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Abstract 

Many computer science departments are debating the role of programming languages in 
the curriculum. These discussions often question the relevance and appeal of programming-

languages content for today’s students. In our experience, domain-specific, “little languages” 
projects provide a compelling illustration of the importance of programming-language 
concepts. This paper describes projects that prototype mainstream applications such as 
PowerPoint, TurboTax, and animation scripting. We have used these exercises as modules in 
non-programming languages courses, including courses for first year students. Such modules 
both encourage students to study linguistic topics in more depth and provide linguistic 
perspective to students who might not otherwise be exposed to the area. 

1 Studying the design of (domain-specific) languages 

Students (and some faculty!) sometimes wonder why the standard computing 
curriculum includes a course on programming languages. In their eyes, most 
employers have settled on a small, slowly changing pool of general-purpose languages 
that share a common programming idiom. Languages that do not fit this model, 
even very popular ones, are often regarded as “scripting” languages which students 
can learn on their own as needed. From this perspective, studying the building blocks 
and design principles that underlie programming languages seems unnecessary to 
students once they have command of one language. In many computer science 
departments (at least in America), programming languages is losing its position as 
core content (Fisher & Krintz 2008). 

Programming-languages researchers cite many benefits of linguistic training: 
flexibility as a programmer, ability to design effective abstractions, and appreciation 
for different computational models. In our experience, these points are too abstract 
to resonate with many mainstream students. To make these points more concrete, 
we have developed a series of software construction projects within which students 
design and implement domain-specific languages (Bentley 1986; Deursen et al. 
2000). Each project has students build a prototype of a mainstream software 
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application such as PowerPoint, TurboTax, or an animations-scripting platform 
such as Flash. Each of these applications processes complex and context-dependent 
data in well-specified ways: PowerPoint displays user-specified slide decks; TurboTax 
prompts end-users to fill in forms and fields required by local tax code; animations 
platforms provide constructs for coordinating interactions between graphical objects. 
Robust implementations of these packages decouple the data specification from the 
engine that processes it. In other words, software engineering concerns motivate the 
construction of domain-specific languages for these projects. 

Grounding language design in software engineering enables using these projects 
as modules in courses beyond programming languages. We have used these projects 
successfully in two such settings: a software construction course for students in their 
third college year, and perhaps more surprisingly, an honors-level programming 
course for students in their first college year. In both settings, students confront core 
linguistic material: they must define syntax and semantics, identify program errors to 
flag, and provide an implementation via an interpreter, compiler, or embedding into 
a host language. Our modules therefore support many uses, from providing basic 
linguistic content to students who will not take a languages course, to advertising 
for languages courses, to providing real-world applications within languages courses. 
Given that domain-specific languages are often declarative in nature (Sabry 1999), 
these projects also provide a framework for exposing students to functional and 
declarative programming. 

The paper presents these projects using tax-preparation software as a running 
example. Section 2 describes the tax-form problem. Section 3 discusses two imple

mentation techniques and their pedagogic implications. Section 4 discusses advanced 
tax-form features and their linguistic consequences. Section 5 describes other domain-

specific language examples that we have used effectively in classes. Section 6 describes 
our experience using these exercises as modules outside of programming-languages 
courses. Section 7 offers concluding remarks. 

2 Tax forms: a running example 

The task is to design and implement a tax assistant that helps a taxpayer fill out tax 
forms. For this example, we use the United States of America’s federal tax forms 
(which residents complete annually); fragments of these forms appear in Figure 1. 
The tax assistant program should query the taxpayer for user-supplied fields (such 
as wages earned), compute the value of fields that are derived from other fields (such 
as total income), and produce the amount of tax. Some fields require completion of 
auxiliary forms (called schedules in the U.S. tax code) whose fields are referenced in 
computations on other forms; the arrows in Figure 1 show a reference to schedule C 
from both form 1040 (the main form) and another schedule (SE). The tax assistant 
should prompt for the completion of each form or schedule at most once. As tax 
laws can change from year to year, the program should be designed to adapt easily 
to different tax forms and to variations of the same form. 

