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ABSTRACT 

Massively parallel Graphics Processing Unit (GPU) hardware has become increasingly powerful, 

available and affordable. Software tools have also advanced to the point that programmers can write 

general purpose parallel programs that take advantage of the large number of compute cores available in 

the hardware. With literally hundreds of compute cores available on a single device, program 

performance can increase by orders of magnitude. We believe that introducing students to the concepts 

of parallel programming for massively parallel hardware is of increasing importance in an undergraduate 

computer science curriculum. Furthermore, we believe that students learn best when given projects that 

reflect real problems in computer science. 

This paper describes the experience of integrating two undergraduate computer science courses to 

enhance student learning in parallel computing concepts. In this cross teaching experience we structured 

the integration of the courses such that students studying parallel computing worked with students 

studying advanced rendering for approximately 30% of the quarter long courses. Working in teams on a 

joint project, both groups of students were able to see the application of parallelization to an existing 

software project with both the benefits and complications exposed early in the curriculum of both 

courses. Motivating projects and performance gains are discussed, as well as student survey data on the 

effectiveness of the learning outcomes. Both performance and survey data indicate a positive gain from 

the cross teaching experience. 
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1. INTRODUCTION 

Multicore and many-core systems have become increasingly available in a variety of compute 

platforms; from high-performance compute systems, to traditional workstations, to mobile devices and 

embedded systems. This prevalence of parallel computing hardware has increased demand for computer 

science graduates with a skill set that includes parallel and concurrent programming. 

Likewise, there is always a demand for students who have experience with real world industrial 

settings, such as working in a team where team members have diverse skill sets. Thus, for three weeks of 

a ten week quarter, we sought to combine the lectures and lab assignments of two distinct upper division 

courses, CPE 458: Applied Parallel Computing and CPE/CSC 473: Advanced Rendering Techniques, in 

order to cross teach the material of both courses. 

The material covered in the advanced rendering course primarily focuses on student’s development of 

a large individual software project, specifically a ray tracer. This computer graphics project involves 

developing a large code base and complex algorithms to render (or draw) a geometric scene. The focus of 

the course is on rendering algorithms, however, ray tracing is an application that can benefit from 

parallelism, thus it was a natural pairing for this cross teaching experience. 

1.1 Pedagogical Motivation 

By cross teaching the courses, we sought to expose the distinct student populations to relevant course 

material and a team development experience, while not sacrificing their in-depth learning of each 

individual sub-field of computer science. Specifically, we sought to expose the students in the rendering 

course to the potential of speeding up their 



code using parallel programming and to likewise expose the parallel computing students to a large real 

software project in need of parallelization. The experience exposed each group of students to a different 

sub-field of computer science and more importantly exposed those students to a scenario where they 

were required to share their learning with one another in concrete cross course projects. 

1.2 Setting 

Teaching students effective multicore programming is a challenge even with a relatively small number 

of cores [2]. However, recent Graphics Processing Unit (GPU) implementations allow a programmer 

access to hundreds of compute cores on a single device [10]. The cost of these devices has become 

affordable to many academic institutions for deployment in computer laboratories and GPU technology 

can be used effectively for general purpose computing [8, 12]. 

NVIDIA Corporation, one of the leading designers of GPU systems, has developed a program for 

universities to incorporate their Compute Unified Device Architecture (CUDA) technology into 

computer science curricula. California Polytechnic State University in San Luis Obispo, where the work 

described in this paper was performed, is part of NVIDIA’s CUDA Teaching Center program [9]. 

Graphics computations are well suited to GPU computing, so the integration of an applied parallel 

computing course with an emphasis on GPU computing and an advanced rendering course can occur 

quite naturally. With this in mind, for the 4–6th week of the quarter, the two courses were joined 

together for lectures, labs and project assignments. 

