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Abstract—Assisted requirements tracing is a process in 
which a human analyst validates candidate traces produced 
by an automated requirements tracing method or tool. The 
assisted requirements tracing process splits the difference 
between the commonly applied time-consuming, tedious, and 
error-prone manual tracing and the automated requirements 
tracing procedures that are a focal point of academic studies. 
In fact, in software assurance scenarios, assisted requirements 
tracing is the only way in which tracing can be at least partially 
automated. In this paper, we present the results of an extensive 
12 month study of assisted tracing, conducted using three 
different tracing processes at two different sites. We describe 
the information collected about each study participant and 
their work on the tracing task, and apply statistical analysis 
to study which factors have the largest effect on the quality of 
the final trace. 

I. INTRODUCTION 

A large non-disclosable financial corporation, NDFC, 
finds that it has a number of pressing issues: 1) it is being as-
sessed fines for failure to adequately comply with Sarbanes-
Oxley Act (SOX) [1] with respect to a traceability trail for 
its software that handles client stock transactions; 2) a recent 
scare has caused senior management to hire an independent 
assessment team from an outside firm to perform an audit to 
ensure that malicious code/trap doors/back doors do not exist 
in critical code applications; 3) a rash of software failures 
are being rapidly repaired as a new app, iTradeu, is being 
readied for its initial launch; the developers are struggling 
to debug and then retest the app in a timely manner. What 
do these three scenarios have in common? Traceability. 

A traceability process and/or tool could be applied to 
the audit trail information to assist with SOX compliance 
(issue #1). The same process/tool could be used to trace 
all code back to requirements. If code exists that does not 
trace back to a requirement, it should be examined to ensure 
that it is not malicious code (issue #2). With a traceability 
process/tool, the iTradeu (issue #3) developers could trace 
failures (source artifact) to requirements (target artifact), 
design, and/or features to help locate the code faults, debug 
the code, and then use the trace information to determine 

what tests to rerun. With all the advantages that tracing could 
offer to NDFC, why are they not using such a tool/process? 

First, many organizations undertake manual tracing, per-
haps with the assistance of a word processing tool or 
spreadsheet. Such a process is boring, tedious, and time-
consuming. As a result, it is also error prone [11]. Second, 
once traceability is established for a project, the project arti-
facts quickly change, thus necessitating traceability updates. 
Third, there is a lack of an industry-accepted tracing tool. 

Automation of the tracing process, as studied previously 
[2], [19], [11], [23], [21], [20], [9], [22], could go a long 
way toward addressing many of the drawbacks mentioned 
above. Consider a process for tracing using a software tool 
versus a manual tracing process as described in Table I. 
In both scenarios, the human analyst plays a large, but 
qualitatively different, role in the tracing process. Each step 
in Table I will be performed faster in the tracing using 
a software tool scenario: software will deliver a candidate 
trace1 much faster than a human analyst can read through 
a pair of artifacts of non-trivial size. In step three, when 
tracing using a software tool, the analyst is expected to 
mostly validate the suggestions provided by the automated 
method. Analyst effort on this step is expected to depend on 
the specifics of the software tool: how well the tool finds 
true links, how many false positive candidate links the tool 
retrieves, how much analyst effort is required to accept/reject 
a candidate link using the tool, etc. However, research shows 
that analysts working with a software tool based on any of 
the existing automated tracing methods [2], [19], [11], [23], 
[21] will examine significantly fewer candidate links than 
an analyst performing manual tracing [2], [11]. 

In this paper, we use the term assisted requirements 
tracing or assisted tracing to refer to a tracing process 
in which a human analyst engages with an automated 
requirements tracing software tool to perform the assigned 
tracing task. In the software processes discussed above, 
assisted tracing can provide the best of both worlds, allowing 

1Traces, traceability matrices (TMs), and links are candidate until a 
human analyst vets them 

  



Table I
 
SCENARIOS FOR MANUAL TRACING AND TRACING WITH A SOFTWARE TOOL
 

Step Tracing with software tool Manual tracing 
Step 1 Human launches tool to trace a pair of Analyst reads the text of a source artifact/document 

artifacts to each other 
Step 2 The tool returns a candidate traceability matrix (TM) The analyst reads the text of a target artifact/document 

between the artifacts 
Step 3 The human vets each link in the candidate traceability The human reads the first source element, searches 

matrix and renders a decision the target artifact for matches and records the matches 
This is repeated until all candidate target elements This loop continues until all source elements have 
retrieved for every source element have been reviewed been processed 

both humans and tracing software to do what they do best. 
We are interested in what constitutes a good assisted tracing 
process as well as ways to evaluate such a process. 

Automated tracing methods are usually evaluated using 
precision and recall which measure the overall accuracy of 
the recovered traceability matrix (TM). Research in auto
mated traceability [2], [19], [11], [23], [21] concentrates on 
improving precision and recall over methods studied earlier, 
and has as its ultimate goal reaching the ”Holy Grail” of 
100% precision and 100% recall. 