Several extensions to this basic problem offer richer features to tax-form authors 
and taxpayers using the software: 



5 Educational pearl 

Fig. 1. Sample tax forms and the flow of information between them. 

1 Print the completed tax forms when the user is finished. 
2 Include error checking to catch form-specification errors. 
3 Capture and check form invariants. For example, taxpayers who earn more 

than $1500 in dividends must fill out schedule B. 
4 Allow users to prepare their taxes over multiple sessions, each of which resumes 

where the previous session ended. 

We first discuss implementations of the basic problem, then address the advanced 
features. 

3 Implementing a basic tax assistant 

Different implementation approaches raise different pedagogic issues. This section 
discusses two approaches – interpreters and language embeddings via macros – in 
detail. Section 7 contrasts these approaches pedagogically in the context of our 
projects. 

3.1 An interpreter-based approach 

Writing an interpreter follows the style of many programming-languages curric

ula (Kamin 1989; Friedman et al. 2001; Krishnamurthi 2007). An interpreter-based 
implementation typically requires three artifacts: a concrete syntax in which a 
tax expert would describe a tax form, an abstract syntax representation (i.e., a 
data structure) that the tax assistant processes, and an interpreter which executes 
programs written in the abstract syntax. For simplicity, we assume that the concrete 
syntax is textual. Figure 2 shows sample concrete syntax for a portion of the 1040 
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(form form-1040 (export total-income) 
(field wages (prompt "Wages earned")) 
(field big-dividends (prompt-checkbox "are dividends > $1500?")) 
(field dividends (if big-dividends 

(form-ref schedule-b total-dividends) 
(prompt "enter total dividends"))) 

(field total-income (calculated (+ wages dividends)))) 

(define-struct form (name exports lines)) 
(define-struct line (label instructions)) 

(make-form "form-1040" (list "total-income") 
(list (make-line "wages" (make-prompt "Wages earned")) 

(make-line "dividends" 
(make-if	 (make-prompt "are dividends > $1500?") 

(make-form-ref "schedule B" "total dividends") 
(make-prompt "enter total dividends"))) 

(make-line "total-income" (make-calculated (make-plus "wages" "dividends"))))) 

Fig. 2. Possible concrete (above) and abstract (below) syntaxes for a simple tax form . 

tax form, including named fields containing both prompted and computed values, 
along with a corresponding abstract syntax for the same fragment. The abstract 
syntax, as with all code in the paper, is presented in PLT Scheme (Flatt & PLT 
2009); each make- operator is a typed record-constructor. 

Although it might seem obvious that students should design their concrete syntax 
before a corresponding abstract syntax, designing the abstract syntax first nearly 
always makes more sense. The abstract syntax is simply a careful definition of the 
set of possible inputs to the evaluator. When prototyping a known software package, 
students have many examples (such as actual tax forms) from which to identify an 
appropriate data structure for the abstract syntax. The concrete syntax, by contrast, 
is designed to simplify the task of the specifier by providing syntactic short-cuts; its 
design is far more open ended and thus harder as a starting point for novices. 

Designing Abstract Syntax: Students encounter certain common problems while 
designing abstract syntax, including: 

1 The tax-form specification is separate from the data that the tax assistant 
gathers from an end-user. Many students include dummy placeholders or 
default values in the abstract syntax for the data to be requested on each line, 
(e.g. (make-prompt "enter wages" false) in the abstract syntax of Figure 2). 
The false serves as a placeholder for the actual wages value that a user 
will enter when running the tax program. Students who do this generally cite 
principles about keeping related data together, without realizing the competing 
principle of separating instructions from data. This difficulty is compounded by 
the existence of the tax form’s physical artifact, wherein tax-form instructions 
appear next to blank spaces for a user to fill in. This is a nontrivial step for 
some students as they learn to think about languages. 