1.3 Research Methodology 

Our research method for evaluating the contribution of cross teaching the two courses involved two 

measures, student surveys and student project performance. All students were required to submit two 

surveys, pre-cross teaching and post. These surveys were used to evaluate student’s self-reported 

progress with learning outcomes and attitude towards the course material. In addition, students were re-

quired to submit lab reports documenting the change in the performance of their software. Students were 



required to profile and optimize their projects on the CPU and measure time performance with various 

test cases and then to profile and optimize their solution using CUDA and GPU computing. 

1.4 Contributions 

• We present our experience in integrating an applied parallel computing course and an advanced 

rendering course to provide students with a real-world application of parallel computing. 

• We present performance data from students in the courses demonstrating the performance gain 

for the software projects. 

• We present student survey data on the effectiveness of this integrated course structure in 

learning parallel computing and advanced rendering concepts. 

2. COURSE STRUCTURE 

Two senior-level computer science courses were cross taught for 30% of the Spring quarter of 2011 

(weeks 4–6 of the ten-week quarter). Each course had approximately 35 students in senior or graduate 

standing. The courses were CPE 458: Applied Parallel Computing and CPE/CSC 473: Advanced 

Rendering Techniques. 

2.1 Applied Parallel Computing 

Taught by Professor Lupo, the applied parallel computing course used the CUDA development 

environment as the setting to teach parallel applications. Specifically, parallelism was taught using 

NVIDIA GeForce 470 GPUs, each having 448 compute cores. GPUs utilize a Single-Program Multiple-

Data (SPMD) architecture where a single program thread is executed in parallel on multiple processing 

units. This architecture is similar to SIMD architectures where a single instruction is executed in 

parallel. However, the GPU does not guarantee instruction level synchronization across compute cores. 

The learning outcomes of the applied parallel computing course include: 

• Analyze applications that benefit from massive amounts of parallelism. 



• Become familiar with contemporary parallel programming paradigms and the systems on 

which they are used. 

• Gain significant experience with GPU computing hardware and programming models, with 

specific emphasis on NVIDIA’s CUDA architecture. 

• Analyze and measure performance of modern parallel computing systems. 

• Analyze the impact of communication latency and resource contention on throughput. 

• Master basic parallel computation with the CUDA programming model. 

Prior to being integrated with the other course, students in the applied parallel computing course were 

assigned a project to implement parallel matrix multiplication. The goals of the initial project were to 

familiarize the students with the language features and development tools necessary to parallelize 

applications to run on a GPU, and to gain experience identifying portions of a program to parallelize to 

improve performance. The assignment had three deliverables; 

1. a high performance sequential implementation on a modern CPU, 

2. a parallel implementation using OpenMP on a multi-core CPU with eight cores, and 

3. a working implementation on a NVIDIA GeForce GTX 470 GPU using the CUDA architecture. 

Students were allowed to work on this project in teams of two students. 

Figure 1 shows the average class results of both runtime and overall speedup for the matrix 

multiplication project. Speedup is relative to the sequential CPU runtime. The average performance 

improvement of the GPU implementation was 27.2 times faster than the average sequential execution 

time. Some teams had a speedup of greater than 50, and every team saw performance improvement. 

This project helped ensure that the students in the applied parallel computing course knew the basics 

of parallelizing a program for execution on a GPU prior to being integrated with students in the other 

course. 

[Insert Figure 1] 



2.2 Advanced Rendering 

Taught by Professor Wood, the learning outcomes of the advanced rendering course include: 

• Master basic ray tracing algorithms (camera transformations, intersections, lighting, geometry 

transforms, anti-aliasing, shadows, reflection, and refraction) 

• Exposure to global illumination algorithms (including Monte-Carlo ray tracing and photon 

mapping) 

• Develop large software project in C++ 

• Develop an individual rendering project beyond the class ray tracer 

• Excite students about topics related to rendering and computer graphics 

Prior to being integrated with the other course, students in the advanced rendering course were 

assigned a project to begin their ray tracer program, written from scratch in C++. This initial software 

developed by the students was the core code to be used throughout the quarter, including during the 

cross teaching of parallelism. The students software at the point of integration, included the ability to: 

1. parse a Pov-Ray formatted scene file and construct appropriate data structures to represent the 

camera, lights and any scene geometry 

2. complete a ray-cast and intersection with spheres and planes 

3. write out result images in a standard image format (e.g. bmp or png) 

2.3 Cross Teaching Experience 

During the three week cross teaching experience, lectures were shared between the two faculty, 

Professor Lupo and Wood and covered a brief exposure to background information and new material to 

both student groups. Students formed teams of at least two and at most three members, with each team 

consisting of at least one student from each course in order to complete the required cross course 

projects. Teams met during one of two lab times to work together on their two main joint assignments 

during the cross teaching experience. 