The study of assisted tracing adds a wrinkle to the tradi
tional evaluation methodology. While we are still interested 
in trace accuracy as measured by precision and recall, it 
is the accuracy of the traceability matrix submitted by 
the human analyst (also called the final TM) that matters. 
Cuddeback et al. [6] reported on the results of a preliminary 
study of assisted traceability, focused exclusively on making 
hypothetical observations on what caused specific participant 
performance. In that study, 26 participants in two sites were 
given candidate TMs of varying quality for vetting. Sur
prisingly, the best improvement in accuracy (comparing the 
vetted TM to the starting TM) was seen by the participants 
who were given TMs of the lowest accuracy [6]. 

The study described in this paper is a significant expansion 
of Cuddeback et al.’s study [6] We have conducted additional 
studies of assisted tracing, using two more tracing proce
dures (one manual and one involving a different software 
tool) at two experimental sites for a total of 84 participants2. 
This paper undertakes a statistical analysis to formally deter
mine what affects human performance the most. Specifically, 
this paper contributes: a) two additional rounds of assisted 
traceability experiments at two experimental sites, b) a 
multi-variate analysis of 11 independent variables describ
ing participant experience with the tracing experiment to 
identify statistically significant factor(s) affecting analyst 
performance, and c) a formal statistical re-examination of 
the (informal) findings from earlier work [6] studying the 
effect of the accuracy of the candidate traceability matrices 
provided to the analysts on their performance. Specifically, 
we study these questions: 

Q1. Is the effect of the accuracy of the initial TM on the 

2Including the 26 participants from Cuddeback et al. [6]. 

Table II
 
AN OVERVIEW  OF  PARTICIPANTS DURING THE THREE TRACEABILITY
 

EXPERIMENTS
 

Cohort Date Location # of participants Tool used 
1 Dec 09 University A 16 Retro 
1 Dec 09 University B 10 Retro 
1 Apr 09 University B 7 Retro 
All 1 A and B  33 Retro 
2 Nov 10 University A 38 Manual 
3 Dec 10 University A 8 RETRO.net 
3 Dec 10 University B 5 RETRO.net 
All 3 A and B  13 RETRO.net 

accuracy of the final TM statistically significant? 
Q2. Are the effects of any observed independent variables 

on the accuracy of the final TM statistically significant 
(when controlled by the initial TM accuracy)? 

Q3. Which group of independent variables has a higher 
effect on the accuracy of the final TM: the variables 
measuring accuracy of the initial TM or the observed 
independent variables? 

The rest of the paper is organized as follows. Section II 
provides background and related work on assisted tracing 
and introduces basic traceability concepts and measures. 
Section III describes the experiments. Section IV presents 
the statistical analysis and results. Section V concludes. 

II. BACKGROUND AND RELATED WORK 

Requirements traceability is defined as the “ability to 
describe and follow the life of a requirement, in both a 
forwards and backwards direction” [8]. The output of the 
tracing process is a requirements traceability matrix (RTM 
or TM) which specifies the connections between elements of 
two artifacts. Multiple studies applied information retrieval 
techniques to automatically generate TMs [10], [2], [3], [11], 
[19]. In these studies, the quality of the TM was measured 
primarily using precision, recall, and  f -measure (see below). 
Most of the methods studied were able to achieve high recall, 
but with low precision. 

A. Measures 

Consider a tracing process consisting of a set of high-level 
elements H of size M and a set of low-level elements D 
of size N . For a particular requirement q ∈ H , let  nq be 
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the number of candidate links between q and the elements 
in D that a tracing process returns. Let rq be the number of 
correct links and Rq be the actual number of correct links 
(from an expert-prepared answer set). 

Recall is defined as the percentage of correct links that 
are found, while precision is the percentage of retrieved 
candidate links that are correct [11]: 

rq rq 

q∈H q∈H 
recall = � ; precision = � (1) 

Rq nq 

q∈H q∈H 

F-measure is the harmonic mean of precision and recall, 
defined formally below. In this definition, b represents the 
balance between precision and recall where b <  1 favors 
precision and b >  1 favors recall. 

1 + b2 

fb = (2)
b2 1+

recall precision 

Contemporary studies of automated tracing methods im
plicitly equate TM accuracy (as calculated by precision, 
recall, and F-measure) with TM quality [10], [2], [3], [11], 
[19]. However, in mission-critical software assurance, a TM 
produced by an automated system must be validated by a 
human analyst responsible for the assurance guarantees. 

B. Study of the Analyst During Tracing 

In earlier work [13], [15], Hayes and Dekhtyar asked 
whether it is, in fact, true that more accurate initial can
didate TMs lead to more accurate analyst-validated TMs. 
While their initial study [13] involved only four analysts, it 
provided anecdotal evidence that this may not be the case. 

