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Abstract 

Information extraction using Natural Language Processing (NLP) tools focuses on extracting explicitly 

stated information from textual material. This includes Named Entity Recognition (NER), which 

produces entities and some of the relationships that may exist among them. Intelligent anal-ysis requires 

examining the entities in the context of the entire document. While some of the relationships among the 

recognized entities may be preserved during extraction, the overall context of a document may not be 

preserved. In order to perform intelligent analysis on the extracted infor-mation, we provide an ontology, 

which describes the domain of the ex-tracted information, in addition to rules that govern the classification 

and interpretation of added elements. The ontology is at the core of an interac-tive system that assists 

analysts with the collection, extraction, organization, analysis and retrieval of information, with the topic 

of “terrorism financing” as a case study. User interaction provides valuable assistance in assigning 

meaning to extracted information. The system is designed as a set of tools to provide the user with the 

flexibility and power to ensure accurate inference. This case study demonstrates the information extrac-

tion features as well as the inference power that is supported by the ontology. 

Keywords Ontology; Natural Language Processing; NLP; Information Extraction; Modeling; OWL; 

Intelligent Analysis; Semantic Analysis. 
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1. Introduction 

For a long time, access to relevant documents was a critical impediment for people trying to obtain 

information on a topic of interest for them. Paper-based documents require the availability of a physical 

instance of a document, involving the transport of documents with the corresponding costs, delays, and 

risk factors. Computers and networking infrastructure provide nearly instantaneous access to a huge 

repository of documents via the World Wide Web and search engines offer support in locating docu-

ments that are likely to contain relevant information. The task of examin-ing these documents, extracting 

relevant pieces of information, and assembling them into a coherent framework, however, still requires 

signif-icant human involvement, leading to the “information overload” bottle-neck. This paper 

describes the approach our group pursued in the creation of a system that supports humans whose task it 

is to collect information about a particular domain, analyze that information, assemble it into a  

coherent framework, and possibly draw conclusions and recommend actions based on knowledge derived 

from the collected information. 

In our context, information extraction (IE) refers to the use of computational methods to 

identify relevant pieces of information in documents generated for human use, and convert this 

information into a representation suitable for computer-based storage and processing [Wimalasuriya &  

Dou, 2010]. IE is often implicitly constrained to text-based documents, although in principle it can be 

applied to other types such as images, videos or audio recordings as well.  

Natural language processing (NLP) refers to the use of computation methods to analyze and 

process spoken or written statements in a language commonly used by humans. Such methods are 

applied from different angles. At the syntactic level, grammatical rules are used to determine the  

basic building blocks of text, such as sentences, words, and the roles they play in a given piece of text. 

At the semantic level, the meaning of words, phrases, sentences and documents is determined. At the 

pragmatic level, the context is taken into account as well to determine the most suitable interpretation. 

Syntactic analysis is relatively straightforward from a computational perspective, but not sufficient to 



determine the meaning of a text fragment or document; ambiguity, for example, can drastically change  

the information conveyed in a sentence. Semantic analysis relies on a common interpretation between 

the creator (writer) and the consumer (reader) of a document. One approach to establish a common 

interpretation relies on ontologies as frameworks that define the core terminology in a domain and 

specify the relationships between words. Contextual aspects can be explicitly specified (e.g. through 

rules), incorporated into a domain-specific ontology, or derived from additional information about the  

documents and how they are used. Statistical approaches in NLP can overcome this interpretation 

problem to some degree, and are sometimes combined with the structural analysis methods that rely on 

rules specifying the grammar of the language. 

For humans, speaking the same language is the basis for such a shared interpretation. They use 

the same principles to construct sentences, although they may not explicitly know the rules of the 

underlying grammar. For effective communication, they should have a shared vocabulary, meaning 

that there is a set of words for which the conversation partners have an interpretation, ideally, the same 

or at least compatible interpreta-tions for one particular word. Contextual information, such as the current 

location, task, domain of interest, or emotional state of the conversation partner, is considered in cases 

where multiple interpretations are possible. During the act of reading or listening, humans automatically 

analyze and interpret language blocks, resolving ambiguities and try to arrive at a coherent 

interpretation of a document or conversation. Such a holistic treatment of natural language is very 

challenging for computers. Current systems often combine rule-based approaches, ontologies, and 

statistical approaches with reasonable success for situations where vocabulary, language structure, or 

context is constrained. Participants in the Loebner Prize contest, a refinement of the Turing Test, 

can engage in conversations on limited topics in such a way that it is difficult for an observer to deter- 

mine if a conversation partner is human or computer [Loebner Prize, 2010]. 