We defined specific learning outcomes for the students for the cross teaching experience (see 

Appendix A) and our general goals included encouraging students to: 

• Practice team-work and collaboration 

• Build upon and enhance initial software together as a team 

• Create software extensible by a team 

• Share knowledge in teams including members with different backgrounds and expertise 

• See the benefit of parallel programming on ray tracing 

• Experience pair programming 

• Experience another teacher’s style 

2.4 Cross Teaching Student Projects 

Students from both courses were assigned two large lab assignments to be completed in teams. In 

general these projects were intended to allow the students to develop a ray tracer which off-loaded 

geometry intersections to the GPU to speedup rendering times. Students from the two different courses 

were expected to help one another with understanding ray tracing and CUDA. It is worth noting that the 

two student groups had significantly less exposure to the alternate course material (approximately 3 

weeks versus a single background lecture). This created a situation where students relied on one another 

to teach each other specifics about CUDA and ray tracing. 

[Insert Figure 2] 

2.4.1 Lab 1: Ray Tracing with CUDA 

The initial project that students were assigned was designed to acquaint the advanced rendering 

students with the compute power of the GPU and the versatility of the CUDA framework and vice-versa 

to expose applied parallel programming students to the realities of applying CUDA to a real-world 

application. At a high level, the first ray cast in a ray tracing algorithm is highly parallel in that little 



synchronization is needed between threads, and is scalable enough to run on hundreds or thousands of 

cores at once. 

Students were given a variety of large scenes with 5,000 to 36,000 spheres and asked to render an 

image of 640 by 480 pixels using their existing ray tracers. Rendering such a scene with non-optimized 

CPU code took an average of 6 minutes for the largest scene (with some team’s code taking 35 minutes 

to complete the render). See Figure 2 for an example of 5,000 sphere model. 

Students were required to take their existing CPU code and: 

1. profile their code to determine the function or functions where the largest percentage of execution 

time is spent, 

2. optimize their CPU code (for example through in-lining, etc. where appropriate) 

3. prepare their code for the CPU, 

4. outsource intersection tests to the CPU 

5. compile the results, and 

6. measure the speedup of the CPU implementation. 

For this portion of the project, the students were given considerable guidance on how to approach the 

design so that they could focus on how to parallelize the intersection testing portion of their ray tracers. 

A primary educational objective was for students to use a systems engineering approach to look at 

where their code could best be optimized for parallel execution through the use of profiling and to 

educate students about the power of profiling. 

2.4.2 Lab 2: Triangle Intersections andAnti-aliasing 

For this second portion of the project, students were given less guidance so they could have the 

experience of designing a parallel implementation based on their existing knowledge and experience. 

This portion of the project was also team-based, with students continuing to work with their established 

teams. 



The students continued with building a ray tracer on both the CPU and CPU. Teams were required to 

add code to their implementations to intersect rays with triangles and add anti-aliasing to their code 

(super-sampling of 4 more stratified sampled rays per pixel). 

Task assignments were given such that team members would add to their existing skill sets and learn 

new material rather than repeating procedures they had already learned prior to the course integration. In 

doing so, it was also recommended that students in each team teach their other team members to 

reinforce what each student had already learned prior to the course integration. 

To best integrate the team’s knowledge, in a pair programming style, the applied parallel computing 

student member(s) of the teams were tasked with writing the triangle intersection routine for the CPU. 

