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Abstract—The CubeSat platform provides a unique chal­
lenge for flight software design due to the incredible size and 
power constraints. A number of tradeoffs must be made to 
balance effectiveness, fault tolerance, and cost. These basic 
requirements have been combined with the lessons learned 
from Cal Poly’s past 8-bit avionics system to design a significant 
revision based around a 32-bit microprocessor running Linux. 
This work analyzes both generations of avionics design, includ­
ing a discussion of major design principles that are relevant 
to other CubeSat missions. 
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I. INTRODUCTION 

The CubeSat program was initially developed with univer­

sities in mind, enabling cost-effective access to space for ed­

ucational purposes. This created an interesting combination 
of requirements. The physical form-factor and power budget 
of the satellites are extremely constrained. The number of 
available person-hours to design, build, and operate these 
satellites is small. The mission demands are always increas­

ing, and the expected turnaround time keeps decreasing. 
Onboard hardware and software information technology is 
critical to meeting all the requirements. 

This work describes how PolySat’s onboard avionics 
strives to meet these demands, including a system overview 
of two generations of avionics design. Operational expe­

riences and bus telemetry data are used to evaluate how 
well the first generation bus met the requirements. A set of 
design principles for the second bus generation is presented, 
including some justifications based on experiences from 
the first design. The second generation design is validated 
through an external design review process. Finally, other 
CubeSat designs are surveyed. 

The remainder of the paper is organized as follows. 
Section 2 reviews the major design requirements. Section 
3 describes the first-generation onboard avionics design, 
including an analysis of how well it meets the requirements. 
Section 4 establishes some basic CubeSat design principles. 
Section 5 presents the second-generation onboard avionics 
system. Section 6 reviews systems designed by other orga­

nizations. Future directions are discussed in section 7, and 
section 8 concludes. 

John M. Bellardo 

 


 

 

 

II. AVIONICS REQUIREMENTS 

CubeSat avionics bus requirements are satisfied using a 
combination of software and hardware. The requirements 
presented in this section are used to evaluate and compare 
the different bus designs presented in this paper. Some 
of these requirements are not universally applicable to all 
CubeSat missions. For instance, PolySat has flown and 
intends to continue to fly, multiple missions with the same 
avionics platform. This results in more emphasis on flexibil­

ity requirements that may be unnecessary in planned single-

use designs. The requirements are broken down into three 
broad categories: physical requirements, project personnel 
requirements, and mission requirements. 

A. Physical Requirements 

Physical requirements are determined by the CubeSat 
standard [1]. The smallest “1U” satellite is 10×10×10 cm3 

(1 liter volume) and a “3U” satellite is 3L. These very 
small sizes make it extremely important to minimize the 
space occupied by the avionics. Every additional cubic 
centimeter occupied by the bus reduces the size of payload 
that can be flown. Initial CubeSat missions were focused 
on the educational aspects of designing the satellites and 
demonstrating the viability of the platform; thus they were 
not as concerned with the payload capacity. More recent 
missions still emphasize the educational impact, but also 
place more importance on the scientific mission. The satellite 
is also limited to 1.33kg per L. The weight budget does not 
typically constrain the avionics. 

The power budget is also extremely limited. A standard 
1U satellite covered with 6 solar voltaic panels has a power 
budget of roughly 1 watt per hour. It is extremely important 
that the avionics consumes as little power as possible, saving 
most of the budget for the payload. Ideally, the same avionics 
bus should be capable of operating any size CubeSat. 

B. Personnel Requirements 

The PolySat project operates with unique personnel re­

quirements, most of which are attributable to being in a 
university setting. The majority of the work is done by 
student volunteers. These students agree to work at least 10 
hours per week on the project, however, this commitment 
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is inversely proportional to both coursework and facebook 
usage. A typical volunteer averages 80 hours per three month 
term. Educating the volunteers about the satellite’s design 
and training them on good engineering practices further re­

duces the productivity window of a volunteer. Optimistically, 
an average student can expect to be a productive contributor 
for 2 years, or a total of about 480 person-hours. 480 person-

hours is equivalent to 3 months working 40 hours per week. 
This necessitates using technologies that favor ease of use 
and popularity over performance, for instance supporting 
modern scripting languages. 