Our traceability research group has conducted a number 
of studies to further investigate analyst behavior during the 
tracing process and reported initial results [6], [5]. Two of 
the most important trends observed were: 1) participants 
were unable to recover the true TM or reach a consensus 
of what that TM should be, and 2) participants given the 
highest quality candidate TMs to validate almost uniformly 
degraded the TM accuracy, while participants given the 
lowest quality candidate TMs almost uniformly improved 
the accuracy greatly. 

A similar recent study, conducted by Egyed et al. [7], 
while primarily focusing on human analyst effort, supports 
our overall observation that human analysts are fallible in 
their work with candidate traceability matrices. Our present 
study goes one step further and establishes that the level of 
human fallibility is somewhat predictable. 

III. EXPERIMENTAL DESIGN 

In this section, we discuss the experimental design, the 
data collected, and threats to validity. 

A. How we collected data 

We conducted a series of experiments examining analyst 
performance in assisted tracing tasks (see Table II). The ini
tial experiment [6] involved  26 subjects performing a tracing 
task using REquirements TRacing On-target (RETRO) [12], 
a special-purpose requirements tracing tool written in Java. 
Cuddeback’s thesis [5] includes an extra cohort of seven 
subjects who used the same tracing process. We conducted 
two follow-up experiments, one using an improved and 
simplified version of RETRO called RETRO.net (written 
to address usability and stability issues with the original 
RETRO but does not differ in functionality), and the other 
asking the analysts to validate the TM manually using hard
copy artifacts without software assistance. In what follows 
we refer to these experiments as the RETRO experiment, the  
RETRO.net experiment and the manual experiment. 

The RETRO and RETRO.net experiments were conducted 
at two sites: California Polytechnic State University and Uni
versity of Kentucky. The manual study was only conducted 
at one of the universities; we hope to repeat it at the other 
site in the future. All participants in the studies were students 
enrolled in software engineering courses. All were provided 
a short introduction to requirements tracing. Most of the 
participants were junior, senior, or graduate students. 

In RETRO and RETRO.net experiments, a pre-experiment 
survey was given to the participants in order to gauge prior 
experience and overall comfort with tracing. The research 
team utilized the responses to separate participants into 
two groups, an experienced group and a group that lacked 
tracing experience. In each group, participants were assigned 
starting TMs in a way that ensured that TMs with different 
accuracy were evenly distributed among participants with 
both levels of experience. The manual study had no pre-
experiment survey, but most of the questions from it were 
asked in the post-experiment survey, so the same information 
was collected. The manual study took place in an entry-
level software engineering course, and thus we did not 
expect (and did not observe) significant levels of tracing 
experience among the participants, and did not need to use 
pre-experiment survey data to assign starting TMs. 

In all three cohorts, participants were asked to review a 
candidate TM, referred to as the initial or starting TM, with 
pre-defined precision and recall values. The assignment of 
the TM was made by the researchers. After completing the 
tracing task, participants were asked to submit their final TM 
and complete a post-experiment survey that asked for their 
reactions to tracing (how prepared they were for the task, 
how difficult it was, if they would prefer tracing manually or 
with a tool, etc. [5]). Two questions in the post-survey asked 
the participants to identify how much effort they spent on 
the two main types of activities we expected: (a) validating 
candidate links found in the initial TM, and (b) searching 
for links that were missing from the initial TM. For the 
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Table III 
BASELINE INDEPENDENT VARIABLES 

Variable Abbreviation Scale 
Initial Precision SPrec [0,1] 
Initial Recall SRec [0,1] 
Initial F2 SF2 [0,1] 
Initial Quadrant SQuadrant {Q1, Q2, Q3, Q4} 

RETRO and RETRO.net experiments, the participants were 
also asked to submit a log of their actions. In the RETRO 
study, the log was a hardcopy document manually created 
and maintained by participants. RETRO.net software imple
mented automatic activity logging and the participants were 
asked to submit the generated log file. 

All three studies utilized the same dataset, a BlueJ plu
gin Java code formatter named ChangeStyle. This dataset 
contains 32 requirements and 17 system tests. The research 
team generated and validated the golden standard TM which 
contains 23 links from requirements to tests [6]3. This  
dataset was chosen for the experiments because: (a) the 
domain is easily understood by participants, and (b) its size 
makes the validation task achievable in about one hour. 

In this paper, we concentrate on analyzing common infor
mation collected from the experiments. Some of the aspects 
of our RETRO.net experiment, which involved tracking 
analyst behavior, are reported elsewhere [16]. 

B. What data we collected 

For all studies, we assembled a rich set of meta
information from the pre- and post-experiment surveys as 
well as information concerning initial and final TMs for each 
analyst. Tables III, IV, and V provide an overview of the 
information that we collected, broken into three categories: 

1)	 Baseline independent variables. (Table III). These 
variables specify the accuracy of the initial TM. 

2)	 Observed independent variables. (Table IV). These 
variables contain is information about the experiment 
participants and their work on the tracing task. This 
information was either part of the experimental design 
(location, software used) or collected from the pre- and 
post-experiment surveys. Of the 11 variables collected, 
one (Time) is continuous; the remaining 10 are either 
nominal or ordinal (see Type column in Table IV). 

