but requires more host-language knowledge on the
part of those programming in the domain-specific language. It would also be
difficult to prevent errors such as “car of null” in such an implementation.
A student might alternatively choose to build a set of custom table-access
functions for each table that a form contains. This expansion would require
more work, but might discover certain form errors more quickly, and would
probably lead to more readable forms. For instance, this style might allow
named references to tables:

(field . . . (calculated (sum-up (table-ref foreign-taxes tax-paid))))

In practice, such tradeoffs expose students to subtle challenges of language
design.

•	 Restricting the language: clever students realize that their tax-form language
can contain arbitrary source code, thus allowing tax-form specifiers to embed
hostile code with no relationship to a tax-form computation. Most students
do not address this issue, but the questions it raises are educational for those
who discover it.

Graham’s example of embedding a database query language in Lisp through
macros (Graham 1994) provides another interesting example of this approach.
Of course, macros are not the only way to build a domain-specific language by
linking the meaning of the new language to the meaning of an existing one. Two
competing approaches – one offering less control over the details of the language,
one offering more – are presented by Haskell and Ziggurat (Fisher & Shivers 2008).
Using a “combinator library” approach in Haskell (Hudak 1996) leverages laziness,
type classes, and monads to make it possible to dramatically extend the language
with new values, operations, and pattern-matching forms (Rhiger 2009) without
adding a macro-like transformation system. At the other extreme, systems such
as Ziggurat promise the ability to equip each language extension with its own
semantics, analysis, and other tools. In Ziggurat, a language consists of a tower
of languages, where each additional layer expands and compiles into the next one
down, and static analyses may be inherited and extended. Students would have great
flexibility in designing language extensions, and the corresponding responsibility for
implementing specialized extensions to the existing analysis tools.

11 Educational pearl

4 Advanced features and concepts

Whenever we assign students large projects (such as a language implementation), we
espouse iterative refinement, building towards the final system. We first implement
a core of the system, then augment the system’s features. For the tax-forms project,
each of the extensions for type checking, assertions checking, and multiple sessions
requires modifications with interesting linguistic content.

4.1 Type and error checking

A basic tax assistant probably performs little to no error checking, neither for
program-specification errors nor for run-time errors. At run time, a taxpayer could
enter non-numeric data in response to a prompt for numeric data. At specification
time, tax-form authors could insert unbound references or circular data dependencies.
Tax forms are also subject to type errors, particularly with respect to units of
measure (so-called unit-checking (Kennedy 1997; Allen et al. 2004; Antoniu et al.
2004)). Consider the following example. A taxpayer can claim a reduction in taxable
income for himself, his spouse, and all of his dependents. The total deduction
for dependents in 2008 is calculated by multiplying the number of dependents by
US$3500. Multiplying a simple number by a dollar amount is fine, and the resulting
unit is the dollar. If the developer of the tax form were to mistakenly add these
numbers rather than multiplying them, the resulting total would be a nonsensical
combination of dollars and people.

Extending the language to support error checking is a natural next step once the
core tax system is working. Unbound-reference errors can be checked using macros,
or as a separate phase in the interpreter. We find the former particularly instructive,
as it shows macros doing work beyond rewriting.

To handle run-time data-entry errors, we ask students to extend their syntax with
type declarations for prompt expressions:

(prompt "Enter wages" number)

Their implementations then check that entered data conforms to those types, re-
prompting the taxpayer if necessary.

For unit-checking, we show students how to extend their syntax with type labelers
and their implementations with variants of standard operators that are aware of the
unit types. This is much simpler than an approach such as Kennedy’s (1997), which
addresses unit-checking problems via the addition of relational parametricity to an
existing type system. Tax forms, for example, need numeric values representing both
dollar amounts and scalars. We therefore introduce the following pair of macros per
unit type:

(units <type> exp) ⇒ (make-<type> exp)

(prompt query-string <numeric-type>) ⇒

(units <numeric-type> (num-prompt query-string))

We then expand tax-form programs to label constants appropriately, as in

(field deductions (calculated (∗ num-dependents (units dollars 3500))))