The shortage of manpower makes modularity and reuse 
extremely important. It is necessary to use the same overall 
hardware, communications, and software design in many 
missions. Ideally all the satellite development effort is spent 
on creating and integrating the mission specific payload, not 
on tweaking the avionics to support the next mission. 

C. Mission Requirements 

The final set of requirements are mission specific. A 
number of these vary from mission to mission, and are 
difficult to predict in advance. However, a subset of these 
requirements are recurring when different mission planners 
independently develop similar requirements. PolySat has at­

tempted to generalize the requirements to make the avionics 
design capable of operating a wider range of missions. 

Most missions are interested in a quick turn-around time. 
In fact, that is one of the main advantages of CubeSats. 
They are very agile and should be able to react quickly to 
payload technology. Organizers aren’t thrilled at the prospect 
of waiting two years or more to get the first data back from 
their cutting edge experiment. A short turn around time eases 
the training overhead for new volunteers because a single 
team with fixed composition is able to complete one mission. 

Payloads continue to generate increasingly large quantities 
of data. For this data to be useful, it must be transferred 
back to earth. This necessitates a robust communication 
system, starting at the transceiver and extending through the 
protocols that ensure correctness of transferred data. Not 
carefully considering all aspects of communication can be a 
major problem. For instance, using the standard TCP-based 
file transfer protocol (FTP) results in link capacity being 
vastly underutilized. 

Outer space is a much harsher and less forgiving en­

vironment than Earth. As such, missions typically require 
CubeSats to provide some level of fault tolerance. Transient 
errors should be handled gracefully. They shouldn’t cause 
the satellite to enter into an unusable, unknown, or uncon­

trollable state. If possible, errors that corrupt data should 
be detected and the data points ignored. Depending on the 
type of experiment, it may be repeated to capture clean 
data. Components can be selected and the overall avionics 
designed to minimize the probability that a catastrophic 

failure occurs in critical memory, for instance selecting 
radiation-resistant storage to hold the satellite’s software. 

III. FIRST GENERATION BUS DESIGN 

The first generation avionics bus was primarily designed 
in 2004 as part of Chris Day’s Masters Thesis [2]. This 
design, with only minor revisions, was subsequently used 
in five distinct satellites, starting with CP2. The only major 
changes were in the payload, which is expected to be mission 
specific. CP1 and CP2 never reached orbit due to launch 
vehicle failure. CP3, CP4, and CP6 were flown and operated 
with varying degrees of success. CP5 is in the testing stage 
of development and has been manifested on the ELaNa VI 
mission for a launch sometime mid-2012. 

A. Hardware Design 

The first generation bus was built around two printed 
circuit boards: the electronic power system (EPS) and the 
command and data handling board (C&DH). The analog 
power components were mostly isolated to the EPS board 
and the digital components on the C&DH board. This 
physical layout reduced the amount of crosstalk and in­

terference the analog components contributed to the digital 
components. 

The EPS provided voltage rails, via DC-DC converters, to 
the entire satellite. Each rail is protected by a programmable 
”smart fuse” that limits the amount of current that can be 
drawn. The EPS board was also the mounting point for the 
two lithium-ion batteries, which were charged by the solar 
cells on the side-panels of the spacecraft. 

The C&DH board contained both a single comput­

ing and two identical, redundant communication subsys­

tems. The computing subsystem consisted of one 4MHz 
PIC18LF6720 microcontroller (referred to as the C&DH 
controller) with two 128KB I2C EEPROMs for non-volatile 
storage. Each communication subsystem had the same 
4MHz PIC18LF6720. The payload also contained its own, 
mission specific processor. Most components were intercon­

nected via I2C. Avionics specific components, such as those 
for magnetometers and magnetorquers, were connected to 
the C&DH controller. 