3)	 Response (a.k.a. dependent) variables. (Table V). 
Our dependent variables measure the accuracy of 
the final TMs submitted by the participants. These 
variables fall into two groups: measures of the absolute 
accuracy of the final TM and ”Delta” variables that 
measure the change between the initial and final TM. 

3The validation process for the golden standard is discussed in detail 
elsewhere [6], [5]. In short, a candidate golden standard (answerset) was 
assembled from the artifacts of the software engineering course which 
implemented ChangeStyle; that candidate TM was then examined, link
by-link, by multiple researchers from our research group, until consensus 
was reached on each link. 

Table V
 
RESPONSE (DEPENDENT) VARIABLES
 

Variable Abbreviation Scale 
Final Precision FinPrec [0,1] 
Final Recall FinRec [0,1] 
Final F2 FinF2 [0,1] 
Delta Precision ΔPrec  [-1,1] 
Delta Recall ΔRec [-1,1] 
Delta F2 ΔF2 [-1,1] 

In earlier work [6], the main focus was on how the 
baseline variables impact the dependent variables (albeit, no 
statistical analysis was presented). In this paper, we expand 
that work by: (a) presenting the results of the statistical 
analysis, and (b) comparing the effect of the baseline in
dependent variables and the observed independent variables 
on the values of the dependent variables. 

C. Threats to validity 

Our study was subject to a number of threats to validity. 
We addressed the threat to conclusion validity by ensuring 
that all data assumptions for the statistical techniques were 
met and perfoming our analysis with the assistance of an 
experienced statistician. A threat to internal validity would 
be the use of a golden standard traceability matrix developed 
by a subset of the authors. This is standard practice in 
traceability studies as actual or true traceability matrices are 
rarely available. Examples of this practice can be seen in 
a number of previous papers in this conference (Huang et 
al. built answer sets for three datasets, for example [4]). 
There are precedents for student-built datasets in traceability 
research (Waterloo dataset, iTrust dataset, for example) [14], 
[18]. Another threat to internal validity would be the limited 
time given to participants to perform the task. We were 
constrained in the amount of time we had to undertake the 
experiment. We felt that it was best to use a small dataset 
that could be traced in the class period for this initial work. 
The dataset is similar in size to those used by Egyed et al. [7] 
(bearing in mind that their subjects had 90 minutes to work 
versus 60 minutes in our case). Dependent variable issues 
that threaten construct validity were reduced by the use 
of standard Information Retrieval measures. Our work with 
student participants represented a threat to external validity. 
However, Host et al. note that students can perform small 
tasks of judgement the same as professionals with no signifi
cant differences [17]. Also, it has been observed by Tichy et 
al. [24] that students can serve well for determining trends, if 
appropriately trained. There is also precedence in traceability 
work: other traceability studies have used students with low 
levels of industry experience to represent new people joining 
a company [7]. Motivation of the participants is also a threat 
to external validity found in all our experiments. Students 
were given extra credit for participating in the experiment, 
but the points awarded were not tied to the quality of their 
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Table IV
 
OBSERVED INDEPENDENT VARIABLES
 

Variable Abbreviation Scale Type Scale Details 
Procedure used Procedure {Retro, Manual, Nominal tracing procedure used by participant 

RETRO.net} 
Location Location {CP, UK} Nominal Cal Poly or University of Kentucky 
Software Engineering Experience SEExp {0, 1, 2} Ordinal based on number of SE courses and industry experience 
Tracing Experience TRExp {0, 1} Nominal reported use of tracing in coursework or industry 
Time to preform tracing task Time # minutes Cont. number of minutes it took to complete the task 
Grade Level Grade {F, Soph, J, S, G} Nominal participant grade level 
Confidence with tracing TrConf 1 –  5 Ordinal self-reported level (1: lowest, 5: highest) 
Opinion on Tool vs. Manual Opinion {Man, SW} Nominal participant’s (post-task) preferred way of tracing 
Effort on searching for omitted links MissingEff 0 –  5 Ordinal self-reported (0: never, 5: almost every link) 
Effort on validating offered links ValidEff 0 –  5 Ordinal self-reported (0: never, 5: every link) 
How prepared the analyst felt Prepared 1 –  5 Ordinal Self-reported post-task (1: not at all, 5: very prepared)

 1  1  1

 0.5  0.5  0.5

 0  0  0
 0  0.5  1 

Recall 

(a)

 0  0.5  1 

Recall 

(b)

 0  0.5

Recall 

(c) 

Figure 1. Results from our three studies: (a) used RETRO, (b) traced manually, (c) used RETRO.net. 

work. Had researchers provided points based on quality 
of work, a different threat to validity would have been 
introduced (requiring mitigation of the threat versus reward 
dynamic). An additional external threat deals with our use 
of only one small, student-built dataset. Our findings may 
not be the same if we were to use a different dataset. The 
only way to overcome this threat is to repeat the work on a 
real project, which remains as future work. 

