
PolySat’s Next Generation Avionics Design

Greg Manyak

Abstract—The CubeSat platform provides a unique chal­
lenge for flight software design due to the incredible size and
power constraints. A number of tradeoffs must be made to
balance effectiveness, fault tolerance, and cost. These basic
requirements have been combined with the lessons learned
from Cal Poly’s past 8-bit avionics system to design a significant
revision based around a 32-bit microprocessor running Linux.
This work analyzes both generations of avionics design, includ­
ing a discussion of major design principles that are relevant
to other CubeSat missions.

Keywords-cubesat software design, fault tolerance

I. INTRODUCTION

The CubeSat program was initially developed with univer­

sities in mind, enabling cost-effective access to space for ed­

ucational purposes. This created an interesting combination
of requirements. The physical form-factor and power budget
of the satellites are extremely constrained. The number of
available person-hours to design, build, and operate these
satellites is small. The mission demands are always increas­

ing, and the expected turnaround time keeps decreasing.
Onboard hardware and software information technology is
critical to meeting all the requirements.

This work describes how PolySat’s onboard avionics
strives to meet these demands, including a system overview
of two generations of avionics design. Operational expe­

riences and bus telemetry data are used to evaluate how
well the first generation bus met the requirements. A set of
design principles for the second bus generation is presented,
including some justifications based on experiences from
the first design. The second generation design is validated
through an external design review process. Finally, other
CubeSat designs are surveyed.

The remainder of the paper is organized as follows.
Section 2 reviews the major design requirements. Section
3 describes the first-generation onboard avionics design,
including an analysis of how well it meets the requirements.
Section 4 establishes some basic CubeSat design principles.
Section 5 presents the second-generation onboard avionics
system. Section 6 reviews systems designed by other orga­

nizations. Future directions are discussed in section 7, and
section 8 concludes.

John M. Bellardo

II. AVIONICS REQUIREMENTS

CubeSat avionics bus requirements are satisfied using a
combination of software and hardware. The requirements
presented in this section are used to evaluate and compare
the different bus designs presented in this paper. Some
of these requirements are not universally applicable to all
CubeSat missions. For instance, PolySat has flown and
intends to continue to fly, multiple missions with the same
avionics platform. This results in more emphasis on flexibil­

ity requirements that may be unnecessary in planned single-

use designs. The requirements are broken down into three
broad categories: physical requirements, project personnel
requirements, and mission requirements.

A. Physical Requirements

Physical requirements are determined by the CubeSat
standard [1]. The smallest “1U” satellite is 10×10×10 cm3

(1 liter volume) and a “3U” satellite is 3L. These very
small sizes make it extremely important to minimize the
space occupied by the avionics. Every additional cubic
centimeter occupied by the bus reduces the size of payload
that can be flown. Initial CubeSat missions were focused
on the educational aspects of designing the satellites and
demonstrating the viability of the platform; thus they were
not as concerned with the payload capacity. More recent
missions still emphasize the educational impact, but also
place more importance on the scientific mission. The satellite
is also limited to 1.33kg per L. The weight budget does not
typically constrain the avionics.

The power budget is also extremely limited. A standard
1U satellite covered with 6 solar voltaic panels has a power
budget of roughly 1 watt per hour. It is extremely important
that the avionics consumes as little power as possible, saving
most of the budget for the payload. Ideally, the same avionics
bus should be capable of operating any size CubeSat.

B. Personnel Requirements

The PolySat project operates with unique personnel re­

quirements, most of which are attributable to being in a
university setting. The majority of the work is done by
student volunteers. These students agree to work at least 10
hours per week on the project, however, this commitment

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19157536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is inversely proportional to both coursework and facebook
usage. A typical volunteer averages 80 hours per three month
term. Educating the volunteers about the satellite’s design
and training them on good engineering practices further re­

duces the productivity window of a volunteer. Optimistically,
an average student can expect to be a productive contributor
for 2 years, or a total of about 480 person-hours. 480 person-

hours is equivalent to 3 months working 40 hours per week.
This necessitates using technologies that favor ease of use
and popularity over performance, for instance supporting
modern scripting languages.

The shortage of manpower makes modularity and reuse
extremely important. It is necessary to use the same overall
hardware, communications, and software design in many
missions. Ideally all the satellite development effort is spent
on creating and integrating the mission specific payload, not
on tweaking the avionics to support the next mission.

