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Abstract 

Control of sewer overflows, the leading cause of water pollution in the nation’s water 
bodies, is vital to reducing risks to public health and protecting the environment. The 
most common solutions for mitigating sewer overflows include adding storage volume, 
increasing conduit capacity, expanding pumping capacity, and implementation of real 
time operational controls to more effectively utilize existing system storage. Obviously, 
comprehensive modeling and analysis of these sewer systems becomes necessary for 
developing sound cost-effective and reliable solutions for enhancing system integrity and 
performance to convey sewer flows without causing overflows. However, identification 
of the optimal remedial solution that effectively circumvents overflow problems with the 
least expenditure is a daunting task. The current practice involves a tedious trial-and-error 
evaluation procedure that seldom leads to the most effective or most economical 
solutions. Another emerging design approach utilizes single objective optimization that 
identifies the solution that best satisfies a predefined criterion. The performance criterion 
used with single objective optimization subjectively lumps the economics objective with 
metrics that measure effectiveness of the remedial solution from the perspective of 
avoiding overflows (e.g., minimizing the number of flooding events or reducing the 
flooding volume). Consequently, the design solution identified using single objective 
optimization depends on the weights subjectively placed on the two incommensurable 
and conflicting objectives, and may not represent the global optimal solution. A 
preferable approach is to seek tradeoff solutions commonly referred to as non-dominated 
solutions or Pareto-optimal solutions. The methodology proposed here links an extended 
version of the EPA SWMM 5 model, a comprehensive drainage network simulator, with 
NSGA-II, an evolutionary multiobjective optimization method with a proven history of 
identifying Pareto-optimal solutions for a wide range of engineering problems. The 
method should prove useful to any wastewater utility attempting to improve system 
integrity, reliability and performance and optimize its capital improvement program. 

1. Introduction 

Control of sewer overflows is vital to reducing risks to public health and protecting the 
environment from water pollution. Sanitary sewer overflows (SSOs) and combined sewer 
overflows (CSOs) may release partially treated or untreated sewage to surface waters. 
This untreated sewage overflows contains microbial pathogens, suspended solids, toxics, 
nutrients, trash, and other pollutants causing serious water quality problems. Wet weather 
flows from rainfall-derived inflow and infiltration (RDII) can exceed capacity of the 
sewer pipes resulting in an SSO. Other causes of SSOs include blockage of the sewer 
conduits by grease and debris, sediments buildup, pipe breaks, leaking manholes, offset 
joints, equipment failures, undersized sewer pipes, power outages, and other factors. 
When an SSO occurs, sewage flows into streets, playgrounds and streams. This sewage 
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can also back up into basements, causing property damage and creating threats to public 
health for those who come in contact with the untreated sewage. 

CSOs occur in older combined sewer systems that were designed to carry both 
sanitary sewage and storm water runoff to a wastewater treatment plant. Under dry 
conditions, the wastewater treatment plant (WWTP) treats the sewage and then 
discharges it to a water body. During periods of heavy rainfall or snowmelt, however, the 
wet weather volume in the combined sewer system may exceed the available hydraulic 
capacity of the sewer system or treatment plant. This can lead to the discharge of excess 
wastewater directly to nearby streams, rivers, or other water bodies without treatment. 
Combined sewer systems in the United Sates serve roughly 746 communities serving 
about 40 million people. Although there are combined sewers in 32 states and the District 
of Columbia, they are mostly located in the Northeast and Great Lakes regions, and the 
Pacific Northwest (U.S. EPA, 2004). 

With the growing expectations by the public for quality services, the Environmental 
Protection Agency (EPA) under the authority of the Clean Water Act adopted by 
Congress has implemented pollution control programs and set wastewater standards for 
the industry. In order to meet these requirements, comprehensive modeling and analysis 
of these sewer systems becomes necessary for developing sound cost-effective solutions 
for enhancing system integrity and performance to reliably convey sewer flows without 
causing overflows and backups. 