Our system aims at the extraction of meaningful pieces of information from wide sets of documents, 

their integration into a coherent framework, and the derivation of new knowledge. One critical 



assumption is the exis-tence of such a coherent framework for the domain under consideration. An 

ontology is a formalized representation of such a framework, and serves multiple purposes in our 

context. First, it makes explicit the know-ledge of humans about the domain. Second, it ensures that the 

interpreta-tion of critical terms is consistent within the group or organization that utilizes it. Third, it 

spells out important relationships between those terms. Associated with an ontology can be a set of 

axioms, which capture the very basic, generally accepted statements about a domain. The flexible use 

of relations in ontologies allows dynamic, multiple classification of enti-ties. While these properties of 

ontologies already allow for fairly powerful reasoning, our system also incorporates components for 

reasoning that are external to the ontology. 

On the NLP side, ontologies are the vehicle to provide a semantic framework for the interpretation of 

sentences and documents, enabling the conversion of statements available in natural language into a 

representa-tion suitable for computers. For the IE task, an ontology helps in deciding which pieces of 

information may be relevant, and how they are incorpo-rated into the already existing knowledge 

repository. The combination of axioms and a flexible hierarchical structure provides a strong basis for 

reasoning and analysis of the information captured in the repository. On-tologies have a natural visual 

representation as a graph where nodes represent concepts and links relationships between concepts, 

and thus serve as a powerful information retrieval method by following interesting relationships. 

Ontologies provide major support for several aspects of our system, such as the explicit 

representation of domain knowledge, interpretation of text, the analysis of documents, and the 

identification and retrieval of stored information. However, they are difficult and cumbersome to built, 

may not be available for some areas of interest, and do not capture the full understanding that humans have. 

The use of ontologies can also become computationally very expensive. 

Our overall system is structured as a community of collaborative agents, which share a common 

objective, but have their own capabilities and the autonomy to make their own decisions. Each agent 

offers a set of services, and in turn may rely on services provided by other agents. 



While we experimented with different domains, our main testing ground is the extraction of 

information about terrorism financing from publicly available documents on the Web, with news 

agencies, newspa-pers, various organizations, and individuals as sources. Clearly the analy-sis, 

interpretation, and integration of extracted information is very critical here, and justifies the use of 

significant human and computational re-sources. Extracted information can be extremely valuable, and 

augmenting the capabilities of human analysts may enable them to find overlooked “nuggets” of 

information, or to draw conclusions they would not have come to otherwise. Obviously the choice of 

this domain also has some drawbacks: Many relevant documents are not publicly available, and un-

derstanding the environment and context in which such analysts work is limited by security constraints 

[Flynn et al., 2010]. Nevertheless, we be-lieve that the domain of terrorism financing is suitable for the 

demonstra-tion of our system, and later we will present a usage scenario from this domain. 

Computer-based IE and NLP methods have become "good enough" to assist humans with the 

processing of large quantities of text-based docu-ments. They can identify the occurrence of particular 

text pieces (words, phrases) in documents, allowing the analysis of simple statements about entities, 

events, and actions, and the comparison of identified entities against other documents [OpenCalais, 

2010]. 

The performance of these methods, however, in general is not good enough to leave the task of 

information extraction completely to comput- ers, especially in fields where the combination of different 

pieces of in-formation, possibly from a wide range of sub-fields or related areas, is critical. Thus the 

goal of our project is to demonstrate that computer-based methods for information retrieval, combined 

with natural language processing and ontologies, enable analysts to deal with significantly larger sets of 

documents and obtain better results than they would with conven-tional methods. Our system provides a 

reusable, configurable platform that can be adapted to specific domains and tasks with moderate effort. 

It is intended for interactive and collaborative use, and relies on configurable components for document 

search and retrieval (e.g. Web crawlers), do-main-specific language aspects (e.g. rules to identify entities 



in the domain such as names or specific terms), visual presentation of entities and their relationships (e.g. 

as topic/concept maps, or ontology visualizations), observation of activities and intermediate results 

during the extraction and analysis process, and traceability of results to the source documents. 