C. Mission Requirements

The final set of requirements are mission specific. A
number of these vary from mission to mission, and are
difficult to predict in advance. However, a subset of these
requirements are recurring when different mission planners
independently develop similar requirements. PolySat has at­

tempted to generalize the requirements to make the avionics
design capable of operating a wider range of missions.

Most missions are interested in a quick turn-around time.
In fact, that is one of the main advantages of CubeSats.
They are very agile and should be able to react quickly to
payload technology. Organizers aren’t thrilled at the prospect
of waiting two years or more to get the first data back from
their cutting edge experiment. A short turn around time eases
the training overhead for new volunteers because a single
team with fixed composition is able to complete one mission.

Payloads continue to generate increasingly large quantities
of data. For this data to be useful, it must be transferred
back to earth. This necessitates a robust communication
system, starting at the transceiver and extending through the
protocols that ensure correctness of transferred data. Not
carefully considering all aspects of communication can be a
major problem. For instance, using the standard TCP-based
file transfer protocol (FTP) results in link capacity being
vastly underutilized.

Outer space is a much harsher and less forgiving en­

vironment than Earth. As such, missions typically require
CubeSats to provide some level of fault tolerance. Transient
errors should be handled gracefully. They shouldn’t cause
the satellite to enter into an unusable, unknown, or uncon­

trollable state. If possible, errors that corrupt data should
be detected and the data points ignored. Depending on the
type of experiment, it may be repeated to capture clean
data. Components can be selected and the overall avionics
designed to minimize the probability that a catastrophic

failure occurs in critical memory, for instance selecting
radiation-resistant storage to hold the satellite’s software.

III. FIRST GENERATION BUS DESIGN

The first generation avionics bus was primarily designed
in 2004 as part of Chris Day’s Masters Thesis [2]. This
design, with only minor revisions, was subsequently used
in five distinct satellites, starting with CP2. The only major
changes were in the payload, which is expected to be mission
specific. CP1 and CP2 never reached orbit due to launch
vehicle failure. CP3, CP4, and CP6 were flown and operated
with varying degrees of success. CP5 is in the testing stage
of development and has been manifested on the ELaNa VI
mission for a launch sometime mid-2012.

A. Hardware Design

The first generation bus was built around two printed
circuit boards: the electronic power system (EPS) and the
command and data handling board (C&DH). The analog
power components were mostly isolated to the EPS board
and the digital components on the C&DH board. This
physical layout reduced the amount of crosstalk and in­

terference the analog components contributed to the digital
components.

The EPS provided voltage rails, via DC-DC converters, to
the entire satellite. Each rail is protected by a programmable
”smart fuse” that limits the amount of current that can be
drawn. The EPS board was also the mounting point for the
two lithium-ion batteries, which were charged by the solar
cells on the side-panels of the spacecraft.

The C&DH board contained both a single comput­

ing and two identical, redundant communication subsys­

tems. The computing subsystem consisted of one 4MHz
PIC18LF6720 microcontroller (referred to as the C&DH
controller) with two 128KB I2C EEPROMs for non-volatile
storage. Each communication subsystem had the same
4MHz PIC18LF6720. The payload also contained its own,
mission specific processor. Most components were intercon­

nected via I2C. Avionics specific components, such as those
for magnetometers and magnetorquers, were connected to
the C&DH controller.

B. Software Design

The software was split into three pieces that ran inde­

pendently of each other on different microcontrollers. The
communication software ran on the comms controllers, and
was responsible for controlling the transceiver, decoding the
data, and forwarding it over the I2C bus to the C&DH
controller. The comms controller could also transmit a
packet received from the C&DH and directly respond to
a subset of commands without C&DH intervention.

The C&DH responded to all commands for devices that
it controlled, for example, transmitting avionics state and
energizing the magnetorquers. It was also responsible for

generating the periodic beacons. Commands destined for
the payload processor were forwarded on the I2C bus.
Depending on the mission and specific command, the C&DH
would occasionally translate the ground command into one
understood by the payload before forwarding it. The C&DH
was also responsible for relaying results from the payload
processor back to the comms.

The C&DH and comms software were mostly reused from
satellite to satellite.