12 J. Clements and K. Fisler

then rewrite multiplication in terms of these units

(define (tax-∗ a b)
(match (list a b)

[(list (struct dollarv (d)) (struct scalarv (s))) (make-dollarv (∗ d s))]
[(list (struct scalarv (s)) (struct dollarv (d))) (make-dollarv (∗ d s))]
[(list (struct scalarv (s1)) (struct scalarv (s2))) (make-scalarv (∗ s1 s2))]))

Topics such as unit checking are most appropriate for senior students. With
younger students, we cover only unbound-reference checking. Covering some form
of error checking with these students has proven extremely useful, however. Once
we reduce language implementation to writing and processing data structures for
programs, many students begin to ask what distinguishes a language from a library
(recalling Gosper’s quote that “A data structure is nothing more than a stupid
programming language.” (Hewitt et al. 1973)). Ideally, languages include both static
and dynamic constraints on well-formed programs. This idea, that languages embody
principles of use as well as computation, only starts to take root when students
implement language-specific error handling.

4.2 Form invariants

Invariant-checking, like unit checking, requires language extensions. Students who
wish to add assertion checking may add a tax-form construct similar to the following
(building off the identifiers in Figure 2):

(assertion (if big-dividends
(> dividends (units dollars 1500))
(<= dividends (units dollars 1500))))

Assertion checking poses a nice contrast to unbound-identifier checking, since it
typically requires dynamic, rather than static, checks.

4.3 Multiple sessions, revisions, and out-of-order evaluation

A simple evaluator would force users to work through a tax form in order in a
single session. More sophisticated tools could allow users to edit previous answers,
save and resume previous sessions, or complete sections of the form in an order
of their choosing. These features raise advanced linguistic topics, such as dataflow
programming (to automatically propagate edits), continuations (to save and resume
session state), or laziness (to compute form data as needed in other forms). While
we sometimes use these features as motivators for these topics in full-fledged
programming languages courses, we do not introduce them when using these projects
as modules in other courses.

5 Other domain-specific language problems

In addition to tax forms, we have used several other domain-specific languages in a
similar manner. Each highlights different language-design issues.

13 Educational pearl

Slideshows (a.k.a. PowerPoint): Slideshow presentations provide a compelling lan

guage design example for two main reasons: first, students are extraordinarily
familiar with PowerPoint; second, PowerPoint’s limited abstraction mechanisms and
control flow operators motivate the benefits of building products around domain-

specific languages. Concretely, our slideshow language covers the following linguistic
topics:

•	 Conditionals: we introduce a feature that bases slide sequencing on the time
that has elapsed since the start of the talk.

•	 Variables: we compute some slide data dynamically (such as example number

ing – this is useful once conditionals allow us to skip slides). We contrast
a narrow construct for dynamic example numbering with a more general
implementation of program variables.

The second point helps students understand that language design is about tradeoffs:
what we choose to exclude is often as important as what we choose to include.

An Automated Testing Service: Computerized testing systems administer exams
in which different questions may be posed to different people based on their
performance so far. During exams, people may also receive feedback about their
performance on particular topics. Specifications of alternative questions, question
sequencing, and when to provide feedback constitute a domain-specific language.
Our version of this problem features multiple question styles (multiple choice and
free-response) and optional hints, as well as question sequencing and feedback. This
example highlights the following linguistic concepts:

•	 Conditionals: these arise from sequencing questions and their alternatives.
•	 Structuring program data for querying: giving feedback to users requires

tabulating a user’s performance on different categories of questions. Students
contrast tabulating questions on a per-section basis with tagging data and
allowing queries over those tags (which engenders another language-design
question).

•	 Separation of model and view: should layout information for multiple-choice
questions be built into the abstract-syntax data structure or customized
externally?

•	 Web-based control flow: if the interpreter uses the web to display questions and
process answers, does the system work properly if the test-taker uses the back-

button during the exam? This is fundamentally a question of environments
versus stores.