 

2. Ontology-based Information Extraction 

This section covers the various implementation differences in previous ontology-related information 

extraction systems. The survey by [Wimala-suriya & Dou, 2010] provides an excellent overview of 

variations among ontology-based information extraction systems. We describe the differ-ence in 

implementations along four dimensions as categorized by [Wima-lasuriya & Dou, 2010]: information 

extraction implementation, ontology usage, ontology extraction specificity, and natural language data 

source. 

The first and probably most significant variation in implementation is how the information extraction 

is performed in a system. Information extraction itself is a developing field and can be performed using a 

combi-nation of techniques. 

The first information extraction technique is to use regular expressions to match phrases in natural 

language text. These regular expressions are often constructed by a domain expert to perform matches 

on phrases as they appear in actual text. This approach is tedious, but can often yield high quality 

results. Another information extraction technique is that of gazetteer list. A gazetteer list is a list of 

known terms and phrases as they exactly appear in text. When text contains a named entity that matches 

an element in the gazetteer list, then the named entity is extracted. A third approach is to use a machine 

learning classifier to classify natural lan-guage text as relevant information. This approach uses 

training data (commonly human annotated text) to train a machine learning classifier to learn how 

information appears in sentences based on some feature set (e.g. part of speech tags, word position, or 

capitalization). 



The second of four implementation differences is how the ontology is used in the system. Some 

systems use the ontology as user input which a human has pre-defined. This assumes all extracted 

information items must fit into some portion of the defined ontology. Another approach is to have the 

system dynamically define the ontology as it processes the natural language input. Such a system would 

create new objects in the ontology as they are identified at run-time. 

The third implementation difference is what portion of an ontology a system can extract. An ontology 

information extraction system can poten-tially extract classes, properties of classes, and relationships 

between classes. Ontology-based information extraction systems can vary on the level of details for a 

class that is extracted. 

The final variation among information extraction systems is in the source of the natural language data 

that is processed by the systems. Some systems will use a text source available from a Web site, while 

other sys-tems require the text to exist in a particular file format. 

Research in the information extraction field has been motivated in the past by two research competitions. 

In the past, the Message Understanding Conference [MUC] was a DARPA sponsored event held from 

1991-1997. The event required participants to demonstrate systems performing various information 

extraction tasks. The Automatic Content Evaluation [ACE] program was a NIST sponsored event held 

from 1999-2008. 

In terms of the tools that are available, there are several toolkits that target the development of natural 

language processing applications [Ling-Pipe, 2010; OpenNLP, 2010; GATE, 2010; UIMA, 2010; 

ClearTK, 2010]. Two commonly utilized frameworks are GATE (General Architecture for Text 

Engineering) and UIMA (Unstructured Information Management Architecture). These frameworks 

provide services and workflows which simplify the construction of NLP applications. For our work we 

utilize the UIMA architecture. This framework provides facilities such as annota-tions, chaining of 

text-level annotators, and an overall modular develop-ment environment. 



3. General Approach 

The objective of this project is to build a platform for extracting a large volume of information from 

multiple sources on the Internet and provide a context, within which intelligent analysis can be 

performed. To achieve this goal, we combine existing NLP tools together using the UIMA 

framework and partner the enhanced version of NLP with a domain ontol-ogy which describes the 

complex relationships that exist in that domain and some of the basic rules of inference, which 

describe the necessary conditions for classification of objects and relationships. We emphasize the 

role of the user in this approach to provide assistance in interpreting the extracted information, review 

the automated inference and make any changes to enhance the quality of information. 

The architecture of this system is service-oriented (SOA), as shown in Figure 1. All the functional 

components are implemented as Web services and hosted on an application server. The decision to 

architect the informa-tion extraction capability in a service-oriented manner was twofold. First, the 

extraction of information appeared to be an activity that would be invoked by external components as a 

part of some larger business process and done by a wide variety of users and on a potentially repetitive 

basis. As such, it appeared appropriate to deploy the information extraction capability as a whole in 

the form of a discoverable and subsequently in-vocable service. Second, since the information extraction 

capability is comprised of a number of sub capabilities each of which may be a candi-date for 

replacement with newer, more capable components, it seemed advantageous to carry this service-oriented 

concept into the internal archi-tecture as well. It was anticipated that doing this would produce a test 

bed-like environment where internal capabilities were substantially decoupled and primed for potential 

replacement or introduction of additional, complimentary capabilities. 