B. Software Design 

The software was split into three pieces that ran inde­

pendently of each other on different microcontrollers. The 
communication software ran on the comms controllers, and 
was responsible for controlling the transceiver, decoding the 
data, and forwarding it over the I2C bus to the C&DH 
controller. The comms controller could also transmit a 
packet received from the C&DH and directly respond to 
a subset of commands without C&DH intervention. 

The C&DH responded to all commands for devices that 
it controlled, for example, transmitting avionics state and 
energizing the magnetorquers. It was also responsible for 



generating the periodic beacons. Commands destined for 
the payload processor were forwarded on the I2C bus. 
Depending on the mission and specific command, the C&DH 
would occasionally translate the ground command into one 
understood by the payload before forwarding it. The C&DH 
was also responsible for relaying results from the payload 
processor back to the comms. 

The C&DH and comms software were mostly reused from 
satellite to satellite. 

C. Fault Tolerance 

The C&DH and EPS subsystems both included a number 
of fault tolerant mechanisms, most notably the fully redun­

dant transmit / receive path. The C&DH microcontroller 
switched between the two at a regular interval, so that if 
one were to fail, half the communication would still be 
successful. If the failure were permanent, a command could 
be sent up to the satellite instructing it to use the good 
communication path for the remainder of the mission. 

The power system also has a fault tolerant architecture. 
The two batteries are configured in parallel, each with their 
own protection circuitry. If one were to fail, the other would 
still be usable without interrupting power. Three separate 
DC-DC converters with smart fuses are used to power the 
C&DH and the two redundant communication chains. The 
smart fuses provide failure isolation when the load on one 
exceeds the programmed protection threshold. 

Anecdotal evidence suggested that CP4’s failure was a 
result of I2C bus problems. To address this, an 8-bit CRC 
was was added to each inter-processor I2C message[3] in the 
satellite. This provided three primary benefits. First, most 
corrupted messages were no longer acted on, preventing 
the satellite from entering some unintended states. The 
CRCs, coupled with acknowledgements added to the I2C 
bus messages, enabled local retransmission of the message 
without relying on the Earth station to reissue the command. 
Finally, the CRC and related software changes enabled the 
collection of I2C telemetry data. 

D. Design Analysis 

The first generation avionics design successfully met all 
physical design requirements, as evidenced by its multiple 
flights. The design just barely met the personnel require­

ments. Experience has shown it took between 18 and 24 
months to produce flight ready hardware for a particular mis­

sion. This is uncomfortably close to the productive lifetime 
of a student volunteer. In many cases, primary developers 
would continue working on the weekends remotely to ensure 
early satellite operations were as successful as possible. 
The overall turnaround time should be reduced to better fit 
mission specific objectives. 

Communications failure has been the primary reason the 
first generation design was not a universal success in meeting 
mission requirements. The RF and internal I2C bus have
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Figure 1. I2C bus event data from CP6. Inset in upper left shows only the 
CRC error and bus fault event counters. Time progresses left-to-right, but 
not proportionally due to periods of time when no data was downlinked. 

been identified as possible causes for these problems. The 
next few paragraphs provide mission-specific analysis. 

CP3 was launched on April 7, 2007[3] and can presently 
still communicate with the Cal Poly earthstation. The receive 
sensitivity of the communication system is such that very 
few commands are able to be received by the satellite, pre­

cluding extensive operations. However, a substantial amount 
of telemetry and bus health information continues to be 
received from this satellite. 

CP4 was launched on the same vehicle as CP3 and 
although it used the same bus hardware, it was not as 
successful. CP4 suffered a failure soon after launch. An I2C 
bus failure preventing communication between the C&DH 
and the communication controllers[3] is the suspected cause. 
Only commands sent to the communication processors have 
been successful, not commands sent to the C&DH. 

CP6 was a backup flight model for CP3, with minor 
modifications. A low-noise amplifier was added to the front 
end of each RF communication chain, improving the receive 
sensitivity. As a result, CP6 had much greater operational 
success. CP6 is also the first satellite to report I2C bus  
telemetry data. This capability was added because there was 
a strong consensus that I2C problems directly contributed 
to problems in CP4. This data is shown in figure 1. Note 
that I2C errors occur in less than 8% of the bus transactions 
overall. While this number is higher than ideal, it is low 
enough that it doesn’t adequately justify blaming the I2C 
bus in previous missions. These results reinforce the need to 
gather as much data as possible to focus engineering efforts 
in areas most likely to make the biggest difference. 