C. Fault Tolerance

The C&DH and EPS subsystems both included a number
of fault tolerant mechanisms, most notably the fully redun­

dant transmit / receive path. The C&DH microcontroller
switched between the two at a regular interval, so that if
one were to fail, half the communication would still be
successful. If the failure were permanent, a command could
be sent up to the satellite instructing it to use the good
communication path for the remainder of the mission.

The power system also has a fault tolerant architecture.
The two batteries are configured in parallel, each with their
own protection circuitry. If one were to fail, the other would
still be usable without interrupting power. Three separate
DC-DC converters with smart fuses are used to power the
C&DH and the two redundant communication chains. The
smart fuses provide failure isolation when the load on one
exceeds the programmed protection threshold.

Anecdotal evidence suggested that CP4’s failure was a
result of I2C bus problems. To address this, an 8-bit CRC
was was added to each inter-processor I2C message[3] in the
satellite. This provided three primary benefits. First, most
corrupted messages were no longer acted on, preventing
the satellite from entering some unintended states. The
CRCs, coupled with acknowledgements added to the I2C
bus messages, enabled local retransmission of the message
without relying on the Earth station to reissue the command.
Finally, the CRC and related software changes enabled the
collection of I2C telemetry data.

D. Design Analysis

The first generation avionics design successfully met all
physical design requirements, as evidenced by its multiple
flights. The design just barely met the personnel require­

ments. Experience has shown it took between 18 and 24
months to produce flight ready hardware for a particular mis­

sion. This is uncomfortably close to the productive lifetime
of a student volunteer. In many cases, primary developers
would continue working on the weekends remotely to ensure
early satellite operations were as successful as possible.
The overall turnaround time should be reduced to better fit
mission specific objectives.

Communications failure has been the primary reason the
first generation design was not a universal success in meeting
mission requirements. The RF and internal I2C bus have

I2C Bus Event Counters

0

 20

 40

 60

 80

 100

 120

 140

N
um

be
r

of
 E

ve
nt

s
(T

ho
us

an
ds

)

Time

CRC Errors
Bus Faults

Transactions

 0
 1
 2
 3
 4
 5
 6

Figure 1. I2C bus event data from CP6. Inset in upper left shows only the
CRC error and bus fault event counters. Time progresses left-to-right, but
not proportionally due to periods of time when no data was downlinked.

been identified as possible causes for these problems. The
next few paragraphs provide mission-specific analysis.

CP3 was launched on April 7, 2007[3] and can presently
still communicate with the Cal Poly earthstation. The receive
sensitivity of the communication system is such that very
few commands are able to be received by the satellite, pre­

cluding extensive operations. However, a substantial amount
of telemetry and bus health information continues to be
received from this satellite.

CP4 was launched on the same vehicle as CP3 and
although it used the same bus hardware, it was not as
successful. CP4 suffered a failure soon after launch. An I2C
bus failure preventing communication between the C&DH
and the communication controllers[3] is the suspected cause.
Only commands sent to the communication processors have
been successful, not commands sent to the C&DH.

CP6 was a backup flight model for CP3, with minor
modifications. A low-noise amplifier was added to the front
end of each RF communication chain, improving the receive
sensitivity. As a result, CP6 had much greater operational
success. CP6 is also the first satellite to report I2C bus
telemetry data. This capability was added because there was
a strong consensus that I2C problems directly contributed
to problems in CP4. This data is shown in figure 1. Note
that I2C errors occur in less than 8% of the bus transactions
overall. While this number is higher than ideal, it is low
enough that it doesn’t adequately justify blaming the I2C
bus in previous missions. These results reinforce the need to
gather as much data as possible to focus engineering efforts
in areas most likely to make the biggest difference.

CP6 stopped responding for a significant period of time.
As of April 2011, only one of the communication processors
occasionally responds to simple commands, and there is no
response from C&DH commands.

IV. DESIGN PRINCIPLES

A small set of design principles was developed based on
the design analysis of the first generation avionics bus, re­

views of other CubeSat designs, and fundamental economic
arguments. These principles were used in the design of the
second generation bus. This section describes and motivates
the principles, so they can benefit other CubeSat projects.

A. Minimize Hardware Modularity

Most engineers tend to design satellite hardware around a
set of building blocks, and pick the appropriate combination
of these blocks to complete the mission. An example set of
building blocks includes a main bus, battery power man­

agement, communications module, attitude determination
sensors, and a payload processor. These designs tend to use
a common interconnect standard to enable vendor indepen­

dence. PC/104 [4] is found in a number of CubeSat designs.
For most terrestrial applications this makes sense because it
“right-sizes” the hardware to the mission, minimizing the
overall budget impact.