[Insert Figure 1] 

 

The current service implementation includes the following: 



• Web crawler service to access sources on the Internet and retrieve articles and other material 

from Web sites, clean it up (e.g. remove HTML tags) and store it in the document repository. 

• Feature extraction service to process the textual information, extract objects of interest, as 

defined by the ontology, and classify some of the extracted objects. 

• Model service to provide ontology access and manipulation functio-nality. The Web Ontology 

Language (OWL) [OWL 2009] is selected to build the context model. It supports dynamic, 

multiple classifica-tion, which is important in order to describe a person, for example, as both a 

‘banker’ and a ‘terrorist supporter’. It also supports decidable logic, which makes the 

inference possible. The model service utilizes a reasoner, which is an embedded inference engine. 

For persistence of model objects we use an RDF [RDF/XML 2004] triple store. 

• Tools service to provide additional tools to help the user interpret the extracted information and 

check the validity of the automated infe-rence. The tools allow for more complex extractions, 

such as multi-term NER. Tools also help refine and aid in the classification of ex-tracted objects, 

using encyclopedic services (e.g. Wikipedia). 

In addition to the Web services, there is a document repository, which holds the raw textual 

information as well as the results of NLP extractions. The repository is accessible to all the services, as 

well as the user inter-face. 

The basic concept of the user interface design is to allow the user to be involved at any step of the 

process. It is important to have the user input and integrate it into the intermediate results. 

The Web-based user interface provides tools for the user to access the services, configure them to 

perform according to the task at hand and provide input when the user decides to intervene. 

The reasoning process is triggered by the user and can be configured easily on the UI. The user can 

select an ontology for reasoning and can load multiple ontologies to support complex inference. 



The presentation of the inference results can be done in a tabular form as well as on a graph, 

depicting the concepts and their relationships. The results are editable and in the final design can be 

integrated into the on-going inference process. 

 

4. Use Case Overview 

We present a use case here to illustrate the benefits of enhancing the tradi-tional NLP capabilities with 

ontology-based inference capability. The use case supports intelligence analysis of terrorist activities 

based on informa-tion extracted from news sources as well as intelligence reports. The as-sumption here 

is that different pieces of information appear in different documents from multiple sources using related 

but not identical terms, and that their combination yields an interesting or important new piece of 

information. Information about the same object (person, organization, location, etc.) is merged 

together to ensure information integrity. 

The use case examines information about people, organizations, and meetings. The relationships 

among these three types of objects are also examined, e.g. person’s membership in organization, meeting 

between two people, etc. 

The scenario for the use case is as follows: 

Purpose: 

• To identify the possibility that a suspected terrorist group (or individ-ual) is planning an attack 

Explicitly extracted information: 

• Membership in a known (or suspected) terrorist group 

• A person employed by a financial institution 

• A meeting, taking place between the members of the terrorist group and the banker 

Inference: 

• The terrorist group is planning to transfer a large amount of money through the banker 



• A terrorist plot may be in the making 

This simple use case illustrates the extraction of information from multiple sources (the person’s 

membership in the terrorist group may come from one source, while the meeting between this person and 

the banker may come from another). It also illustrates the use of an ontology to build a context for the 

extracted information and the use of the ontology inference capability to create new information. 

 

5. NLP Environment 

This section covers the implementation and design of the natural lan-guage processing server portion of 

this project. The NLP environment implements the Web crawler service and the feature extraction service, 

as shown in Figure 1. The NLP server architecture consists of a combination of very general external 

Web resources as well as domain-specific fea-tures. By utilizing both external Web resources and 

features tailored to a unique domain, we are able to extract natural language features which may be missed 

by a more broad-based approach while maintaining an accepta-ble level of generality. 

From a high-level perspective, it is the job of the NLP server to down-load news articles from the 

Internet and extract relevant information from key phrases present in the articles. The extracted phrases, 

which we call assertions, are then sent to the semantic model. The NLP server acts di-rectly with the GUI 

application and therefore, the user can directly send requests to the NLP server via SOAP Web service 

calls from the user application. 

The following subsections outline the server structure. The next subsection describes what criteria are 

used to acquire news articles for processing. Subsequent subsections cover: the task of cleaning the 

HTML for a Web article, how natural language features are extracted from our system, and the network 

implementation of the NLP server along with a description of the exposed API. 

 

Article Acquisition 



We use an online news article collection Web site NewsExplorer [NewsExplorer, 2010] developed by 

the European Commission’s Joint Research Centre. The Web site performs statistical analysis of 

various news articles that are released throughout the day. Some sample features of the NewsExplorer 

Web site are the ability to cluster articles by common terms, country of origin, and primary article topic. 