7 Educational pearl 

2 Meta-language identifiers are not inherently visible in the object language. 
Consider this incorrect program fragment: 

(define line1 (make-prompt "Enter your wages")) 
(define line2 (make-prompt "Enter your dividends")) 
(define line3 (make-calculated (make-plus line1 line2 ))) 

This code’s author imagines that line1 refers at run-time to a number 
representing the end-user’s wage, when in fact it refers at compile-time to 
a piece of a tax-form abstract syntax.1 

3 Languages must be more general than the artifacts they capture. In the 
section of tax forms capturing dividend amounts, for example, the printed 
form provides a fixed number of lines. The tax assistant, however, should use 
an arbitrary-length list rather than expect the number of entries printed on 
the form. 

4 Arbitrary-size data structures require more interesting naming schemes. Each 
entry in a list of dividend amounts, for example, involves several pieces of 
information; it is effectively a table with a fixed number of columns and 
variable number of rows. Referencing data within tables introduces the need for 
addressing schemes, since students cannot introduce fixed names in instances 
of the abstract syntax. 

Starting with abstract syntax helps students confront these issues directly. Asking 
students to define the data structures for their abstract syntax, express a represen

tative subset of an actual tax form in those structures, and load that expression in 
the meta-language reveals many of these problems to the students. Ironically, then, 
the abstract syntax turns out to be more concrete! 

Defining an Interpreter: Conceptually, a tax-form interpreter must process each line 
of the form by either prompting the user for data or computing a value based 
on previously-entered data. Figure 3 shows a possible fragment of the tax-form 
interpreter corresponding to the abstract syntax from Figure 2. Each line in the 
form, whether prompted or calculated, constitutes a binding which other lines may 
reference. Implementing bindings correctly tends to be the biggest conceptual hurdle 
for students: they struggle to separate bindings in the tax language from bindings 
in the interpreter, and to devise a run-time data structure to manage the bindings. 
Their attempts can generally be grouped into three categories: 

1 Define a meta-language variable for each entered datum and reference those 
variables as values in other pieces of abstract syntax (as shown in item 2 
at top of this page): Inability to rule out this option reflects fundamental 
misunderstandings about the idea that programs are data and the differences 
between object and meta-language. 

1	 Curiously, this can be made to work as part of a macro solution, but the use of the host-language 
binding mechanism destroys the ability to, for example, compute the number of lines in a form or 
print out the completed form. 
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;; process-line : line env → env 
;; requests or computes data for one tax-form line, storing it for future reference 
(define (process-line aline env ) 

(let ([instructions (line-instructions aline)]) 
(add-to-env 
env 
(line-label aline) 
(cond [(prompt? instructions) 

(begin (printf (prompt-text instructions)) 
(read-line)] 

[(calculated? instructions) 
(evaluate-computed instructions))))) 

Fig. 3. Fragment of tax-form interpreter corresponding to the line structure. 

2 Extend the abstract syntax with a placeholder for the answer, and mutate the 
abstract syntax as line values are determined: this approach admits fewer data 
structure definitions, but fails to separate abstract syntax from run-time data 
and requires repeated searches over the abstract syntax to look up previously-

determined values. 
3 Maintain a separate data structure linking forms and line numbers to values: 

this is the approach that most successful students eventually settle on. 

Defining Concrete Syntax: Making the tax-form language available to tax-form 
specifiers requires a specification of concrete syntax and a mechanism to convert the 
concrete syntax into the abstract syntax. The specification and conversion method 
are closely linked, in that adopting constraints on the form of the concrete syntax 
enables different conversion methods. At one extreme, students could choose an 
arbitrary concrete syntax, but would need to write a parser to produce the abstract 
syntax. At the other extreme, students could adopt the meta-language’s concrete 
syntax and avoid writing any conversion method: the bottom half of Figure 2, for 
example, is concrete syntax in Scheme that corresponds to the abstract syntax. The 
first approach requires more time than a project module might allow (especially if 
students aren’t already familiar with parsing). The second is neither compelling nor 
motivating: students don’t see data structures as languages. 