This is not the case for CubeSats. Assuming it costs
roughly $100,000 1 to design, build, and fly a 1U CubeSat,
the corresponding per-cm3 cost is $100. Each PC/104 board
is 0.6in thick [4], or 1.524 cm. Adding a single additional
PC/104 board consumes 10 × 10 × 1.524 = 152.4cm3 .
This represents a lost payload opportunity cost of roughly
$15,240, and is a reasonable measure of the expense of
hardware modularity in CubeSats. This compounds when
the base satellite design requires two or three modules to
complete the mission, which is common in commercially
available “modular” designs. A single board that contains
substantially more functionality than necessary represents a
better tradeoff, even if the board costs an extra $500. This
is a strong argument for minimizing hardware modularity in
CubeSats.

B. Minimize Hardware Redundancy

Hardware redundancy is expensive in time, space, and
price. Selectively duplicating components sounds appealing,
but there are some major drawbacks. First, there isn’t enough
operational history available to identify the components that
are mostly likely to fail. That reduces the effectiveness
of redundant hardware, but not the cost. Second, there is
a strong economic argument against redundant hardware.
Namely, it is not worth increasing the cost or reducing
the payload capacity of a CubeSat by $5,000 to provide
hardware redundancy for a small portion of the satellite.
Instead, provide redundancy for all parts by building a
second satellite, which costs substantially less than the first
when built at the same time. If the first one fails the second
one can be flown, as was successfully demonstrated with
CP3 and CP6.

1$100,000 is the current estimate given to potential satellite developers
by the CubeSat program.

C. Eliminate Payload Controllers

There is a strong tendency to over-engineer the payload
controllers. Specifically, most designs include a dedicated
payload processor that monitors the experiment, takes com­

mands from the main satellite processor, and returns data to
the main processor. The payload itself is typically composed
of a handful of sensors and actuators. This design appears
“clean” because the communication interface between the
payload processor and main processor is narrow and well
defined. For example, the I2C bus and messages used in
CP2 – CP6.

The problem with payload controllers is that they sub­

stantially add to the development time of a satellite, espe­

cially when the payload is being purpose built and has a
low likelihood of being reused with other hardware. The
satellite developer must now write a number of additional
pieces of software. The payload processor needs code to
control the experiment, implement the communication bus
protocol, and implement the custom messaging protocol on
top of the bus. The most common payload processor used,
PICs, do not have a reputation for being developer-friendly,
which further increases the amount of time required. Finally,
matching communication code must also be added to the
main processor in order to communicate with the payload
processor.

An alternative, streamlined design is to attach all payload
sensors and actuators directly to I2C GPIO expanders, A2D
sensors, and other required components. From a hardware
standpoint the interconnect is just as simple. The biggest dif­

ference is in the software. Developing the payload software
to run directly on the main processor virtually eliminates
all the time spent on developing communication bus and
custom messaging implementations. This also increases the
complexity of the main processor.

V. SECOND GENERATION BUS

The second generation bus was developed to meet the
requirements described previously, guided by both the design
principles and other past experiences. The resulting avion­

ics system is the basis for two current missions, the 3U
LightSail-1 and the 1U CP7. It will also serve all of Cal
Poly’s missions for the foreseeable future.

A. Hardware Design

The new design consolidates the C&DH and EPS com­

ponents onto a single board, eliminating two of the three
original processors. This necessitates a more powerful main
processor. Since this processor is also expected to handle
payload control and needs to enable more sophisticated
software designs, a very powerful processor meeting the
space and power budgets was chosen.

The C&DH is built around a 32-bit ARM9-based At­

mel chip, with SDRAM and NAND flash as the primary
storage. The detailed specifications are provided as part of

Batteries

1st Gen Design 2nd Gen Design CP7

Figure 2. CAD Renderings of different PolySat satellites. The CP7 rendering illustrates how mission-specific batteries were utilized in the payload bay.

figure 4, but the CPU is roughly 2 orders of magnitude
faster, and there is 3-4 orders of magnitude more storage.
All components, except for the communication subsystem,
are on the primary electronics board. The communication
system is attached via a low profile daughtercard connector.
Even though it is on a separate board, the transceiver
is directly controlled from the main processor. There is
no dedicated communications processor. I2C and RS232
are used to connect most external sensors and payloads.
A SPI bus connects the remaining components, including
the transceiver. Other interfaces, such as USB, LVDS, and
RS422, are available if needed in future missions.