IV. RESULTS AND ANALYSIS 

We present information on analyst performance, statistical 
analysis undertaken, and observed results. 

A. Analyst Performance 

Earlier work [6] presented a collection of graphs illustrat
ing the results of the experiment. Here, we present some of 
these graphs for the entire body of our experiment. The main 
visualization method employed in Cuddeback et al. [6] is  to  
render, for each participant, the initial and the final TMs in 
the precision–recall space, and to draw a vector from the 
initial to the final TM. 

Figure 1 presents the results of our three studies broken 
down by experiment. Figure 1(a) depicts the RETRO exper
iment [5], 1(b) shows the results of the manual experiment, 
and 1(c) shows the results of the RETRO.net experiment. 
Figure 2 shows the same results in two ways: graphs 
2(a) and 2(d) plot the locations of all starting and final 

TMs, respectively. The remaining graphs show the analyst 
performance, for ease of visualization, by the quadrant of 
the initial candidate TM. 

Cuddeback et al. [6] made the following observations: 

•	 Analysts given low-precision, low-recall TMs drasti
cally improved their accuracy. 

•	 Analysts given low-precision, high-recall TMs tended 
to improve precision at the price of lower recall. 

•	 Analysts given high-precision, low-recall TMs tended 
to improve recall, but usually at the cost of lowering 
precision. 

•	 Analysts given high-precision, high-recall TMs tended 
to slightly decrease the overall accuracy of the TM, but 
they could do it in a number of different ways. 

•	 Analysts appeared to possess good intuition about the 
actual size of the golden standard TM. 

• No analyst recovered the golden standard TM. 

As can be seen from Figures 1 and 2, with the exception of 
a few outliers (present in each experiment), analyst behavior 
observed in earlier work [6] is informally confirmed in 
this study. Participants in the manual and RETRO.net ex
periments appear, based on these graphs, to have exhibited 
essentially the same behavior as participants in the RETRO 
study. In 84 observed attempts, no participant recovered the 
true trace; however, every true link was found by at least 
one participant. We move now to formal confirmation. 

 1 
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Figure 2. Results of our traceability study: (a), (d): distribution of assigned and submitted TMs. (b),(c),(e),(f): performance of individual participants by 
accuracy of assigned TM. 

B. Statistical Analysis 

To better understand what went on in our experiments, 
we conducted multivariate statistical analysis designed to 
discover the key factors influencing the accuracy of the final 
TM and asked the questions found at the end of Section I. 
Baseline independent variables (Q1). Table VI shows the 
influence of the pair of independent variables Initial Preci
sion and Initial Recall on each of our response variables 
using multiple regression. We report the adjusted R-square 
value, R2 , the  F -value, and the significance level (padj

value) for each model. As can be seen from the table, the 
initial accuracy of the traceability matrix has a statistically 
significant effect on the precision of the final TM, as well 
as on changes in precision, recall, and F2-measure4. There  
is no statistically significant effect on recall and F2-measure 
of the final TM. 

We can use the Initial F2-measure as a one-dimensional 
surrogate for the intial precision and initial recall. We studied 
the influence of the Initial F2-measure on our response 
variables using linear regression. The results are summarized 
in Table VII. As can be seen from the table, initial F2
measure statistically significantly influences final precision, 
the change in recall, and the change in precision and the 
F2-measure. It does not statistically significantly influence 

4We used significance level α = 0.05, bolded items are statistically 
significant 

final recall, final F2-measure and the change in precision. 
Finally, we broke all our initial TMs by quadrant using 

values of 50% precision and 50% recall as boundaries. Since 
Initial Quadrant is a categorical variable, we used one-
way ANOVA to study its relationship with each of our 
response variables. Table VIII shows the results of this 
analysis. In the table, QI is the low-precision, low-recall 
quadrant, QII is the low-precision, high-recall quadrant, 
QIII is the high-precision, low-recall quadrant, and QIV 
is the high-precision, high-recall quadrant. We report the 
mean and standard deviation for each response variable for 
each quadrant, as well as R2 F -value, and p-value of adj , 
the model. As can be seen from the table, the means for 
the quadrants are statistically significantly different for four 
of our six response variables: the final precision, and the 
changes in precision, recall, and F2-measure. We illustrate 
the differences in the means for final TM precision and 
recall for each quadrant and the differences in changes in 
precision and recall in Figure 3(a) and Figure 3(b). Changes 
in precision and recall are illustrated as a single vector 
(mean(ΔRec), mean(ΔPrec)) plotted from the center of 
each quadrant. 
Observed independent variables (Q2). For the second 
question, we wanted to see how our observed independent 
variables (Table IV) related to the response variables. For 
each observed independent variable, to prevent systematic 
bias and reduce error variance within groups, we controlled 
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Table VI Table VIII 
INFLUENCE OF INITIAL PRECISION AND INITIAL RECALL ON RESPONSE INFLUENCE OF STARTING QUADRANT ON RESPONSE VARIABLES 

VARIABLES (DEGREES OF FREEDOM: 2,  81) (DEGREES OF FREEDOM: 3,  80). 