CP6 stopped responding for a significant period of time. 
As of April 2011, only one of the communication processors 
occasionally responds to simple commands, and there is no 
response from C&DH commands. 



IV. DESIGN PRINCIPLES 

A small set of design principles was developed based on 
the design analysis of the first generation avionics bus, re­

views of other CubeSat designs, and fundamental economic 
arguments. These principles were used in the design of the 
second generation bus. This section describes and motivates 
the principles, so they can benefit other CubeSat projects. 

A. Minimize Hardware Modularity 

Most engineers tend to design satellite hardware around a 
set of building blocks, and pick the appropriate combination 
of these blocks to complete the mission. An example set of 
building blocks includes a main bus, battery power man­

agement, communications module, attitude determination 
sensors, and a payload processor. These designs tend to use 
a common interconnect standard to enable vendor indepen­

dence. PC/104 [4] is found in a number of CubeSat designs. 
For most terrestrial applications this makes sense because it 
“right-sizes” the hardware to the mission, minimizing the 
overall budget impact. 

This is not the case for CubeSats. Assuming it costs 
roughly $100,000 1 to design, build, and fly a 1U CubeSat, 
the corresponding per-cm3 cost is $100. Each PC/104 board 
is 0.6in thick [4], or 1.524 cm. Adding a single additional 
PC/104 board consumes 10 × 10 × 1.524 = 152.4cm3 . 
This represents a lost payload opportunity cost of roughly 
$15,240, and is a reasonable measure of the expense of 
hardware modularity in CubeSats. This compounds when 
the base satellite design requires two or three modules to 
complete the mission, which is common in commercially 
available “modular” designs. A single board that contains 
substantially more functionality than necessary represents a 
better tradeoff, even if the board costs an extra $500. This 
is a strong argument for minimizing hardware modularity in 
CubeSats. 

B. Minimize Hardware Redundancy 

Hardware redundancy is expensive in time, space, and 
price. Selectively duplicating components sounds appealing, 
but there are some major drawbacks. First, there isn’t enough 
operational history available to identify the components that 
are mostly likely to fail. That reduces the effectiveness 
of redundant hardware, but not the cost. Second, there is 
a strong economic argument against redundant hardware. 
Namely, it is not worth increasing the cost or reducing 
the payload capacity of a CubeSat by $5,000 to provide 
hardware redundancy for a small portion of the satellite. 
Instead, provide redundancy for all parts by building a 
second satellite, which costs substantially less than the first 
when built at the same time. If the first one fails the second 
one can be flown, as was successfully demonstrated with 
CP3 and CP6. 

1$100,000 is the current estimate given to potential satellite developers 
by the CubeSat program. 

C. Eliminate Payload Controllers 

There is a strong tendency to over-engineer the payload 
controllers. Specifically, most designs include a dedicated 
payload processor that monitors the experiment, takes com­

mands from the main satellite processor, and returns data to 
the main processor. The payload itself is typically composed 
of a handful of sensors and actuators. This design appears 
“clean” because the communication interface between the 
payload processor and main processor is narrow and well 
defined. For example, the I2C bus and messages used in 
CP2 – CP6. 

The problem with payload controllers is that they sub­

stantially add to the development time of a satellite, espe­

cially when the payload is being purpose built and has a 
low likelihood of being reused with other hardware. The 
satellite developer must now write a number of additional 
pieces of software. The payload processor needs code to 
control the experiment, implement the communication bus 
protocol, and implement the custom messaging protocol on 
top of the bus. The most common payload processor used, 
PICs, do not have a reputation for being developer-friendly, 
which further increases the amount of time required. Finally, 
matching communication code must also be added to the 
main processor in order to communicate with the payload 
processor. 