The basic structure was redesigned entirely to support the
second generation bus. Rather than the printed circuit boards
sitting inside the spacecraft structure, the single board with
the daughtercards sits underneath the ’top’ solar panel. The
resulting mechanical structure to support this avionics sys­

tem requires significantly less volume than it’s predecessor,
as shown in figure 2. This 2nd generation avionics consumes
approximately .1L. When put in the smallest 1U satellite,
this is roughly 10% of the volume. In a 3U the percentage
is reduced to only 3.33%. These volume percentages assume
the satellite’s battery can be customized to work within the
payload’s physical constraints. For example, CP7 is able to
utilize cylindrically shaped batteries, which fit well due to
the unique mechanical payload, as seen in figure 2. In gen­

eral the battery technology exists to make this assumption
reasonable. This form-factor is small enough to conceivably
fit into a 0.25L avionics-only satellite.

B. Software Design

Moving all the processing to a single processor places an
increased burden and complexity on the software. Instead
of implementing the control software from the ground up,
which is a common decision among CubeSat missions,
the avionics processor runs Linux. There are a number of
benefits obtained from using Linux. First, it handles all the

low-level management of hardware, drivers, communication,
and processes. This eliminates a large amount of code that
would otherwise have been written. More importantly, Linux
enables the satellite to run much of the available open source
software, including modern languages like Python. This last
point is extremely important. Providing modern language
support increases the number of developers able to contribute
to the project and decreases the amount of retraining that
is necessary. None of this would be possible without the
generously over-provisioned hardware.

A highly modular and generic software system, centered
around the process model of the Linux, was designed.
The software architecture contains three distinct layers:
processes, abstraction libraries, and drivers. Processes are
single-function applications, abstraction libraries provide ac­

cess to different software and hardware services, and drivers
are used by the libraries to access the hardware. An example
of this hierarchy is shown in the figure 3, specifically
demonstrating that of the communication process.

The processes are the highest level of software in this
bus design. Each module in this layer serves a very specific
function in the system and heavily utilizes the API pro­

vided from the abstraction libraries. Processes communicate
between one-another via UDP packets. Each process is
assigned a well-known port that is listed by name in the
standard services file. This abstracts the port numbers and
simplifies adding new processes to a system. Each process
runs an event handler system, responding to events from a
limited number of sources. For instance, the communication
process will respond to events from the transceiver to receive
packets, events from the kernel to transmit packets, and
timeout events to implement ARQ protocols(s). Timeout
events are generated by an internal priority queue. The
heap-based implementation always keeps the earliest timeout
event efficiently accessible. When the process isn’t actively
responding to an event, it blocks, to conserve both CPU
time and power. All of this functionality is provided by the

��� "�������
���������

������
����

�������
�������

��������

�������
��!��

��������
������#

�����
������#

�������
������#

�
��
��
��
�

��
��
��
��
�

��!
��
�

Figure 3. Process Chart with Communication Process Hierarchy

process library, a module of the abstraction libraries.
The abstraction libraries provide both hardware and

software-based services to all of the processes. Low-level
tasks are abstracted into methods that are meaningful
to the process developer and hide the specific hardware
components of the avionics system. These libraries are
dynamically-linked at runtime so that they can be upgraded
without recompiling every process that utilizes them. The
libraries also reduce development time by providing a single
implementation for commonly needed functionality.

The drivers are at the lowest level of the software hi­

erarchy, containing code that interacts directly with the
components of the system. The components may be included
on the avionics board itself, in the solar side panels, or in
the payload. The drivers may run within the Linux kernel or
as a separate user-level process with special permissions to
directly talk to a device. User-space drivers are desirable
because of their inherent ease of development, isolation
from other software components, and their ability to use
any programming or scripting language. Most devices are
interrogated so infrequently that the extra overhead from
running in user space isn’t noticeable.