Animations Scripting: Students create a language for scripting basic animations over
interacting objects. Our objects are basic shapes (circles and rectangles) that can
move across the screen, change size, jump to new locations, collide with one another,
and appear or disappear during the animation. This example highlights the following
linguistic concepts:

14 J. Clements and K. Fisler

•	 Conditionals and defining predicates: animated objects change behavior when
they collide. Do we implement general predicates to capture collisions or
special-purpose constructs for pre-defined types of collisions?

•	 Variables: animated objects may have attributes defined in terms of variables
that change during the animation (such as a circle and square with dimensions
computed from a shared program variable).

•	 Parallel versus sequential operations: some animations are easier to express
through independent operations executing in parallel rather than purely
sequential execution.

State Machine Simulation: A simple state-machine simulator consumes the descrip

tion of a state machine and a list of input symbols. The simulator produces either
a trace of corresponding outputs or a simple flag indicating whether the input list
is recognized by the state machine. This example highlights the following linguistic
concepts:

•	 Interpretation versus compilation: this example is small enough that students
can implement two versions of it in a short time frame. One version converts
the state-machine syntax to a data structure of states and transitions which
an interpreter must then simulate against inputs. Another version, due to
Krishnamurthi, compiles state machines into mutually-recursive functions,
each of which consumes the remaining inputs (Krishnamurthi 2006). While
this may seem less like a domain-specific application than the others, we have
found it resonates well with engineering students.

•	 Error checking: typos can abound in state-machine descriptions. A useful
language would check for errors such as unbound state names in transitions.
This raises questions of what languages should do for programmers, thus
distinguishing languages from mere data structures.

6 Experience

Both authors have used domain-specific language design exercises in the classroom,
but in different kinds of courses with different levels of students.

In an Advanced Freshman-Level Course: The second author has used all of these
examples in an accelerated introductory Computer Science course at the college
level. Her course, aimed at first-semester college students with prior programming
experience (usually a year of Java in high school), spends roughly 10 lecture hours in

troducing functional programming (including lists, trees, and higher-order functions),
then another 10 hours on domain-specific language design and implementation. The
lectures work through the slide show example to introduce ASTs as a data structure,
writing interpreters, and macros.4

4 Notes, pacing, and exercise descriptions are at http://www.cs.wpi.edu/~cs1102/a08/.

15 Educational pearl

Students do assignments based on two of the remaining examples. One example –
often the automated tester – becomes two assignments: a homework in which pairs
of students design abstract syntax for the full example, and a lab in which students
write an interpreter for a core of the example. Another example – the tax form or
the animations language – serves as the course project: students individually design
the AST, implement an interpreter, and optionally provide a clean concrete syntax
via macros.

Analysis of student projects and grades across four offerings of this course show
that almost all of the students understood the concepts well enough to design a
basic AST and interpreter. In fact, instructor experience suggests that even those
who receive poor grades can attribute their failures to late starts and poor planning,
rather than difficulty with the material. Additionally, some students go beyond the
stated assignment, embellishing their languages in interesting and original ways.

In-class reviews of AST designs contribute to our success with these assignments.
For each AST-design assignment, we conduct a class-wide critique of three or four
different styles of designs. Students are very engaged in these design reviews. Typical
issues raised by students include whether to model certain constructs in the meta

language or the object language, whether multiple constructs could be abstracted
into common core constructs, and whether a construct design is sufficiently flexible
to accommodate reasonable extensions to the language. Analysis of grade data
shows that a significant fraction of students had poor designs at the AST phase, but
got C-grade or better implementations working by the final deadline. We find many
students understand the concept of an interpreter more readily than the concept of
capturing programs as data. These students benefit from seeing multiple examples
of plausible ASTs during the design reviews. We encounter relatively few students
who are able to write ASTs and not able to produce simple interpreters. That we
are able to achieve these results with students in the first semester of college speaks
to the power of domain-specific languages as a project topic.

We also attribute success with this audience to our choice of functional pro

gramming curriculum and meta-language. This course uses How to Design Programs
(Felleisen et al. 2001), which teaches students to design programs by first defining
their data then deriving the program structure from the data. Using this approach,
abstract syntax leads directly to the structure of the interpreter. PLT’s pedagogic
Scheme programming environment (Findler & PLT 2009) provides a hygienic, source-

correlating macro system that supports both syntax-rules and syntax-case forms.
PLT Scheme also supports images as first-class values (Felleisen et al. 2009), which
simplifies the animations-language exercise.