Hygienic macros can provide a gentle solution between these extremes. The macro 
system’s pattern language constrains the shape of the concrete syntax in exchange for 
producing abstract syntax via rewrite rules. There are many hygienic macro systems 
for functional languages (Kohlbecker et al. 1986; Dybvig et al. 1988; Clinger & 
Rees 1991; Mauny & de Rauglaudre 1992; Cardelli et al. 1994; Herman & Wand 
2008), some of which are syntactically quite complex. We find that simple Scheme 
macros in the syntax-rules system pose little difficulty for students, especially given 
the abstract syntax to guide development of the rules. Indeed, our experience is 
that students find macros amusing and even fascinating; some try to create more 
elaborate compilations that require richer macro systems (such as syntax-case). Even 
within syntax-rules, we augment the macros with checks for syntax errors to inspire 
students to use macros in more sophisticated ways. 
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(define-syntax form 
(syntax-rules (export) 

[(form name (export var . . . )  entry . . . )  ;;  ⇒ 
(define name (form-internals (export var . . . )  entry . . . ))])) 

(define-syntax form-internals 
(syntax-rules (export field) 

[(form-internals (export var . . . ) (field name content) entry . . . )  ;;  ⇒ 
(let ([name content]) (form-internals (export var . . . )  entry . . . ))]  

[(form-internals (export var . . . ))  ;;  ⇒
 
(list (list ’var var) . . . )]))
 

Fig. 4. Form expansion macros. 

3.2 Language embedding 

Tax-form evaluators can be implemented without interpreters. For advanced stu

dents, we instead espouse reuse: build the tax form as an embedded language atop 
an existing one (Hudak 1996; Clements et al. 2001, 2004). Rather than specifying 
an abstract syntax and an interpreter for it, students define a concrete syntax that 
is an extension of a host language, and use hygienic macros to map this syntax 
onto the native abstract syntax of the existing evaluator.2 They give up control 
over the surface syntax of the language, and in return they get to reuse the existing 
evaluator. 

In a design such as this, there is no need to specify abstract expression forms 
(e.g. make-plus) or to define their meanings; tax-form specifiers can simply reuse 
the + of the host language. This approach concretely demonstrates the advantages of 
reuse, not just in an implementation but also in a design sense. Reuse is particularly 
important in prototyping, where the goal is to produce a working program in a 
limited time. 

Figure 4 shows a simplified set of macros for expanding forms. For brevity, these 
examples omit error-checking clauses. The tax-form expansion is implemented as a 
simple two-level macro. Each tax-form expands into a single (define . . . )  statement,  
containing a cascaded (let . . . ).  Each  form  binds its name to an association list 
containing pairs of exported field names and their associated values.3 

The macros do not  show  the (calculated . . . )  terms  from  the  language  in  Figure  2,  
but handling them is literally trivial: (calculated exp) expands into exp. The syntax 
of these terms is simply that of Scheme itself. This is the most vivid illustration of 
the work saved by working with macros; rather than implementing a heavyweight 
interpreter for calculations in dozens of lines, a two-line macro suffices. 

2 There are competing definitions of the term “domain-specific embedded language”. We use it to refer 
to a simple extension of the host-language semantics using macros. 

3 Using host-language variables for form values is appropriate in the macro context, whereas it constituted 
an error in the interpreter context. This reinforces the distinction between meta and object language, 
which is blurred in the  macro context.  
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Students confront several issues in writing the macro-based embedding: 

•	 The seeming lack of work involved: Macros can confound students at first, 
because students expect programs as complex as a tax assistant to require 
a substantial amount of code. We frequently see students steer themselves 
away from elegant solutions in macros that seem too easy. This experience is 
useful for helping students think differently about languages; many gain new 
appreciation for programs as data through writing macros for nontrivial tasks. 