C. Fault Tolerance

Rebooting the satellite is the primary mechanism for
recovering from detected, transient faults. Although a com­

plete restart is heavy-handed, it helps minimize the prob­

ability that another, undetectable fault impacts the mission.
Some of the more common transient errors are SDRAM bit-

flips or bus errors. In certain critical circumstances, a bus
read operation is retried when a fault is detected. Watchdogs
and checksums are used to detect corruption.

A hierarchical watchdog system is used to detect transient
errors that result in external misbehavior of a process.

The high level watchdog is implemented in software at
the process level and watches each process, expecting a
specific range of behaviors. This watchdog is robust enough
to dynamically reconfigure its set of expected behaviors,
however, care is taken to eliminate the possibility that a
runaway process can inadvertently reconfigure the watchdog
and avoid detection. The high level watchdog verifies behav­

ior on the order of every 1-5 minutes. If any inconsistencies
are found a restart is initiated.

The low level watchdog utilized is the Linux kernel’s
software watchdog, which is “tapped”, unconditionally, at a
much higher frequency than the higher level one. The timer
interval for this watchdog is fixed, and the timeout behavior
is a soft reboot, which will enable a refresh of SDRAM
upon boot-up. The processor’s built-in hardware watchdog
and an external watchdog are used to recover from failures
in the shutdown and boot-up sequence.

Checksums are used to verify the integrity of persistently
stored data. The primary checksum used is MD5, which can
run quickly on the main processor and has a much lower
probability of random collision than standard IP and CRC
checksums. To reduce the likelihood of getting into an unin­

tended state, commands are given even stronger guarantees.
A command is a ground-initiated message that triggers any
kind of function in the satellite, such as taking a sensor
reading or reconfiguring a process’s behavior. An MD5
checksum alone is insufficient to ensure a rogue process
doesn’t issue commands that reconfigure the satellite.

To protect against that scenario, and to provide better
operational security, commands sent to the satellite are
digitally signed. Since the signing key will not be present
on the satellite, this guarantees that any valid message
must have originated from a trusted off-satellite source. The
signatures also enable corrupted commands to be identified.
Standard public/private key cryptography and X.509 certifi­

cates are used. The satellite is pre-loaded with a small set
of trusted certificates, from which a chain of trust can be
established to validate future commands. Each certificate
lists the set of commands the holder is permitted to sign,
enabling fine-grained operational security. Commands can
be stored indefinitely in volatile or non-volatile memory and
the signature properties still hold.

Special attention has been given to add robustness to the
early stages of system boot-up. The Linux kernel and small
initial set of processes is stored in SPI Flash, implement with
non-volatile phase change memory. Phase change memory
of this type has been shown to be radiation tolerant up to
30 MRad against permanent errors [5]. Multiple copies of
both the kernel and initial files are kept in SPI Flash, and a
custom boot loader validates checksums before transferring
processor control to the kernel. To better tolerate transient bit
errors, the boot loader will read the same data multiple times
if the checksum doesn’t validate. Again, MD5 checksums
are used for extra robustness. Persistent bit errors in SPI

Satellite Organization Main
Processor

Mhz Volatile
Memory

Non-Volatile
Memory

Operating
System

1st Gen Bus Cal Poly PIC18F6720 4 3.75 KB 256 KB custom
2nd Gen Bus Cal Poly AT91SAM9G20 400 64 MB 528 MB Linux

Cute-1.7+APDII Tokyo Institute
of Technology

ARMV4I 400 32 MB 128 MB Windows
CE.NET

MEROPE Montana State MC68HC812A4 16 1 KB 132 KB custom
QuakeSat Stanford University ZFx86 486 Clone 100 16 MB 1 MB Linux

AAUSAT-II Aalborg University AT91SAM7A1 40 2 MB 8 MB unavailable
ITUpSAT Istanbul Technical Unv.

(Pumpkin Design)
MSP430 7.4 10 KB 50 KB Salvo 4

STUDSAT India - 7 Academic
Institutions

AT91SAM9260 180 unavailable unavailable VxWorks

Figure 4. Comparison of processing specifications and operating systems from CubeSat missions. Chosen to demonstrate variability. Some designs, such
as Pumpkin and PIC-based (like PolySat’s 1st generation design), have flown many missions. Data was gathered from public documents.

Flash can be corrected once an operational copy of the kernel
is loaded.

NAND memory is used for high capacity non-volatile
storage. The NAND specification permits a small number
of permanent, unrecoverable errors to increase yield and
decrease cost. The Linux NAND drivers already track these
bad blocks and stop using them. It is expected that this
existing mechanism will work well in orbit to recover from
faults, however, the number of faults may be higher than on
Earth.