An alternative, streamlined design is to attach all payload 
sensors and actuators directly to I2C GPIO expanders, A2D 
sensors, and other required components. From a hardware 
standpoint the interconnect is just as simple. The biggest dif­

ference is in the software. Developing the payload software 
to run directly on the main processor virtually eliminates 
all the time spent on developing communication bus and 
custom messaging implementations. This also increases the 
complexity of the main processor. 

V. SECOND GENERATION BUS 

The second generation bus was developed to meet the 
requirements described previously, guided by both the design 
principles and other past experiences. The resulting avion­

ics system is the basis for two current missions, the 3U 
LightSail-1 and the 1U CP7. It will also serve all of Cal 
Poly’s missions for the foreseeable future. 

A. Hardware Design 

The new design consolidates the C&DH and EPS com­

ponents onto a single board, eliminating two of the three 
original processors. This necessitates a more powerful main 
processor. Since this processor is also expected to handle 
payload control and needs to enable more sophisticated 
software designs, a very powerful processor meeting the 
space and power budgets was chosen. 

The C&DH is built around a 32-bit ARM9-based At­

mel chip, with SDRAM and NAND flash as the primary 
storage. The detailed specifications are provided as part of 



Batteries 

1st Gen Design 2nd Gen Design CP7 

Figure 2. CAD Renderings of different PolySat satellites. The CP7 rendering illustrates how mission-specific batteries were utilized in the payload bay. 

figure 4, but the CPU is roughly 2 orders of magnitude 
faster, and there is 3-4 orders of magnitude more storage. 
All components, except for the communication subsystem, 
are on the primary electronics board. The communication 
system is attached via a low profile daughtercard connector. 
Even though it is on a separate board, the transceiver 
is directly controlled from the main processor. There is 
no dedicated communications processor. I2C and RS232 
are used to connect most external sensors and payloads. 
A SPI bus connects the remaining components, including 
the transceiver. Other interfaces, such as USB, LVDS, and 
RS422, are available if needed in future missions. 

The basic structure was redesigned entirely to support the 
second generation bus. Rather than the printed circuit boards 
sitting inside the spacecraft structure, the single board with 
the daughtercards sits underneath the ’top’ solar panel. The 
resulting mechanical structure to support this avionics sys­

tem requires significantly less volume than it’s predecessor, 
as shown in figure 2. This 2nd generation avionics consumes 
approximately .1L. When put in the smallest 1U satellite, 
this is roughly 10% of the volume. In a 3U the percentage 
is reduced to only 3.33%. These volume percentages assume 
the satellite’s battery can be customized to work within the 
payload’s physical constraints. For example, CP7 is able to 
utilize cylindrically shaped batteries, which fit well due to 
the unique mechanical payload, as seen in figure 2. In gen­

eral the battery technology exists to make this assumption 
reasonable. This form-factor is small enough to conceivably 
fit into a 0.25L avionics-only satellite. 

B. Software Design 

Moving all the processing to a single processor places an 
increased burden and complexity on the software. Instead 
of implementing the control software from the ground up, 
which is a common decision among CubeSat missions, 
the avionics processor runs Linux. There are a number of 
benefits obtained from using Linux. First, it handles all the 

low-level management of hardware, drivers, communication, 
and processes. This eliminates a large amount of code that 
would otherwise have been written. More importantly, Linux 
enables the satellite to run much of the available open source 
software, including modern languages like Python. This last 
point is extremely important. Providing modern language 
support increases the number of developers able to contribute 
to the project and decreases the amount of retraining that 
is necessary. None of this would be possible without the 
generously over-provisioned hardware. 

A highly modular and generic software system, centered 
around the process model of the Linux, was designed. 
The software architecture contains three distinct layers: 
processes, abstraction libraries, and drivers. Processes are 
single-function applications, abstraction libraries provide ac­

cess to different software and hardware services, and drivers 
are used by the libraries to access the hardware. An example 
of this hierarchy is shown in the figure 3, specifically 
demonstrating that of the communication process. 