The advanced rendering team member(s) were tasked with writing the CPU version of the triangle 

intersection code. The CPU implementation is used for reference execution speed and profiling of the 

code to determine which functions should be outsourced to the CPU. Outsourcing of triangle intersection 

tests to the CPU was a requirement of this portion of the project, and each team’s implementation was 

required to handle input files that have both a mix of triangles and spheres. Students were also required 

to add anti-aliasing to their implementations. 

Each team had to test and profile their code with both the CPU only implementation, and the CUDA 

implementation that outsourced intersections to the CPU. Measurement of speedup of rendering for a 

given input file with a large number of triangles and spheres was required in the final report for the 

project. 

[Insert Figure 3] 

2.5 Student Project Results 

Students were able to complete the assigned projects and achieve impressive speedups of their 

rendering times. Lab assignments required students to render various high resolution models, for 

example a 70,000 triangle model of the ‘Stanford Bunny’ (see Figure 3). All final images were required 



to be 640 by 480 pixels. Figures 2 and 3 show examples of the renders produced by student’s code. For 

Lab 1, students were required to render a bunny model that included 36,000 spheres. Team’s results 

varied but time improvements from off loading sphere intersections to the CPU resulted in time 

improvements from 6 times faster to 1000 times faster, with the average speed up of 354 times faster 

rendering. 

For the second lab which included models that featured both triangles and spheres, CPU timings to 

render the 70,000 triangle bunny model, called ‘bunny jumbo’, averaged 19.6 minutes (with teams times 

ranging from around 7 minutes to 40 minutes). Allowing students to see that such a simple setting with a 

single complex model, required such long render times motivated them to parallelize their code to help 

speedup run times. After off loading the triangle intersections to the CPU, teams on average only had to 

wait 14.4 seconds for the ‘bunny jumbo’ file to render. This represents an average speed up of 82 times 

faster. This lesson was further emphasized when students added anti-aliasing to their program (adding 4 

rays per pixel). Anti-aliasing creates much smoother, aesthetically pleasing images but adding four times 

as many rays resulted in average CPU run times of 91 minutes! However, with the use of the CPU the 

same rendering on average took 44.2 seconds for a team pair-wise average speedup of 204 times faster. 

Figure 4 shows a scatter plot of different teams’ speedups of the average CPU time versus each team’s 

CPU timings for the anti-aliasing portion of Lab 2. There were 18 teams in the combined class. 

However, one team was unable to finish their anti-aliasing implementation on the GPU, and three teams 

were unable to get CPU run times due to their implementations taking too long to run prior to the 

assignment being submitted. 

[Insert Figure 4 and Table 1] 

These impressive improvements to performance illustrate the successful migration of the student’s 

CPU code to the GPU. In the post-survey, 97% of the students reported that their ray tracer was 

significantly faster using parallelism and that they were able to create images of substantially more 



complex scenes in reasonable amounts of time using parallelism. In addition, 91% felt they were able to 

enhance the realistic appearance of their output using anti-aliasing without a substantial time penalty 

using parallelism. Finally, 46.7% reported that they were interested in doing a final project related to 

parallelism and ray tracing after the cross teaching experience. 

3. RESULTS AND CONCLUSION 

Specific learning outcomes were designed to assess the course integration experience. Pre- and post-

surveys examined the extent to which students achieved these learning outcomes on a five-point Likert-

type scale (i.e., 1- Strongly Disagree, 2 - Disagree, 3 - Neither Agree nor Disagree, 4 - Agree, 5 - 

Strongly Agree). Using a two-tailed paired-samples t-test to compare pre- and post-survey means, results 

indicated that eight of the ten learning outcomes had positive, significant increases in the mean from pre-

course integration to post-course integration (p < .001). All learning outcomes are listed in Appendix A. 

See Table 3 for details. 

Both the performance gains achieved by students in their program and the survey data analysis all point 

to very positive outcomes from the cross teaching of the two courses. Students were uniformly able to see 

large speedups in their code using parallelization and students were able to cross over their knowledge 

from each individual course and gain valuable knowledge from one another about two distinct sub-fields 

of computer science. In addition, we feel the experience allowed us to achieve all of our general goals of 

the cross teaching experience, such as working in a team that required sharing knowledge with 

teammates, experiencing pair programming and another teacher’s style. 