•	 Tradeoffs between exposing implementation details and complicating the 
macros: as an example, consider tables (item 4 on page 7). Scheme has a well-

developed set of operations on lists. The student could represent a table as a 
list, and simply expose this list to the author of the form. Exposing the Scheme 
list (and its accompanying library functions) in the domain-specific language 
makes expansion simple, but requires more host-language knowledge on the 
part of those programming in the domain-specific language. It would also be 
difficult to prevent errors such as “car of null” in such an implementation. 
A student might alternatively choose to build a set of custom table-access 
functions for each table that a form contains. This expansion would require 
more work, but might discover certain form errors more quickly, and would 
probably lead to more readable forms. For instance, this style might allow 
named references to tables: 

(field . . .  (calculated (sum-up (table-ref foreign-taxes tax-paid )))) 

In practice, such tradeoffs expose students to subtle challenges of language 
design. 

•	 Restricting the language: clever students realize that their tax-form language 
can contain arbitrary source code, thus allowing tax-form specifiers to embed 
hostile code with no relationship to a tax-form computation. Most students 
do not address this issue, but the questions it raises are educational for those 
who discover it. 

Graham’s example of embedding a database query language in Lisp through 
macros (Graham 1994) provides another interesting example of this approach. 
Of course, macros are not the only way to build a domain-specific language by 
linking the meaning of the new language to the meaning of an existing one. Two 
competing approaches – one offering less control over the details of the language, 
one offering more – are presented by Haskell and Ziggurat (Fisher & Shivers 2008). 
Using a “combinator library” approach in Haskell (Hudak 1996) leverages laziness, 
type classes, and monads to make it possible to dramatically extend the language 
with new values, operations, and pattern-matching forms (Rhiger 2009) without 
adding a macro-like transformation system. At the other extreme, systems such 
as Ziggurat promise the ability to equip each language extension with its own 
semantics, analysis, and other tools. In Ziggurat, a language consists of a tower 
of languages, where each additional layer expands and compiles into the next one 
down, and static analyses may be inherited and extended. Students would have great 
flexibility in designing language extensions, and the corresponding responsibility for 
implementing specialized extensions to the existing analysis tools. 
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4 Advanced features and concepts 

Whenever we assign students large projects (such as a language implementation), we 
espouse iterative refinement, building towards the final system. We first implement 
a core of the system, then augment the system’s features. For the tax-forms project, 
each of the extensions for type checking, assertions checking, and multiple sessions 
requires modifications with interesting linguistic content. 

4.1 Type and error checking 

A basic tax assistant probably performs little to no error checking, neither for 
program-specification errors nor for run-time errors. At run time, a taxpayer could 
enter non-numeric data in response to a prompt for numeric data. At specification 
time, tax-form authors could insert unbound references or circular data dependencies. 
Tax forms are also subject to type errors, particularly with respect to units of 
measure (so-called unit-checking (Kennedy 1997; Allen et al. 2004; Antoniu et al. 
2004)). Consider the following example. A taxpayer can claim a reduction in taxable 
income for himself, his spouse, and all of his dependents. The total deduction 
for dependents in 2008 is calculated by multiplying the number of dependents by 
US$3500. Multiplying a simple number by a dollar amount is fine, and the resulting 
unit is the dollar. If the developer of the tax form were to mistakenly add these 
numbers rather than multiplying them, the resulting total would be a nonsensical 
combination of dollars and people. 

Extending the language to support error checking is a natural next step once the 
core tax system is working. Unbound-reference errors can be checked using macros, 
or as a separate phase in the interpreter. We find the former particularly instructive, 
as it shows macros doing work beyond rewriting. 

To handle run-time data-entry errors, we ask students to extend their syntax with 
type declarations for prompt expressions: 

(prompt "Enter wages" number) 

Their implementations then check that entered data conforms to those types, re-
prompting the taxpayer if necessary. 