The processes are the highest level of software in this 
bus design. Each module in this layer serves a very specific 
function in the system and heavily utilizes the API pro­

vided from the abstraction libraries. Processes communicate 
between one-another via UDP packets. Each process is 
assigned a well-known port that is listed by name in the 
standard services file. This abstracts the port numbers and 
simplifies adding new processes to a system. Each process 
runs an event handler system, responding to events from a 
limited number of sources. For instance, the communication 
process will respond to events from the transceiver to receive 
packets, events from the kernel to transmit packets, and 
timeout events to implement ARQ protocols(s). Timeout 
events are generated by an internal priority queue. The 
heap-based implementation always keeps the earliest timeout 
event efficiently accessible. When the process isn’t actively 
responding to an event, it blocks, to conserve both CPU 
time and power. All of this functionality is provided by the 
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Figure 3. Process Chart with Communication Process Hierarchy 

process library, a module of the abstraction libraries. 
The abstraction libraries provide both hardware and 

software-based services to all of the processes. Low-level 
tasks are abstracted into methods that are meaningful 
to the process developer and hide the specific hardware 
components of the avionics system. These libraries are 
dynamically-linked at runtime so that they can be upgraded 
without recompiling every process that utilizes them. The 
libraries also reduce development time by providing a single 
implementation for commonly needed functionality. 

The drivers are at the lowest level of the software hi­

erarchy, containing code that interacts directly with the 
components of the system. The components may be included 
on the avionics board itself, in the solar side panels, or in 
the payload. The drivers may run within the Linux kernel or 
as a separate user-level process with special permissions to 
directly talk to a device. User-space drivers are desirable 
because of their inherent ease of development, isolation 
from other software components, and their ability to use 
any programming or scripting language. Most devices are 
interrogated so infrequently that the extra overhead from 
running in user space isn’t noticeable. 

C. Fault Tolerance 

Rebooting the satellite is the primary mechanism for 
recovering from detected, transient faults. Although a com­

plete restart is heavy-handed, it helps minimize the prob­

ability that another, undetectable fault impacts the mission. 
Some of the more common transient errors are SDRAM bit-

flips or bus errors. In certain critical circumstances, a bus 
read operation is retried when a fault is detected. Watchdogs 
and checksums are used to detect corruption. 

A hierarchical watchdog system is used to detect transient 
errors that result in external misbehavior of a process. 

The high level watchdog is implemented in software at 
the process level and watches each process, expecting a 
specific range of behaviors. This watchdog is robust enough 
to dynamically reconfigure its set of expected behaviors, 
however, care is taken to eliminate the possibility that a 
runaway process can inadvertently reconfigure the watchdog 
and avoid detection. The high level watchdog verifies behav­

ior on the order of every 1-5 minutes. If any inconsistencies 
are found a restart is initiated. 

The low level watchdog utilized is the Linux kernel’s 
software watchdog, which is “tapped”, unconditionally, at a 
much higher frequency than the higher level one. The timer 
interval for this watchdog is fixed, and the timeout behavior 
is a soft reboot, which will enable a refresh of SDRAM 
upon boot-up. The processor’s built-in hardware watchdog 
and an external watchdog are used to recover from failures 
in the shutdown and boot-up sequence. 

Checksums are used to verify the integrity of persistently 
stored data. The primary checksum used is MD5, which can 
run quickly on the main processor and has a much lower 
probability of random collision than standard IP and CRC 
checksums. To reduce the likelihood of getting into an unin­

tended state, commands are given even stronger guarantees. 
A command is a ground-initiated message that triggers any 
kind of function in the satellite, such as taking a sensor 
reading or reconfiguring a process’s behavior. An MD5 
checksum alone is insufficient to ensure a rogue process 
doesn’t issue commands that reconfigure the satellite. 