For our work, we utilize a subset of the topics that NewsExplorer sup-ports. Our graphical application 

currently allows downloading of articles that are categorized under one of the following topics: Security, 

Terroris-tAttack, Conflict, Energy, and AlternativeEnergy. 

 

Article Cleanup 

The NewsExplorer Web site provides Web links for each of the articles that it tracks. In order to 

download an article, the article itself must be cleaned of any HTML tags and content not relevant to the 

news article. For this task, we use the HTML cleaning functionality of the AlchemyAPI NLP Web service 

[AlchemyAPI, 2010]. Given a Web link of an article, this service returns the raw text of the news article 

void of any HTML markup tags or any other advertising content. Once an article has been cleaned, a 

local copy is cached for future use. 

 

[Insert Figure 2] 

 

Natural Language Feature Extraction 

Our system utilizes two methods of extracting information from natural language text: OpenCalais and 

our own rule-based technique. 

OpenCalais [OpenCalais, 2010] is an information extraction service provided by Thomson Reuters. The 

service takes natural language text and returns a document with various labeled entities in an RDF 

format. 



For our current implementation, we use only a subset of the entities that are detected by OpenCalais. 

The entities that are stored are PersonCareer, PersonCommunication, PersonRelation, and Financial Institution. 

In addition to the entities that OpenCalais detects, we implement a rule-based detection system, which 

implements matching based on regular expressions. As an example application of our case study, we focus 

on detecting the names of terrorists and their membership with particular terrorist organizations. Figure 

2 shows some sample extraction patterns that we look for in order to associate a particular person with a 

terrorist organization. Our regular expressions patterns are based on a list of known terrorist organizations. 

We allow for minor spelling differences in the names of the organizations and assume if the spelling is 

within a threshold of character differences then the names are a match. 

The figure shows two example rules. Before each rule, a sample phrase that matches against that 

rule is listed. In each rule, there are key-words that are used to match types of words in a phrase. For 

example, the keyword terroristorganization matches with a list of known terrorist organizations that is read 

from a configuration file. The keyword adj ecti ves represents a list of known common adjectives that are 

used in the context of terrorist members and leaders. The person keyword refers to the name of a person. 

We use the detection of persons from OpenCalais. Person_role represents various roles or positions that a 

person can take (e.g. member, leader, director). Other standard regular expression symbols are used for 

matching whitespace, articles, and punc-tuation. 

As the assertions are extracted, they are inserted into an intermediate model using Jena [Jena, 2010]. 

This Jena model maintains occurrence frequency for each assertion as well as the pertinent information 

for the assertion (e.g. terrorist organization name, person name, or communication status). Once the 

assertions are stored in an intermediate model, they are then transferred to the semantic model Web 

service. This information is stored in an RDF file that is explained in the semantic model section of the 

paper. 

We ran across some limitations of the OpenCalais Web service. OpenCalais does perform co-

reference resolution with pronouns, but has difficulty when the reference does not utilize a personal 



pronoun but in-stead using a plain noun to refer to an object. For example, a paragraph may refer to ‘the 

president’ several times without refer to the person’s actual name. In this case, OpenCalais will have 

difficulty in making the connection with the particular reference to the president’s actual name. 

Another limitation of OpenCalais is that the relationships it extracts are limited to certain pre-

defined relationships that exist in the RDF sche-ma. Although the schema is quite extensive, there are 

certain instances where it is more powerful to implement a domain-specific relationship extraction 

technique - like our rule based technique. In our approach, we used a rule-based system to extract 

information regarding terrorists. This is a domain specific extraction and could not be extracted by 

OpenCalais. 

 

NLP Web service Implementation 

The NLP Web service is implemented as a SOAP service that the end-user application can invoke. There 

are two primary components of the NLP service: a thin wrapper layer and the backend server module. 

This section describes both service modules. 

The thin wrapper layer is a Tomcat Web service that provides a Web interface to the user application. 

This layer provides an API which allows applications to perform various NLP related and file system 

related tasks. This layer communicates with the backend NLP server over a socket-layer protocol. The 

backend NLP server module is the component of the NLP server which performs all of the primary 

work. It is threaded to handle requests from multiple requests. 

There are two primary service calls which the backend server handles: BatchDownload and RunBatch. 