Response Variable R2 
adj F-value Sig. (pval) QI QII QIII  QIV Statistics 

FinPrec 0.120 6.659 0.002 N 10 26 14 34 
FinRec -0.004 0.842 0.434 
FinF2 0.0 1.012 0.368 

18.2 20.88 22.89 
ΔPrec 0.454 35.548 0.0001 

s 

ΔRec 0.444 34.115 0.0001 FinRec ¯ 64.58 60.90 52.68 
ΔF2 0.288 17.761 0.0001 

x 

Table VII 
INFLUENCE OF INITIAL F2-MEASURE ON RESPONSE VARIABLES 

(DEGREES OF FREEDOM: 1,  82) 

Response Variable R2 
adj F-value Sig. (pval) 

FinPrec 0.056 
FinRec 0.037 
FinF2 0.053 
ΔPrec 0.036 
ΔRec 0.312 
ΔF2 0.238 

5.913 
3.117 
4.604 
3.02 
37.227 
25.672 

0.017 
0.081 
0.035 
0.086 
0.0001 
0.0001 

FinPrec x̄ 64.46 52.94 61.03 72.96 R2 
adj = 0.138 

16.43 F = 5.434 
p= 0.002 

64.34 R2 = 0.004
adj 

s 18.14 21.96 29.4 16.42 F = 1.113 
p= 0.349 

FinF2 x̄ 64.27 57.71 51.08 65.09 R2 
adj = 0.038 

s 16.00 19.40 25.79 16.62 F = 2.083 
p= 0.109 

ΔPrec x̄ 38.14 21.03 −14.53 −2.49 R2 
adj = 0.402 

s 20.24 17.49 27.83 18.85 F = 19.586 
p= 0.0001 

ΔRec x̄ 33.75 −11.06 23.81 −7.35 R2 
adj = 0.341 

s 18.78 24.91 30.42 18.44 F = 15.344 
p= 0.0001 

ΔF2 x̄ 35.5 6.32 11.1 −6.97 R2 
adj = 0.253 

s 17.64 21.52 32.09 17.56 F = 10.356 
p= 0.0001 

for two baseline independent variables: initial precision and 
initial recall. That is, we statistically adjusted the dependent 
variable means to what they would have been if all groups 
had started out with equal distribution of initial precision 
and recall. 

Of the eleven observed independent variables, only time 
to complete the tracing task (Time) is continuous. We used 
multiple linear regression analysis for it. The remaining 10 
variables are categorical; we used one-way ANCOVA to 
analyze them. Table IX shows the results of the analyses. 
For each model, we report the R2 , the  F -value, and the adj

p-value. We also report the baseline R2 value from Table adj 
VI for each response variable’s effect with initial precision 
and initial recall. As can be seen from the table, only 
one observed independent variable, ValidEff, has statistically 
significant effect on any of our response variables. 

When performing tracing tasks, participants spent their 
time engaging in two different types of activities: vetting 
candidate links from the initial TM, or searching the artifacts 
for missing links. Variable ValidEff quantifies the amount 
of effort participants put into vetting candidate links from 
the initial TM. This information was collected in the post-
experiment survey on a 0 – 5 scale, where 0 meant ”never 
performed this type of activity” and 5 meant ”performed 
this type of activity for every single link.” When looking 
at the performance of participants based on the value of 
ValidEff variable, the key reason for the statistically sig
nificant influence on final recall and change in recall can 
be seen from Table X. Of 84 participants, 62 specified 
values of 0, 1, 2, or 3 in response to the post-experiment 
question. Thirteen participants gave a response of 4 and 
one participant gave a response of 55. As can be seen from 

5The remaining participants did not provide an answer. 

Table X, the average recall for those whose response was 4 
or 5 is 20.5% less than the average recall of those whose 
responded 0—3. We also noted that those who responded 4 
or 5 were the only group of participants whose mean change 
in recall was negative: an overwhelming −24.22%. In Figure 
3(c), we plot the performance of the participants who gave 
responses of 4 or 5. As can be seen from the graph, the 
majority of participants received initial TMs with relatively 
high recall and varying precision, and most of them wound 
up significantly reducing recall. This behavior is consistent 
with the self-reported effort spent on validating candidate 
links: participants did almost nothing but link validation, 
but they wound up making many incorrect judgment calls, 
which lead to many true links being rejected. 
Comparing the influences (Q3). Based on the analyses 
shown above, we conclude that the accuracy of the initial 
TM in our experiments was the best predictor for the change 
in the TM accuracy. Initial precision and initial recall jointly 
account for over 40% of variability of each of ΔPrec, 
ΔRec, and  ΔF2 response variables. In fact, even the 
much coarser, Starting quadrant of the initial TM accounts 
for 33%—39% variability for these response variables. Of 
the 11 observed independent variables in our study (see 
Table IX), only ValidEff had statistically significant effect 
on ΔRec and ΔF2, explaining an additional 7–8% of  
variability – much less than our baseline variables. 