More importantly, their experience of having their code be expanded by a classmate and needing to 

explain individual knowledge in a team setting gave students a hand-on experience often found in the 

computer science industry. From the post survey, some of the student’s comments include: “Great “real 

world” experience.” and “I enjoyed the experience of working with another student with different 

knowledge from another related course and combining it to create something cool.” 



Of course the cross teaching of the two different courses was not without its complications. As one 

student said: “I think the results that came from both joint labs were super amazing. Being able to see 

how implementing certain areas of code would affect performance was very informative. I suggest a 

more streamlined integration into the joint labs. This means preparing the initial ray tracers with 

parallelism in mind, and earlier coverage of CUDA for 458 students.” 

In the end the students had the first hand chance to experience much of what is difficult about real 

world projects. Their starting code was not perfect (it was written in C++ and needed to be converted to 

C) and the team members had different strengths (with one team member being better prepared for the 

CUDA aspects of the lab, while the other student had a better understanding of the ray tracer code). 

As faculty, there are small modifications we could make to the lab assignments and team balancing 

that would further enhance the students learning, but overall, working together required everyone to 

expand their knowledge, which was the desired effect. In the future we hope to continue our collab-

oration of sharing course content and allowing the students to experience the joy of teaching one another. 

One improvement we could make in our analysis of the cross-teaching would be the inclusion of a pre 

and post cross teaching academic quiz related to the desired learning outcomes. 

4. RELATED WORK 

The teaching of parallel computing in computer science with a motivating application is certainly not a 

new endeavor. In 1992, Kitchen et al. described the use of game playing as a technique for teaching 

parallel computing concepts [4]. In 1995, Nevison described an approach to teaching parallelism in 

which each course in the curriculum provides a small contribution to the overall objective of under-

standing parallel computing [7]. More recently, Rebbi describes a project-oriented course in 

computational physics to teach parallel computing concepts [13]. In 2008, Breen et al. describe the use of 

ray tracing as an example application to introduce what they refer to as “embarrassingly parallel” 



computing [1]. In 2011, Ortiz described the teaching of concurrency oriented programming with the 

Erlang language [11]. 

Many computer science educators are in general agreement that the SIMD model is an important 

component of parallel computing education, and that many-cored GPU technology is a cost-effective 

way for universities to provide powerful compute hardware to students for hands-on experimentation [5, 

14, 15, 16]. 

An entire course curriculum based on GPU computing and the CUDA model was developed into a 

textbook by Kirk and Hwu in 2010 [3]. Developing a ray tracer in CUDA is described in considerable 

detail in a collection of papers presented in a recent book collection [6]. 

The cross teaching experience described in this paper is complementary to prior research, and may be 

successfully employed in a variety of courses in which faculty recognize an opportunity for students to 

learn about parallel computing. 

As far as we know, this is the first time that two distinct upper division computer science courses were 

combined to teach these concepts, with students expected to master the distinct course concepts in depth 

while working on a related project in the alternate sub-field. 

APPENDIX 

A. LEARNING OUTCOMES 

Learning outcomes for the cross-teaching experience included: 

1. Understand and apply basic ray tracing algorithms (e.g., camera transformations, intersections, 

shadows, reflections). 

2. Identify global illumination algorithms (e.g., Monte Carlo ray tracing, photon mapping). 

3. Able to develop a software project in C++. 

4. Interested in topics related to rendering and computer graphics. 

5. Able to analyze applications that benefit from parallelism. 



6. Identify contemporary parallel programming paradigms and the systems on which they are used. 

7. Identify GPU computing hardware and programming models (e.g., NVIDIA’s CUDA architecture). 

8. Able to conduct basic parallel computation with the CUDA programming model. 

9. Able to analyze and measure performance of modern parallel computing systems. 

10. Able to determine the impact of communication latency and resource contention on throughput. 
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