BatchDownload is an API call which invokes the backend server to download a number of articles. 

RunBatch calls the OpenCalais Web service for each of the docu-ments that was downloaded using 

BatchDownl oad. OpenCalais returns an RDF file containing the extracted relationships. This RDF file is 

cached locally for future use and the assertions within a particular RDF file are compiled into a statistics 

list of assertions for a given batch. 



 

6. Semantic Environment 

To extend the solution into the realm of semantic analysis, the enhanced NLP environment described 

above is mated to the second component of this two-part approach, the semantic environment. This 

additional envi-ronment consists of a Web Ontology Language (OWL)-based context model that is 

managed within a Jena-based platform equipped with an embedded reasoner. The resulting model and 

inference capability is col-lectively exposed as an invocable Web service. 

The following section presents the representational paradigm selected to represent the respective 

domain ontology together with applicable infe-rence logic. Within this discussion, several key modeling 

facilities are highlighted and related to the information extraction problem. 

The OWL Representational Paradigm 

At the heart of the semantic platform is the context model, or ontology, which contains the concepts 

necessary to describe and reason about the extracted information fragments produced by the enhanced 

NLP capabili-ty. Particular attention was given to the selection of the appropriate repre-sentational 

paradigm, which must provide a relaxed view of classification with native support for embedding 

inference logic within the very con-cepts that it semantically relates to. Following investigation into 

several more traditional paradigms, we decided upon OWL as the representational language and 

execution platform suitable for this research. 

The Web Ontology Language, or OWL as it is more commonly known, is a semantic markup 

language. The primary purpose of OWL is to facilitate the publishing and sharing of ontologies across 

the World Wide Web (WWW). OWL is intended to be used by software applications that need to 

process Web-based content in a meaningful manner. 

A typical OWL environment consists of several key components that support both model development 

as well as subsequent execution. A typi-cal OWL execution platform consists of a triple-store where 



model content is persisted, a reasoner capable of inferring additional concepts based on embedded logic, 

and a query engine used to ask questions regarding model content. Together, these components form a 

cohesive platform for the development and execution of semantic content. 

Perhaps the most important component of any OWL environment is the reasoner and as such 

warrants a more detailed description of its tasks. As the name implies, the main function of this 

component is to essentially reason about a given OWL model and its associated content. More specif-

ically, an OWL reasoner processes class definitions, individuals, and embedded rules in an effort to 

accomplish two primary objectives. The first of these tasks is to identify any logical inconsistencies 

existing within the model definition and its use. As the platform produced by this research supports user-

driven importation of ontologies applicable to the target analysis domain (e.g., intelligence, logistics, 

command and control, etc.), this feature can be used to verify decidability and logical consistency of 

such models. The second task performed by the reasoner is to identify any additional knowledge that can 

be automatically inferred based on the logic embedded within the model definition in conjunction with 

associated content. This additional knowledge can include subsumption and associa-tion relationships 

and the adjustment of classification of various scenario content. Although only beginning to emerge within 

the timeframe of this research, some reasoners have the ability to not only infer additional con-tent, but 

to retract previously inferred content whose truth can no longer be established (i.e., truth 

maintenance) [BigOWLIM, 2010]. This is a crucial feature for any practical application of automated 

reasoning as establishing what is no longer true is as important as the initial inference that produced it. 

Above and beyond the components comprising its typical platform, the OWL representational 

paradigm supports several very powerful concepts that are thoroughly exploited by the information 

extraction process. These concepts provide the flexibility to represent as of yet unclassifiable extrac-tions 

as well as to repeatedly adjust the definitions of those that can be classified. 

Multiple Classification 



Multiple classification is the ability for something to be simultaneously defined under two or more 

classifications. Unlike traditional, more rigid modeling paradigms where inheritance must be employed 

as a means for the specialization of concepts, OWL modelers enjoy a much more flexible environment 

without concern for relating classifications in order to sup- port a single entity exhibiting features 

defined across multiple classifica-tions. Once qualification rules are embedded within class definitions, 

the management of exactly which classifications are appropriate at any given time can be conveniently 

offloaded onto the OWL reasoner. 