To protect against that scenario, and to provide better 
operational security, commands sent to the satellite are 
digitally signed. Since the signing key will not be present 
on the satellite, this guarantees that any valid message 
must have originated from a trusted off-satellite source. The 
signatures also enable corrupted commands to be identified. 
Standard public/private key cryptography and X.509 certifi­

cates are used. The satellite is pre-loaded with a small set 
of trusted certificates, from which a chain of trust can be 
established to validate future commands. Each certificate 
lists the set of commands the holder is permitted to sign, 
enabling fine-grained operational security. Commands can 
be stored indefinitely in volatile or non-volatile memory and 
the signature properties still hold. 

Special attention has been given to add robustness to the 
early stages of system boot-up. The Linux kernel and small 
initial set of processes is stored in SPI Flash, implement with 
non-volatile phase change memory. Phase change memory 
of this type has been shown to be radiation tolerant up to 
30 MRad against permanent errors [5]. Multiple copies of 
both the kernel and initial files are kept in SPI Flash, and a 
custom boot loader validates checksums before transferring 
processor control to the kernel. To better tolerate transient bit 
errors, the boot loader will read the same data multiple times 
if the checksum doesn’t validate. Again, MD5 checksums 
are used for extra robustness. Persistent bit errors in SPI 



Satellite Organization Main 
Processor 

Mhz Volatile 
Memory 

Non-Volatile 
Memory 

Operating 
System 

1st Gen Bus Cal Poly PIC18F6720 4 3.75 KB 256 KB custom 
2nd Gen Bus Cal Poly AT91SAM9G20 400 64 MB 528 MB Linux 

Cute-1.7+APDII Tokyo Institute 
of Technology 

ARMV4I 400 32 MB 128 MB Windows 
CE.NET 

MEROPE Montana State MC68HC812A4 16 1 KB  132 KB custom 
QuakeSat Stanford University ZFx86 486 Clone 100 16 MB 1 MB  Linux 

AAUSAT-II Aalborg University AT91SAM7A1 40 2 MB  8 MB  unavailable 
ITUpSAT Istanbul Technical Unv. 

(Pumpkin Design) 
MSP430 7.4 10 KB 50 KB Salvo 4 

STUDSAT India - 7 Academic 
Institutions 

AT91SAM9260 180 unavailable unavailable VxWorks 

Figure 4. Comparison of processing specifications and operating systems from CubeSat missions. Chosen to demonstrate variability. Some designs, such 
as Pumpkin and PIC-based (like PolySat’s 1st generation design), have flown many missions. Data was gathered from public documents. 

Flash can be corrected once an operational copy of the kernel 
is loaded. 

NAND memory is used for high capacity non-volatile 
storage. The NAND specification permits a small number 
of permanent, unrecoverable errors to increase yield and 
decrease cost. The Linux NAND drivers already track these 
bad blocks and stop using them. It is expected that this 
existing mechanism will work well in orbit to recover from 
faults, however, the number of faults may be higher than on 
Earth. 

D. Design Validation 

The second generation avionics system hasn’t flown a 
mission yet, so operational experience can’t be the analysis 
basis for understanding how well the design requirements 
were met. However, the design has been validated by a 
diverse group of experienced engineers from the Aerospace 
industry, from companies such as JPL and the Aerospace 
Corporation. This provides external confidence that it will 
meet the mission requirements. 

The first review, a peer design review (PDR), was com­

pleted in the very early stages to assess the feasibility of 
the concept. The reviewers consisted entirely of industry 
professionals with significant experience, who listened to 
the project leaders present their initial design goals and 
schedules. At this time, little was decided about the specific 
hardware and software architecture of the new avionics 
system, except for general goals such as consolidating the 
subsystems. Unfortunately this design review was not a 
resounding success. A number of the complaints focused 
on the high risk nature of the CubeSat platform, and didn’t 
address the proposed architecture. 

A second, much more informal peer review took place a 
few months after the first. The participants were just a few 
engineers from industry, in combination with the entirety 
of the LightSail-1 team. Many of the design details were 
developed before the second review, and were discussed 

thoroughly. The feedback directly altered some of the design 
for both hardware and software, such as the inclusion of a 
hard reset of the avionics and adding security mechanisms 
to the uplinked commands. 