Drainage network simulation models are commonly used to plan and design better 
sewer collection systems (Nicklow et al., 2004, 2006). System improvement alternatives 
commonly evaluated include the addition of new sewer pipes or treatment capacity, 
increasing conduit capacity (bigger interceptors), more storage volume, pumping 
capacity, and efficient utilization of existing storage in the system through 
implementation of real time operational controls. The daunting task is, however, to 
choose an improvement option or combination of options that effectively solve the 
flooding problem with the least capital expenditure. No single improvement approach can 
be generalized to every collection system. Performance and economic effectiveness of the 
remedial alternatives varies from system to system. The current practice of selecting an 
improvement option involves a tedious trial-and-error evaluation procedure that seldom 
leads to the most effective or most economical solution for upgrading collection systems. 
This procedure makes use of a drainage network simulation model to evaluate the 
hydraulic performance of the existing system for different design alternatives 
(modifications) under a range of loading and operating conditions. The design option that 
meets the target hydraulic criteria with the lowest cost is selected among the alternative 
designs. The complexity of this manual trial-and-error procedure increases exponentially 
with the number of proposed system modifications and corresponding operating 
conditions. It is important to point out that even if the target performance specifications 
are met, the trial-and-error procedure has no inherent feature that assures that the solution 
reached is cost optimum or even cost effective. Good engineering procedure dictates that 
the iterations continue until a number of promising alternatives have been evaluated. 
However, given the vast number of possible combinations of system enhancements, it is 
unlikely that even the most experienced modeler will be able to determine the least-cost 
improvement alternative using a trial-and-error procedure. Therefore, the result of using 



the traditional trial-and-error evaluation approach is often inefficient performance at a 
greater cost. 

One way to circumvent the limitations of a trial-and-error procedure is to employ 
optimization theory. This paper presents an optimal design methodology that eliminates 
the need of the traditional manual design technique. The problem of choosing least-cost 
improvements for urban drainage systems is solved using optimization theory. The 
procedure consists of determining the optimal design improvement solution that produces 
the minimum overall cost while satisfying target system performance requirements. The 
decision variables can include any selected combination of pipe slope and upsizing, 
storage, pumping and new piping. Performance criteria include maximum allowable 
depth to diameter ratio, minimum and maximum conduit velocities, maximum head loss 
for force mains, and minimum and maximum conduit slopes. This gives practicing 
engineers complete control over the solution process. 

The proposed approach links a comprehensive drainage network simulator with a 
multiobjective optimization model and iterates between the simulator and the 
optimization model until Pareto-optimal solutions are found. The optimization procedure 
employed is the Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al, 2002), 
which has been proven to effectively generate reliable solutions for multiobjective 
problems across wide areas of engineering applications. The urban drainage network 
simulation is performed using an extended version of the EPA storm water management 
model, SWMM 5 (Rossman, 2005). The optimization model generates improved sets of 
decision variables that seek to minimize design costs and maximize system performance. 

2. Multiobjective Optimization 

Most realistic engineering problems involve simultaneous optimization of several 
objectives that are often conflicting. In urban drainage systems, for example, the 
objective is to improve system performance to avoid flooding with the least possible cost. 
Obviously, improvement solutions that utilize large pipe sizes, storage volumes, or pump 
capacities can easily achieve the target performance criterion by avoiding or minimizing 
overflows. However, these solutions will perform very poorly from the economics 
perspective since they demand large capital expenditure. Thus, these two objectives (i.e. 
improving performance to avoid flooding and minimizing implementation cost) are 
conflicting in the sense that solutions that improve either objective may do so at the 
expense of degrading the other objective. This is a typical behavior of realistic 
multiobjective optimization problems (MOPS), which makes them significantly different 
from single-objective optimization problems. 

In single-objective optimization, an optimal solution is usually unique and clearly 
defined. However, the typical goal in multiobjective optimization is to find satisfactory 
trade-offs between competing objectives. These trade-off solutions are referred to as 
nondominated solutions. A solution is said to be Pareto optimal if it is not dominated by 
any other solution when all objectives are taken into consideration. Various methods 
exist for multiobjective optimization. Recently, evolutionary algorithms (EAs) have 
become established as an alternative to the traditional methods of simple aggregation (see 
Srinivas and Deb, 1994; Zitzler and Thiele, 1999). The main advantages of EAs based 
MOPs include their ability to search large decision spaces, thus raising the likelihood of 



 

locating the global Pareto-optimal set, and their capability to generate multiple trade-offs 
within a single optimization, unlike aggregation methods that require multiple 
optimization runs. In EAs, the only significant difference between single objective and 
multiobjective evaluations is the way of assigning fitness value to a solution candidate so 
that the fitness measure accurately reflects the performance of the alternative solution 
relative to its counterparts. In single objective optimization, the objective function value 
itself can be used as a measure of fitness. However, in multiobjective evaluations, it is 
necessary to design a means of converting the multidimensional objective functions into a 
scalar fitness measure. Based on the technique used to map the multiple performance 
values to a single fitness value (i.e., the fitness assignment approach), there are a wide 
variety of EA based methods for solving MOPs (Fonseca and Fleming, 2000). 