As can be seen from Figure2(d), the majority of final TMs 
submitted by the study participants have precision and recall 
between 50% and 70%. Our study found that except for 
ValidEff, the effort spent validating candidate links, no other 
independent variable (baseline or observed) had significant 
effect of the final TM recall. In fact, ValidEff itself shows 
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Table IX
 
ANALYSIS FOR OBSERVED INDEPENDENT VARIABLES CONTROLLING FOR INITIAL TM PRECISION AND RECALL
 

Response Location Procedure SEExp TRExp Time Grade TrConf Opinion MissingEff ValidEff Prepared 

FinPrec 
R2 

adj = 0.12 
R2 

adj 
F 
p 

0.12 
1.012 
0.318 

0.109 
0.510 
0.602 

0.107 
0.876 
0.421 

0.121 
2.034 
0.158 

0.127 
1.025 
0.315 

0.148 
1.668 
0.166 

0.083 
0.045 
0.833 

0.129 
1.111 
0.335 

0.049 
0.091 
0.965 

0.116 
1.02 
0.413 

0.102 
1.003 
0.423 

FinRec 
R2 

adj = −0.004 
R2 

adj 
F 
p 

0.006 
1.789 
0.185 

0.001 
1.18 
0.313 

-0.001 
1.028 
0.362 

0.002 
1.306 
0.257 

-0.012 
0.126 
0.724 

0.017 
1.423 
0.234 

-0.022 
0.001 
0.978 

-0.017 
0.373 
0.690 

-0.016 
0.847 
0.522 

0.115 
2.810 
0.023 

-0.053 
0.34 
0.887 

FinF2 
R2 

adj = 0.0 
R2 

adj 
F 
p 

-0.006 
0.496 
0.483 

0.01 
1.383 
0.257 

0.019 
1.765 
0.178 

0.016 
0.2.284 
0.135 

-0.008 
0.013 
0.910 

-0.025 
0.503 
0.734 

-0.022 
0.077 
0.782 

0.0 
0.784 
0.46 

-0.024 
0.717 
0.613 

0.153 
3.428 
0.008 

-0.022 
0.741 
0.595 

ΔPrec 
R2 

adj = 0.454 
R2 

adj 
F 
p 

0.461 
1.012 
0.318 

0.448 
0.510 
0.602 

0.466 
0.876 
0.421 

0.475 
2.034 
0.158 

0.475 
1.025 
0.315 

0.472 
1.668 
0.166 

0.460 
0.045 
0.833 

0.462 
1.111 
0.335 

0.427 
0.191 
0.965 

0.465 
1.02 
0.413 

0.459 
1.003 
0.423 

ΔRec 
R2 

adj = 0.444 
R2 

adj 
F 
p 

0.449 
1.789 
0.185 

0.446 
1.18 
0.313 

0.443 
1.028 
0.362 

0.445 
1.306 
0.257 

0.416 
0.126 
0.724 

0.455 
1.423 
0.234 

0.445 
0.001 
0.978 

0.413 
0.373 
0.69 

0.444 
0.847 
0.522 

0.493 
2.810 
0.023 

0.424 
0.34 
0.887 

ΔF2 
R2 

adj = 0.288 
R2 

adj 
F 
p 

0.284 
0.541 
0.464 

0.297 
1.565 
0.216 

0.322 
2.53 
0.086 

0.297 
1.17 
0.283 

0.243 
0.021 
0.885 

0.270 
0.521 
0.721 

0.291 
0.001 
0.98 

0.245 
0.571 
0.568 

0.265 
0.598 
0.702 

0.326 
2.582 
0.034 

0.268 
0.653 
0.66
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Figure 3. Graphs showing: (a) means and standard devisions of final recall and precision by Initial Quadrant; (b) mean changes in final recall and precision 
by Initial Quadrant, and (c) performance of participants who spent much effort validating candidate links (values ”4” or ”5” for variable ValidEff). 

statistically significant difference only between those who 
put all their effort into link validation (and rejected many 
true links) and those who did not. For final precision, initial 
TM accuracy provided some predictive power, accounting 
for about 12% of the variability. 

C. Discussion 

Two of the observed independent variables, Procedure and 
Location, represent where and how participants took the 
study. As can be seen from Table IX, neither variable has a 
statistically significant effect on the response variables. That 
is, participants in both locations and in all three experiments 
(RETRO, manual, RETRO.net) performed in roughly the 
same way when controlled by the initial TM accuracy. This 
means that the results we observed were repeatable in our 
studies between two locations and between three procedures 
used for tracing. 

A number of observed variables assess ”personal quali
ties” of study participants: software engineering experience, 

prior tracing experience, grade level, confidence level, pre
paredness level, and opinion on whether manual tracing is 
better than tracing with a software tool. As can be seen 
from Table IX, none of these variables have statistically 
significant effect on any response variables. This means that 
in our experiments, the final TM accuracy was not affected 
in any major way by the prior experiences of the participants 
or by their opinions. This is an interesting observation: in 
general, one expects more experienced analysts to perform 
better on various tasks than those with less experience. In 
our experiments, this did not happen. 