The final, critical design review occurred nearly 6 months 
after the initial PDR. It was executed in a similar fashion, 
with a number of industry professionals. The avionics sys­

tem was presented in detail, both the hardware and software 
designs. Fortunately, this review was much more successful 
than the PDR and the design was well-received by the 
reviewers. No significant changes were required as a result 
of the third review. 

VI. OTHER CUBESAT DESIGNS 

Nearly 70 CubeSats have been or are manifested to 
launch. This section attempts to review both the most 
common designs and the unique ones, to provide a sampling 
of the overall design space. Some missions keep the design 
details of their avionics proprietary. Table 4 summarizes the 
computational power and operating system software flown 
on some of the CubeSat missions. 

A large number of the CubeSat designs are based around 
multiple PIC-class microcontrollers interconnected with an 
I2C bus. This is roughly the same design as PolySat’s 
first generation avionics platform. Most satellites using this 
design will share the same set of benefits and drawbacks. 

The QuakeFinder project [6] designed, built, and operated 
QuakeSat [7]. Some of their design motivations and out­

comes were similar to those presented here. For instance, 
QuakeSat was built around a general purpose Diamond Sys­

tems Prometheus PC/104 board running Red Hat 9 Linux. 
Mission operators seemed generally pleased with the extra 
flexibility afforded by the Linux-based solution. 

The UWE-1 [8] satellite bus was built around a Hitatchi 
H8S/2674R microprocessor running μClinux [9]. Their pri­

mary mission was to test the performance of various IP-

based protocols over the poor quality radio links. Linux was 



chosen to leverage the existing protocol implementations 
and to enable standard server software to work out of the 
box. This is an early demonstration of the added flexibility 
and capability provided by flying a full-fledged operating 
system. The μClinux distribution was chosen to fit within 
the processing and power limitations of the microprocessor. 

Cute-1.7+APDII’s [10] main bus consisted of two Hitachi 
NPD-20JWL PDA logic boards running Windows CE 4.1. 
Peripherals were interfaced using a combination of USB and 
RS232. This platform was chosen because the electronics 
were readily available and the software programming envi­

ronment was more familiar to a wider group of developers. 
The latter motivation is a driving factor in PolySat’s new 
avionics design. Due to the use of off the shelf PDAs, Cute-

1.7+APDII was a non-standard 3L satellite. 
Pumpkin manufactures and sells a CubeSat KitTM [11]. 

Their kit provides the ability to customize the main bus via 
the PC/104 [4] interconnect standard. The main board, and 
most of the expansion boards, are based around PIC-class 
embedded processors. Use of the PC/104 standard results 
in noticeably larger volume requirements for the bus. The 
CPU daughter boards do not provide nearly the same level 
of performance that PolySat’s integrated design does. The 
CubeSat KitTMisn’t powerful enough to run Linux. Instead 
it runs a custom real-time operating system, Salvo 4, which 
presents more of a learning curve for most developers. 

Though not a specific avionics design, Klofas et.al. [12] 
provides a survey of CubeSat communication subsystems, 
including a description of the range of radio hardware and 
related parameters used in satellites through 2008. It also 
provides limited insight into three different bus designs and 
proposes experience-based best practices for communication 
subsystems. In contrast, this work focuses on the main bus 
requirements and design, of which communication is one 
piece. 

VII. FUTURE WORK 

Upon completing the avionics implementation, telemetry 
data from ground simulated operations and actual flight 
operation needs to be gathered and analyzed to determine 
how well the new avionics design is able to meet the mission 
requirements. 

VIII. CONCLUSION 

This work focused on presenting and evaluating two 
generations of PolySat’s avionics technology against a set 
of general requirements. Deficiencies in the first generation 
design were identified, and steps were taken in the second 
generation design to avoid the reoccurrence of the problems. 
The external design review process for the second generation 
avionics was used as an initial measurement against specific 
mission requirements. 

This work also presented a short survey of other CubeSat 
avionics. This background helps illustrate some of the design 

differences and similarities between PolySat’s second gener­

ation bus and other avionics platforms. In addition, general 
design guidance that is widely applicable to many CubeSat 
missions was presented and justified. 
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