D. Design Validation

The second generation avionics system hasn’t flown a
mission yet, so operational experience can’t be the analysis
basis for understanding how well the design requirements
were met. However, the design has been validated by a
diverse group of experienced engineers from the Aerospace
industry, from companies such as JPL and the Aerospace
Corporation. This provides external confidence that it will
meet the mission requirements.

The first review, a peer design review (PDR), was com­

pleted in the very early stages to assess the feasibility of
the concept. The reviewers consisted entirely of industry
professionals with significant experience, who listened to
the project leaders present their initial design goals and
schedules. At this time, little was decided about the specific
hardware and software architecture of the new avionics
system, except for general goals such as consolidating the
subsystems. Unfortunately this design review was not a
resounding success. A number of the complaints focused
on the high risk nature of the CubeSat platform, and didn’t
address the proposed architecture.

A second, much more informal peer review took place a
few months after the first. The participants were just a few
engineers from industry, in combination with the entirety
of the LightSail-1 team. Many of the design details were
developed before the second review, and were discussed

thoroughly. The feedback directly altered some of the design
for both hardware and software, such as the inclusion of a
hard reset of the avionics and adding security mechanisms
to the uplinked commands.

The final, critical design review occurred nearly 6 months
after the initial PDR. It was executed in a similar fashion,
with a number of industry professionals. The avionics sys­

tem was presented in detail, both the hardware and software
designs. Fortunately, this review was much more successful
than the PDR and the design was well-received by the
reviewers. No significant changes were required as a result
of the third review.

VI. OTHER CUBESAT DESIGNS

Nearly 70 CubeSats have been or are manifested to
launch. This section attempts to review both the most
common designs and the unique ones, to provide a sampling
of the overall design space. Some missions keep the design
details of their avionics proprietary. Table 4 summarizes the
computational power and operating system software flown
on some of the CubeSat missions.

A large number of the CubeSat designs are based around
multiple PIC-class microcontrollers interconnected with an
I2C bus. This is roughly the same design as PolySat’s
first generation avionics platform. Most satellites using this
design will share the same set of benefits and drawbacks.

The QuakeFinder project [6] designed, built, and operated
QuakeSat [7]. Some of their design motivations and out­

comes were similar to those presented here. For instance,
QuakeSat was built around a general purpose Diamond Sys­

tems Prometheus PC/104 board running Red Hat 9 Linux.
Mission operators seemed generally pleased with the extra
flexibility afforded by the Linux-based solution.

The UWE-1 [8] satellite bus was built around a Hitatchi
H8S/2674R microprocessor running μClinux [9]. Their pri­

mary mission was to test the performance of various IP-

based protocols over the poor quality radio links. Linux was

chosen to leverage the existing protocol implementations
and to enable standard server software to work out of the
box. This is an early demonstration of the added flexibility
and capability provided by flying a full-fledged operating
system. The μClinux distribution was chosen to fit within
the processing and power limitations of the microprocessor.

Cute-1.7+APDII’s [10] main bus consisted of two Hitachi
NPD-20JWL PDA logic boards running Windows CE 4.1.
Peripherals were interfaced using a combination of USB and
RS232. This platform was chosen because the electronics
were readily available and the software programming envi­

ronment was more familiar to a wider group of developers.
The latter motivation is a driving factor in PolySat’s new
avionics design. Due to the use of off the shelf PDAs, Cute-

1.7+APDII was a non-standard 3L satellite.
Pumpkin manufactures and sells a CubeSat KitTM [11].

Their kit provides the ability to customize the main bus via
the PC/104 [4] interconnect standard. The main board, and
most of the expansion boards, are based around PIC-class
embedded processors. Use of the PC/104 standard results
in noticeably larger volume requirements for the bus. The
CPU daughter boards do not provide nearly the same level
of performance that PolySat’s integrated design does. The
CubeSat KitTMisn’t powerful enough to run Linux. Instead
it runs a custom real-time operating system, Salvo 4, which
presents more of a learning curve for most developers.

Though not a specific avionics design, Klofas et.al. [12]
provides a survey of CubeSat communication subsystems,
including a description of the range of radio hardware and
related parameters used in satellites through 2008. It also
provides limited insight into three different bus designs and
proposes experience-based best practices for communication
subsystems. In contrast, this work focuses on the main bus
requirements and design, of which communication is one
piece.