For unit-checking, we show students how to extend their syntax with type labelers 
and their implementations with variants of standard operators that are aware of the 
unit types. This is much simpler than an approach such as Kennedy’s (1997), which 
addresses unit-checking problems via the addition of relational parametricity to an 
existing type system. Tax forms, for example, need numeric values representing both 
dollar amounts and scalars. We therefore introduce the following pair of macros per 
unit type: 

(units <type> exp) ⇒ (make-<type> exp)
 
(prompt query-string <numeric-type>) ⇒
 

(units <numeric-type> (num-prompt query-string))
 

We then expand tax-form programs to label constants appropriately, as in 

(field deductions (calculated (∗ num-dependents (units dollars 3500)))) 
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then rewrite multiplication in terms of these units 

(define (tax-∗ a b) 
(match (list a b) 

[(list (struct dollarv (d )) (struct scalarv (s))) (make-dollarv (∗ d s))] 
[(list (struct scalarv (s)) (struct dollarv (d ))) (make-dollarv (∗ d s))] 
[(list (struct scalarv (s1 )) (struct scalarv (s2 ))) (make-scalarv (∗ s1 s2 ))])) 

Topics such as unit checking are most appropriate for senior students. With 
younger students, we cover only unbound-reference checking. Covering some form 
of error checking with these students has proven extremely useful, however. Once 
we reduce language implementation to writing and processing data structures for 
programs, many students begin to ask what distinguishes a language from a library 
(recalling Gosper’s quote that “A data structure is nothing more than a stupid 
programming language.” (Hewitt et al. 1973)). Ideally, languages include both static 
and dynamic constraints on well-formed programs. This idea, that languages embody 
principles of use as well as computation, only starts to take root when students 
implement language-specific error handling. 

4.2 Form invariants 

Invariant-checking, like unit checking, requires language extensions. Students who 
wish to add assertion checking may add a tax-form construct similar to the following 
(building off the identifiers in Figure 2): 

(assertion (if big-dividends 
(> dividends (units dollars 1500)) 
(<= dividends (units dollars 1500)))) 

Assertion checking poses a nice contrast to unbound-identifier checking, since it 
typically requires dynamic, rather than static, checks. 

4.3 Multiple sessions, revisions, and out-of-order evaluation 

A simple evaluator would force users to work through a tax form in order in a 
single session. More sophisticated tools could allow users to edit previous answers, 
save and resume previous sessions, or complete sections of the form in an order 
of their choosing. These features raise advanced linguistic topics, such as dataflow 
programming (to automatically propagate edits), continuations (to save and resume 
session state), or laziness (to compute form data as needed in other forms). While 
we sometimes use these features as motivators for these topics in full-fledged 
programming languages courses, we do not introduce them when using these projects 
as modules in other courses. 

5 Other domain-specific language problems 

In addition to tax forms, we have used several other domain-specific languages in a 
similar manner. Each highlights different language-design issues. 
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Slideshows (a.k.a. PowerPoint): Slideshow presentations provide a compelling lan

guage design example for two main reasons: first, students are extraordinarily 
familiar with PowerPoint; second, PowerPoint’s limited abstraction mechanisms and 
control flow operators motivate the benefits of building products around domain-

specific languages. Concretely, our slideshow language covers the following linguistic 
topics: 

•	 Conditionals: we introduce a feature that bases slide sequencing on the time 
that has elapsed since the start of the talk. 

•	 Variables: we compute some slide data dynamically (such as example number

ing – this is useful once conditionals allow us to skip slides). We contrast 
a narrow construct for dynamic example numbering with a more general 
implementation of program variables. 

The second point helps students understand that language design is about tradeoffs: 
what we choose to exclude is often as important as what we choose to include. 

An Automated Testing Service: Computerized testing systems administer exams 
in which different questions may be posed to different people based on their 
performance so far. During exams, people may also receive feedback about their 
performance on particular topics. Specifications of alternative questions, question 
sequencing, and when to provide feedback constitute a domain-specific language. 
Our version of this problem features multiple question styles (multiple choice and 
free-response) and optional hints, as well as question sequencing and feedback. This 
example highlights the following linguistic concepts: 

•	 Conditionals: these arise from sequencing questions and their alternatives. 
•	 Structuring program data for querying: giving feedback to users requires 

tabulating a user’s performance on different categories of questions. Students 
contrast tabulating questions on a per-section basis with tagging data and 
allowing queries over those tags (which engenders another language-design 
question). 