In a Junior-Level Software Construction Course: The first author (jointly with
Matthias Felleisen) used the tax-form example in a junior-level software construc

tion class at Rice University in 1998. Students had a choice of implementation
style, host/meta-language, and final feature set. The scope and quality of the
students’ projects varied widely. Some students were content to produce a bare-bones
interpreter that was little more than a spreadsheet, while others undertook pretty-

printers and sophisticated input mechanisms.

16 J. Clements and K. Fisler

To assess whether the students’ languages could accommodate changes in the tax
forms, teams exchanged projects late in the semester. Each team was charged with
updating another team’s project to accommodate the changes occasioned by the
annual update to the tax forms. Each receiving team assessed the ease with which
they could adapt their given code base; this feedback had substantial weight in the
authoring team’s project grade.

7 Perspective and conclusion

Domain-specific languages for concrete software applications provide fertile ground
for teaching students about programming language design. Implementing a domain-

specific language forces students to confront many of the same issues that arise when
implementing the core of a more general-purpose language. Focusing on domain-

specific languages that underlie recognizable software products, however, casts the
problem in software engineering terms that students find compelling. Moreover,
these applications provide concrete artifacts that help students get off the ground
with language design.

Our approach contrasts most directly with that of teaching programming lan

guages via interpreters. That approach tends to have students implement either a
small abstract language core or fragments of real languages (sometimes using the
same language as both meta and object language). While we use this approach
successfully in our own upper-level programming languages courses, the domain-

specific examples have allowed us to bring this material into nonstandard courses
with a broader range of students. In our experience, many first-year students simply
don’t understand the concept of meta-circular interpreters (̀a la SICP (Abelson
et al. 1996)) at all, while finding domain-specific language interpreters an exciting
challenge.

Both the interpreter- and macro-based implementations offer pedagogic strengths.
On the one hand, the macro solution emphasizes reuse at many levels: the host-

language syntax, implementation, and the programming environment tools. As a
result, the solution is approximately one tenth the size of the full interpreter. The
time savings are similar. This implementation style teaches students the importance
of reuse, as well as language features to look for in a potential host language.
The coolness factor of doing a complicated task with macros is also appealing and
motivating to many students.

On the other hand, the interpreter lies on a clear conceptual path from other
programming problems, and is thus easier for less experienced students to grasp.
We also find the interpreter forces students to confront certain fundamental issues
that are easy to overlook in a macro-based solution (such as identifiers in the object
language). In the interpreter, students have to manage their own mapping between
identifiers and values. In the macro-based solution, students can fall through to
treating identifiers in the host language with simple binding forms as shown in
Figure 4; while elegant, this masks the core issues of namespace separation.

Our positive experiences with domain-specific languages projects should be widely
replicable. Hopefully, this report can guide others in designing their own projects.

17 Educational pearl

Naturally, there are many other real-world applications of our ideas, and we are
hoping that the community will create a repository of similar case studies for the
benefit of all language instructors.

References

Abelson, H., Sussman, G. J. & Sussman, J. (1996) Structure and Interpretation of Computer
Programs. 2nd ed. McGraw-Hill.

Allen, E., Chase, D., Luchangco, V., Maessen, J.-W. & Jr., Guy, L. S. (2004) Object-

oriented units of measurement. ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM, pp. 384–403.

Antoniu, T., Steckler, P. A., Krishnamurthi, S., Neuwirth, E. & Felleisen, M. (2004)
Validating the unit correctness of spreadsheet programs. International Conference on
Software Engineering. ACM, pp. 439–448.

Bentley, J. (1986) Little languages. Communications of the ACM, August, ACM, 711–721.

Cardelli, L., Matthes, F. & Abadi, M. (1994) Extensible syntax with lexical scoping. Research
Report 121. Digital SRC.