Returning to the questions of interest, based on these 
studies, the answers are:
 

Q1. Yes. The effect of the accuracy of the initial TM on the
 
accuracy of the final TM, and especially on the change in
 
the accuracy is statistically significant.
 

Q2. Of all the examined variables, only one, self-reported
 
effort validating offered links, was in statistical significance
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Table X 
with four of our response variables. INFLUENCE OF VALIDEFF ON RESPONSE VARIABLES 

Q3. The variables measuring accuracy of the initial TM have 
a higher effect on the change in the TM accuracy than Response 0–3 4–5 

N 62 14any observed independent variable. The most interesting 
observed result is that low initial TM accuracy lead to the 
best overall improvement in accuracy. FinF2 x 

s 17.98 22.25This result (Q3) begs the question ”why?” It might seem 
¯

intuitive that starting with a low initial quality TM provides 
ample opportunities for improvement – removing incorrect 

ΔF2
links and finding missing links. It should be noted that 
these ”mistakes” in the TM are not necessarily so easy 
to detect. Follow–on work to this study has shown that 
many participants incorrectly confirmed false links (often the 
same problematic links) as well as incorrectly added links to 
the TM [16]. Though our investigation into ”why” is very 
preliminary, it appears that all participants had periods of 
work where many correct decisions were made in a row: 
the difference in participants was how long it took them 
to get to that ”constructive” period of work and how long 
that period lasted. This clearly could be tied to the data set, 
though data captured with our logging tool indicated that 
many participants did not work in a sequential order (rather, 
they ”jumped around” in the dataset). Further study must be 
undertaken with additional datasets in order to understand 
”why” low intial TM accuracy leads to the best overall 
improvement in accuracy. 

Initial TM accuracy had statistically significant, although 
weaker and only partial, effect (on final precision but not on 
the final recall) on the accuracy of the final TM. We observe 
that the lack of significant effect on the final recall is chiefly 
due to the fact that the majority of final TMs had recall in the 
50%–70% range. The only significant interaction with final 
recall came from the 14 participants who reported spending 
much of effort on link validation: they were the only group 
with a significantly lower recall. 

V. CONCLUSIONS AND FUTURE WORK 

Initial examination of data from the Cuddeback et al. 
study [6] led us to observe that: (a) participants failed to 
recover the true TM, (b) participants given lower accuracy 
TMs tended to show more significant improvement, and (c) 
regardless of starting TM accuracy and size, participants 
tended to guess the size of the true TM. This was a surprising 
finding that led to 12 months of continued experimental 
studies as well as statistical analysis to understand why. 
This paper presents a look at 11 independent variables 
which may account for the change in final TM accuracy. 
Interestingly enough, statistical analyses show that analyst’s 
tracing experience, amount of effort applied to look for 
missing links, comfort level with tracing, etc. do not affect 
final TM accuracy. Rather, the initial TM accuracy is the 
most important factor impacting final TM accuracy. The only 
other factor that had a statistically singificant interaction with 

FinRec 65.25 44.72 x 
s 19.98 23.28 
¯

62.36 45.66 

ΔRec 5.18 −24.22x 
s 26.71 30.73 
¯

7.06 −14.55x 
22.33 

¯

23.59s 

final TM accuracy was the amount of time an analyst spent 
vetting links provided by the tool. 

In the introductory example, NDFC lacks tracing pro
cesses that could assist with their three looming issues. 
If they select a fully manual process, errors and analyst 
discontent will surely ensue. If a totally automated solution 
is selected, a large number of false positive links in the TM 
could lead to dismissal of the tool as faulty. Assisted tracing, 
an analyst working with the results of an automated tool, 
suits their needs the best. In applying such a process, NDFC 
would probably like to know how to select analysts for 
the job (years of software engineering experience, years of 
tracing experience, comfort level with the tool, etc.). Imagine 
their surprise to learn that the only statistically significant 
factor that impacts the quality of the final TM in assisted 
tracing is the initial quality (which has negative correlation) 
and the amount of time spent vetting links. The analyst’s 
experience, effort applied, etc. do not matter. 

Our key, formally confirmed finding that lower initial TM 
accuracy leads to better analyst performance significantly 
alters our overall approach to assisted tracing. We can no 
longer rely on the automated tracing methods to produce 
high-accuracy results and expect these results to translate 
into even higher-accuracy ones in assisted tracing settings. 
While we still consider the quest for high-precision, high-
recall automated tracing methods important, we must ac
knowledge that it will not provide a panacea for assisted 
tracing. We have established that analysts performing as
sisted tracing tasks are fallible and predictably so. Assisted 
tracing procedures must account for this. As such, we plan 
to run a follow-on experiment using data from a real project 
to further understand this behavior. 
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