Dynamic Classification 

Dynamic classification is the ability for the classification of something to be adjusted throughout time. In 

contrast to the traditional approach of reinstantiating an entity under a new classification, dynamic 

classification offers the means to preserve referential integrity by maintaining the existence of the 

original entity by only changing its type information. This capability goes hand-in-hand with multiple 

classification in creating a dynamic environment where extracted facts can effectively mutate 

throughout their lifecycle as additional knowledge is encountered. Like management of multiple 

classification, determining exactly what classification(s) an OWL object qualifies for at any point in time is 

typically the responsibility of the OWL reasoner. 

Open World Assumption (OWA) 

Under an open world assumption, all things are possible unless as-serted otherwise. This is in stark 

contrast to traditional decision-support paradigms where the volume and extent of considerations is 

limited to what is explicitly asserted to be true about the world at any given time. Although operating 

under an open world assumption has implications on model development, it is primarily model usage 

and interpretation that is affected since logic operating across such a model must refrain from as-

suming too much. 

[Insert Figure 3] 



Unconstrained Composition of Features 

Being able to describe the characteristics of something in a manner un-bound by available definitions 

can be very helpful when dealing with evolving knowledge, such as in the information extraction 

problem domain. With environments equipped with such flexibility, information extractions can be 

characterized and continuously re-characterized in a manner unconstrained by current classification(s) or 

known concepts. Working in conjunction with dynamic classification, as something’s cha-racteristics 

evolve or otherwise change, so may its alignment with availa-ble definitions. Collectively, these 

mechanisms support a progressive and fluid understanding of extracted information fragments within a 

dynamic and constantly evolving context. 

Semantic Model Service 

Our implementation of the semantic environment is the semantic model service (as referred to as the 

“model service” in this section). This SOAP Web service contains the ontology-based semantic 

processing for the system. From a high level perspective it is the role of the model service to take in 

assertions from the NLP extraction and derive new knowledge via inference over those assertions in 

combination with a domain specific OWL ontology. To accomplish this task the model service controls 

the importation and persistence of NLP extractions and an OWL ontology into a triple store. The model 

service is then able to execute reasoning over the triple store and query its contents. 

Source Enhancem ents for Reasoning 

For a real world scenario such as our central use case seeks to represent, the reasoning and 

expressiveness of OWL is stretched. Our dilemma is similar to that expressed by [Vrandecic et al., 

2006]: a bare fact stored as a triple cannot express information about its source, reliabili-ty, or how it was 

derived. This information about the context of a fact is as important as the fact itself in our solution. 



To express this context each fact within our semantic repository is an-notated with a source object. This 

object can be of several types and con-tain varying properties. A source object for facts imported from 

the NLP extraction is of type NLPAsse rti onInfo and contains information such as the source document 

and the place in the document where the extraction occurred. This annotation could be applied through 

the use of named triples, named graphs, or RDF reification. In our case we use RDF reification, since it 

can be used with any type of triple store. 

New facts that are inferred will need source data as well. A new fact’s source is the inference itself. That 

inference as well as the facts used in the inference need to be made available to the user. Because of this 

we have taken the rules for typical OWL inference and extended them to create proper sources for 

inferred facts with type Semanti cAsse rti onIn-fo. Figure 3 demonstrates an asserted fact with source, an 

OWL restric-tion, and the result of inference over that data. Note that depending on the level of 

traceability needed Sou rce2 could also have a property linking it to the OWL restriction as well. 

This technique radically increases the size and complexity of rules. We have yet to discover its 

suitability for large datasets. It is possible that systems that deal with reification naively with named 

triples will allow for better scalability. Future work on the model service includes docu-menting more 

specific needs for our triple store and rule engine regarding performance requirements and facilities for 

advanced reasoning. 

Service Structure and Implementation 

The model service has three internal components responsible for on-tology management, import 

translation, and querying and exporting data. In this section we will briefly explain each component’s 

purpose and key features. 

The ontology management component interacts with and maintains the internal triple store. It is also 

responsible for triggering the reasoner and persisting the resulting inferred facts. Our triple store is 

implemented in Jena. The triple store contains both the OWL domain model and facts received from 



the NLP extraction. After the reasoner is run the triple store also contains inferred facts. Because the 

triple store is persistent new facts can be constantly added to the existing data to trigger further inference. 

Import translation is the process by which assertions from the NLP output become facts within the 

semantic model environment. This transla-tion is necessary because the NLP model and the semantic 

model use different ontologies to describe entities. While it is theoretically possible that the NLP and 

the semantic model could use the same ontology, it is impractical for several reasons. From a reusability 

standpoint the NLP should not have to be configured to the current ontology. For example, two 

instances of the system might have similar data sources and extraction needs (thus the same NLP model) 

but different reasoning and ontology needs (thus different semantic models). From a practical 

standpoint it makes sense to have the NLP output its assertions in formats close to their sources with 

minimal processing and translation since it doesn’t have, nor should it have, the semantic tools available 

to do more complex transla-tions that the system might require. 