•	 Separation of model and view: should layout information for multiple-choice 
questions be built into the abstract-syntax data structure or customized 
externally? 

•	 Web-based control flow: if the interpreter uses the web to display questions and 
process answers, does the system work properly if the test-taker uses the back-

button during the exam? This is fundamentally a question of environments 
versus stores. 

Animations Scripting: Students create a language for scripting basic animations over 
interacting objects. Our objects are basic shapes (circles and rectangles) that can 
move across the screen, change size, jump to new locations, collide with one another, 
and appear or disappear during the animation. This example highlights the following 
linguistic concepts: 
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•	 Conditionals and defining predicates: animated objects change behavior when 
they collide. Do we implement general predicates to capture collisions or 
special-purpose constructs for pre-defined types of collisions? 

•	 Variables: animated objects may have attributes defined in terms of variables 
that change during the animation (such as a circle and square with dimensions 
computed from a shared program variable). 

•	 Parallel versus sequential operations: some animations are easier to express 
through independent operations executing in parallel rather than purely 
sequential execution. 

State Machine Simulation: A simple state-machine simulator consumes the descrip

tion of a state machine and a list of input symbols. The simulator produces either 
a trace of corresponding outputs or a simple flag indicating whether the input list 
is recognized by the state machine. This example highlights the following linguistic 
concepts: 

•	 Interpretation versus compilation: this example is small enough that students 
can implement two versions of it in a short time frame. One version converts 
the state-machine syntax to a data structure of states and transitions which 
an interpreter must then simulate against inputs. Another version, due to 
Krishnamurthi, compiles state machines into mutually-recursive functions, 
each of which consumes the remaining inputs (Krishnamurthi 2006). While 
this may seem less like a domain-specific application than the others, we have 
found it resonates well with engineering students. 

•	 Error checking: typos can abound in state-machine descriptions. A useful 
language would check for errors such as unbound state names in transitions. 
This raises questions of what languages should do for programmers, thus 
distinguishing languages from mere data structures. 

6 Experience 

Both authors have used domain-specific language design exercises in the classroom, 
but in different kinds of courses with different levels of students. 

In an Advanced Freshman-Level Course: The second author has used all of these 
examples in an accelerated introductory Computer Science course at the college 
level. Her course, aimed at first-semester college students with prior programming 
experience (usually a year of Java in high school), spends roughly 10 lecture hours in

troducing functional programming (including lists, trees, and higher-order functions), 
then another 10 hours on domain-specific language design and implementation. The 
lectures work through the slide show example to introduce ASTs as a data structure, 
writing interpreters, and macros.4 

4 Notes, pacing, and exercise descriptions are at http://www.cs.wpi.edu/~cs1102/a08/. 
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Students do assignments based on two of the remaining examples. One example – 
often the automated tester – becomes two assignments: a homework in which pairs 
of students design abstract syntax for the full example, and a lab in which students 
write an interpreter for a core of the example. Another example – the tax form or 
the animations language – serves as the course project: students individually design 
the AST, implement an interpreter, and optionally provide a clean concrete syntax 
via macros. 

Analysis of student projects and grades across four offerings of this course show 
that almost all of the students understood the concepts well enough to design a 
basic AST and interpreter. In fact, instructor experience suggests that even those 
who receive poor grades can attribute their failures to late starts and poor planning, 
rather than difficulty with the material. Additionally, some students go beyond the 
stated assignment, embellishing their languages in interesting and original ways. 

In-class reviews of AST designs contribute to our success with these assignments. 
For each AST-design assignment, we conduct a class-wide critique of three or four 
different styles of designs. Students are very engaged in these design reviews. Typical 
issues raised by students include whether to model certain constructs in the meta

language or the object language, whether multiple constructs could be abstracted 
into common core constructs, and whether a construct design is sufficiently flexible 
to accommodate reasonable extensions to the language. Analysis of grade data 
shows that a significant fraction of students had poor designs at the AST phase, but 
got C-grade or better implementations working by the final deadline. We find many 
students understand the concept of an interpreter more readily than the concept of 
capturing programs as data. These students benefit from seeing multiple examples 
of plausible ASTs during the design reviews. We encounter relatively few students 
who are able to write ASTs and not able to produce simple interpreters. That we 
are able to achieve these results with students in the first semester of college speaks 
to the power of domain-specific languages as a project topic. 