Clements, J., Graunke, P., Krishnamurthi, S. & Felleisen, M. (2001) Little languages and
their programming environments. Proceedings of the Monterey Workshop on Engineering
Automation for Software Intensive System Integration. ACM, pp. 1–18.

Clements, J., Felleisen, M., Findler, R., Flatt, M. & Krishnamurthi, S. (2004) Fostering little
languages, Dr. Dobb’s Journal, March, 29 (3): 16–24.

Clinger, W. & Rees, J. (1991) Macros that work. Pages 155–162 of: ACM SIGPLAN
Conference on Principles of Programming Languages, ACM.

Deursen, A. v., Klint, P. & Visser, J. (2000) Domain-specific languages: An annotated
bibliography, ACM SIGPLAN Notices, 35 (6): 26–36.

Dybvig, R. K., Friedman, D. P. & Haynes, C. T. (1988) Expansion-passing style: A general
macro mechanism, LISP and Symbolic Comput., 1 (1): 53–75.

Felleisen, M., Findler, R. B., Flatt, M. & Krishnamurthi, S. (2001) How to Design Programs.
MIT Press.

Felleisen, M., Findler, R. B., Flatt, M. & Krishnamurthi, S. (2009) A functional I/O
System or, fun for freshman kids. ACM SIGPLAN International Conference on Functional
Programming. ACM, pp. 47–58.

Findler, R. B. & PLT. (2009 July) DrScheme: PLT programming environment.
Reference Manual PLT-TR2009-drscheme-v4.2.1. PLT Scheme Inc. Available at: http:
//plt-scheme.org/techreports/ Accessed 4 January 2010.

Fisher, D., & Shivers, O. (2008) Building language towers with Ziggurat, J. Funct. Program.,
18 (5–6): 707–780.

Fisher, K. & Krintz, C. (2008) 2008 SIGPLAN programming language curriculum workshop
report, ACM SIGPLAN notices, 43 (11), 29–30.

Flatt, M. & PLT. (2009 July) Reference: PLT scheme. Reference Manual PLT-TR2009

reference-v4.2.1. PLT Scheme Inc. http://plt-scheme.org/techreports/ Accessed
4 January 2010.

Friedman, D. P., Wand, M. & Haynes, C. T. (2001) Essentials of Programming Languages. 2nd
ed. MIT Press.

Graham, P. (1994) On Lisp: Advanced Techniques for Common Lisp. Englewood Cliffs, NJ:
Prentice-Hall.

Herman, D. & Wand, M. (2008) A theory of hygienic macros. Lect. Notes Comput. Sci., 4960:
48–62.

18 J. Clements and K. Fisler

Hewitt, C., Bishop, P. & Steiger, R. (1973) A universal modular actor formalism for artificial
intelligence. International Joint Conference on Artificial Intelligence. pp. 235–245.

Hudak, P. (1996). Building domain-specific embedded languages, ACM Comput. Surv., 28
(4es): 196.

Kamin, S. N. (1989) Programming Languages: An Interepreter-Based Approach. Addison-

Wesley.

Kennedy, A. J. (1997) Relational parametricity and units of measure. ACM SIGPLAN
Conference on Principles of Programming Languages. ACM, pp. 442–455.

Kohlbecker, E. E., Friedman, D. P., Felleisen, M. & Duba, B. F. (1986) Hygienic macro
expansion. ACM Symposium on Lisp and Functional Programming. pp. 151–161.

Krishnamurthi, S. (2006) Automata via macros, J. Funct. Program., 16 (3): 253–267.

Krishnamurthi, S. (2007) Programming Languages: Application and Interpretation. Self

published.

Mauny, M. & de Rauglaudre, D. (1992) Parsers in ML. ACM Symposium on Lisp and
Functional Programming. ACM, pp. 76–85.

Rhiger, M. (2009) Type-safe pattern combinators, J. Funct. Program., 19 (2): 145–156.

Sabry, A. (1999) Declarative programming across the undergraduate curriculum. Workshop
on functional and declarative programming in education. Rice University TR99-346, online
at http://www.ccs.neu.edu/home/matthias/FDPE99/ Accessed 4 January 2010.