The NLP output is based around the concept of an assertion, a single instance of NLP extraction. This 

extraction contains the extracted informa-tion as well as the source. This extraction represents an 

individual who is a member of a terrorist organization. The import translation takes this asser-tion and 

breaks it into its component parts. The parts are the existence of a person, the existence of a terrorist 

organization and the membership object that represents their relationship. Each of these component 

parts (in fact, every triple that comprises them) as tied through RDF reification to the source object. 

The import translation also makes sure that new entities are checked against existing entities of the same 

type and name. If a match is found, then new assertions will be connected to the existing entities thus 

unifying data over multiple sources. 

On the opposite side of the import process is the export component. This component queries the 

model for desired facts and translates them to a format that can be served to clients needing the 

information. The com-plete export can contain hundreds of such assertions including relationships 

(such as member of) across objects. Currently the export process uses hard coded queries to create an 



output RDF. The output RDF is modified with regular expressions to create an XML document which 

is more palatable to the user interface client. In order to serve data to a more diverse range of clients the 

export translation process will need to be ex-panded to support general querying and possibly Extensible 

Stylesheet Language Transformations (XSLT) as well. 

 

[Insert Figure 4] 

 

7. User Experience 

The design of the user experience is focused on providing the user with a set of tools, which can be 

configured at run-time, depending on user needs to perform different tasks. The accuracy levels of 

existing NLP tools make user involvement essential in providing meaning and guiding both the 

extraction and the inference processes. The application is developed as a Web application for 

availability to multiple users and easy access. The information source can be a given repository location 

on the Internet, or can point to an information aggregation Web service, such as “NewsExplorer”. Once 

the documents in the repository are ready for processing the user can start the extraction process on a 

selected folder. The extraction service creates an extraction file for each document in the folder, then 

consolidates all extractions in one file, eliminating redundancies and resolving references. 

The user can run the inference engine on any set of extracted concepts to see what insight can be 

gleaned from the current document set. After setting up the service, the user can select an ontology to 

load. The analysis results are presented in tables as well as in a graph, depicting the extracted concepts 

and their relationships. The inferred objects/relationships are included in the presentation and marked 

as ‘inferred’. 

In addition to the NLP extraction and the inference engine, the applica-tion offers tools to assist the 

user in the analysis, by finding out more information about specific concepts or identifying the types of 

some con-cepts that may have been missed by the extraction process. 



The ability for the user to configure certain aspects of the system is an integral part of the user 

experience in a collaborative intelligent system. The user experience in this application includes the 

ability to configure some aspects of the system to suit the user needs for a given task. On the NLP 

extraction side, the user can control the NLP server and stop it and start it at any time during execution. 

The user can also control the batch jobs that are running on the server and stop any job or delete it. In 

addi-tion, the user can view the extraction rules and edit them to introduce new rules. The internal lists, 

which are used by the system to determine the specific types of organizations, can also be edited. These 

lists assist the extraction server in determining terrorist organizations, financial institu-tions and other 

types of organizations. 

 

8. Conclusion 

The current state of NLP offers s ome tools to extract information from a collection of documents and 

recognize basic entity types in that information. In order to perform intelligent analysis on the extracted 

information, a context has to be provided along with some guidelines for the analysis. We combine 

existing NLP tools with an OWL ontology to provide a rich environment for performing intelligent 

analysis. The ontology provides the context and the structure of knowledge in the given domain with 

the rules, which govern the classification and membership of objects in concepts in the ontology, and 

provide basic inference mechanism for creating new knowledge. The existing NLP tools extract 

information from a collec-tion of documents and identify the basic types for entities in the extracted 

information. Mapping then takes the extracted basic entities and populates the ontology. The inference 

mechanism runs on the ontology objects and may create new objects or relationships, thus expanding 

the ontology. The overall system incorporates these tools as collaborative agents that provide and utilize 

services through a Web server based on Tomcat and Apache. The Web interface provides assistance 

with the management of sources and documents, and offers support with the extraction, analysis, and 

re-trieval of information contained in and derived from the repository. 
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