We also attribute success with this audience to our choice of functional pro

gramming curriculum and meta-language. This course uses How to Design Programs 
(Felleisen et al. 2001), which teaches students to design programs by first defining 
their data then deriving the program structure from the data. Using this approach, 
abstract syntax leads directly to the structure of the interpreter. PLT’s pedagogic 
Scheme programming environment (Findler & PLT 2009) provides a hygienic, source-

correlating macro system that supports both syntax-rules and syntax-case forms. 
PLT Scheme also supports images as first-class values (Felleisen et al. 2009), which 
simplifies the animations-language exercise. 

In a Junior-Level Software Construction Course: The first author (jointly with 
Matthias Felleisen) used the tax-form example in a junior-level software construc

tion class at Rice University in 1998. Students had a choice of implementation 
style, host/meta-language, and final feature set. The scope and quality of the 
students’ projects varied widely. Some students were content to produce a bare-bones 
interpreter that was little more than a spreadsheet, while others undertook pretty-

printers and sophisticated input mechanisms. 
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To assess whether the students’ languages could accommodate changes in the tax 
forms, teams exchanged projects late in the semester. Each team was charged with 
updating another team’s project to accommodate the changes occasioned by the 
annual update to the tax forms. Each receiving team assessed the ease with which 
they could adapt their given code base; this feedback had substantial weight in the 
authoring team’s project grade. 

7 Perspective and conclusion 

Domain-specific languages for concrete software applications provide fertile ground 
for teaching students about programming language design. Implementing a domain-

specific language forces students to confront many of the same issues that arise when 
implementing the core of a more general-purpose language. Focusing on domain-

specific languages that underlie recognizable software products, however, casts the 
problem in software engineering terms that students find compelling. Moreover, 
these applications provide concrete artifacts that help students get off the ground 
with language design. 

Our approach contrasts most directly with that of teaching programming lan

guages via interpreters. That approach tends to have students implement either a 
small abstract language core or fragments of real languages (sometimes using the 
same language as both meta and object language). While we use this approach 
successfully in our own upper-level programming languages courses, the domain-

specific examples have allowed us to bring this material into nonstandard courses 
with a broader range of students. In our experience, many first-year students simply 
don’t understand the concept of meta-circular interpreters ( ̀a la SICP (Abelson  
et al. 1996)) at all, while finding domain-specific language interpreters an exciting 
challenge. 

Both the interpreter- and macro-based implementations offer pedagogic strengths. 
On the one hand, the macro solution emphasizes reuse at many levels: the host-

language syntax, implementation, and the programming environment tools. As a 
result, the solution is approximately one tenth the size of the full interpreter. The 
time savings are similar. This implementation style teaches students the importance 
of reuse, as well as language features to look for in a potential host language. 
The coolness factor of doing a complicated task with macros is also appealing and 
motivating to many students. 

On the other hand, the interpreter lies on a clear conceptual path from other 
programming problems, and is thus easier for less experienced students to grasp. 
We also find the interpreter forces students to confront certain fundamental issues 
that are easy to overlook in a macro-based solution (such as identifiers in the object 
language). In the interpreter, students have to manage their own mapping between 
identifiers and values. In the macro-based solution, students can fall through to 
treating identifiers in the host language with simple binding forms as shown in 
Figure 4; while elegant, this masks the core issues of namespace separation. 

Our positive experiences with domain-specific languages projects should be widely 
replicable. Hopefully, this report can guide others in designing their own projects. 
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Naturally, there are many other real-world applications of our ideas, and we are 
hoping that the community will create a repository of similar case studies for the 
benefit of all language instructors. 
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