VII. FUTURE WORK

Upon completing the avionics implementation, telemetry
data from ground simulated operations and actual flight
operation needs to be gathered and analyzed to determine
how well the new avionics design is able to meet the mission
requirements.

VIII. CONCLUSION

This work focused on presenting and evaluating two
generations of PolySat’s avionics technology against a set
of general requirements. Deficiencies in the first generation
design were identified, and steps were taken in the second
generation design to avoid the reoccurrence of the problems.
The external design review process for the second generation
avionics was used as an initial measurement against specific
mission requirements.

This work also presented a short survey of other CubeSat
avionics. This background helps illustrate some of the design

differences and similarities between PolySat’s second gener­

ation bus and other avionics platforms. In addition, general
design guidance that is widely applicable to many CubeSat
missions was presented and justified.

ACKNOWLEDGMENT

We would like to thank Austin Williams who has led
the design of the new avionics system. Furthermore, we are
especially grateful for Dr. Jordi Puig-Suari’s guidance and
constantly forward-looking advising to the PolySat program
that has made all of this work possible.

REFERENCES

[1] “Cubesat	 specifications.” [Online]. Available:
http://www.cubesat.org/images/developers/cds rev12.pdf

[2] Christopher Alan Day, “The design of an
efficient, elegant, and cubic pico-satellite
electronics system,” Dec 2004. [Online]. Available:
http://polysat.calpoly.edu/PublishedPapers/ChrisDay thesis.pdf

[3] Keith	 McCabe, “Enhancements to the cpx
i2c bus,” Dec 2007. [Online]. Available:
http://polysat.calpoly.edu/PublishedPapers/KeithMcCabe srproj.pdf

[4] PC/104	 Consortium, “Pc/104 specifications.” [Online].
Available: http://www.pc104.org/pc104 specs.php

[5] A. Gasperin, N. Wrachien, A. Cester, A. Paccagnella, F. Ot­
togalli, U. Corda, P. Fuochi, and M. Lavalle, “Total ionizing
dose effects on 4mbit phase change memory arrays,” in
Radiation and Its Effects on Components and Systems, 2007.
RADECS 2007. 9th European Conference on, Sep 2007, pp.
1 –8.

[6] “Quakefinder	 – earthquake research,”
http://www.quakefinder.com/.

[7] Tom	 Bleier and Paul Clarke and Jamie Cutler and Louis
DeMartini and Clark Dunson and Scott Flagg and Allen
Lorenz and Eric Tapio, “Quakesat lessons learned: Notes
from the development of a triple cubesat.” [Online].
Available: http://www.quakefinder.com/services/quakesat­
ssite/documents/Lessons Learned Final.pdf

[8] Y.	 Aoki, R. Barza, F. Zeiger, B. Herbst, and K. Schilling,
“The cubesat project at the university of wurzburg:
The mission and system design.” [Online]. Available:
http://www.stec2005.space.aau.dk/getpdf.php?id=107

[9]	 “μclinux – embedded linux/microcontroller,”
http://www.uclinux.org/.

[10] M. Iai, Y.	 Funaki, H. Yabe, K. Fujiwara, S. Masumoto, T.
Usuda, S. Matunaga, J. Katoka, and T. Shima, “A PDA-
Controlled Pico-Satellite, Cute-1.7, and its Radiation Protec­
tion,” in In Proceedings of the 18th AIAA/USU Conference
on Small Satellites, Aug 2004.

[11] “Pumpkin cubesat kit,” http://www.cubesatkit.com/.

[12] Bryan Klofas	 and Jason Anderson and Kyle Leveque, “A
Survey of CubeSat Communication Subsystems,” in Proc. of
CubeSat Developers’ Workshop, Apr 2008.

http:http://www.cubesatkit.com
http:http://www.uclinux.org
http://www.stec2005.space.aau.dk/getpdf.php?id=107
http://www.quakefinder.com/services/quakesat
http:http://www.quakefinder.com
http://www.pc104.org/pc104
http://polysat.calpoly.edu/PublishedPapers/KeithMcCabe
http://polysat.calpoly.edu/PublishedPapers/ChrisDay
http://www.cubesat.org/images/developers/cds