NSGA-II was selected for this study based on the comparative study results conducted 
by Kunzli et al. (2004) and Khare (2002). These studies compared a number of multi-
objective algorithms and concluded that NSGA-II (Deb et. al, 2002) and Strength Pareto 
Evolutionary Algorithm (SPEA 2) (Zitzler et al., 2001) exhibit the best overall 
performance. Furthermore, NSGA-II was found to be the most computationally efficient 
among the algorithms considered. NSGA-II incorporates a non-dominating sorting 
approach, a feature that distinguished NSGA-II as the fastest multi-objective evolutionary 
algorithm (Khare, 2002). NSGA-II uses the crowded-comparison operator to maintain 
diversity along the Pareto optimal front. Search for optimal Pareto front using NSGA-II 
begins with random generation of potential solutions of size N. These initial candidates, 
known as parent population, are sorted based on the concept of Pareto dominance 
(Veldhuizen and Lamont, 2000), and each solution is assigned a fitness value equal to its 
non-domination level (i.e., 1 corresponds to the best non-domination level, 2 is the next 
best level, and so on). Then, an offspring population of the same size as the parent 
population (i.e., N) is created using binary tournament selection, recombination, and 
mutation operators. Search procedure on subsequent generations involves combining the 
offspring with the parent population and conducting nondominated sorting that 
systematically groups the solutions into different nondominated fronts based on the 
concept of Pareto dominance and optimality (i.e., best non-dominated solutions, the 
second best, and so on). Solution alternatives for the next generation are chosen from the 
nondominated fronts in descending order until N members are obtained. If the first 
nondominated front contains solutions less than N, the remaining solutions will be taken 
from the second nondominated front, and so on. However, the last front to contribute 
solution members to the next generation may have to be sorted using the crowded-
comparison operator. The crowded-comparison operator is the average distance between 
an individual solution and those solutions nearest to it in the objective space. Once all the 
N members of the parent population for the next generation are chosen, a new offspring 
population is produced using binary tournament selection based on the crowding-
comparison operator, crossover, and mutation operators. The same procedure is repeated 
until convergence criteria have been met. For further detail on NSGA-II, the reader is 
referred to Deb et al. (2002). 



3. Urban Drainage Simulation Model 

InfoSWMM (Boulos, 2005), the urban drainage simulation model used in this study, 
utilizes an extended version of the EPA SWMM5 (Rossman, 2005) to solve urban 
drainage hydrology, hydraulics and water quality. InfoSWMM can model the entire land 
phase of the hydrologic cycle (i.e., surface runoff, vadose zone processes, groundwater 
flow, evaporation, and snow fall and snow melt) as applied to urban stormwater and 
wastewater collection systems. The model can perform single event or long-term 
(continuous) rainfall-runoff simulations accounting for spatial and/or temporal variability 
in climate, soil, land use, and topographic conditions of the urban watershed. Rainfall-
runoff simulations could be conducted using several approaches including the non-linear 
reservoir method, Colorado Urban Hydrograph Procedure (CUHP), Santa Barbara 
hydrograph method, the Modified Rational Formula, and various synthetic unit 
hydrograph approaches including the Natural Resources Conservation Service (NRCS) 
methods, Delmarva, Snyder, Clark, and Espey methods. In addition to runoff quantity, 
InfoSWMM can simulate runoff quality including buildup and washoff of pollutants from 
primarily urban watersheds composed of developed and non-developed land uses. 

Once runoff quantity and quality are simulated and wastewater loads at receiving 
junctions are determined, the routing portion of InfoSWMM can transport the flow using 
either steady, kinematic wave or dynamic wave routing, through a conveyance system of 
pipes, channels, storage/treatment devices, pumps, and hydraulic regulators such as 
weirs, orifices, and other outlet types. The model can accurately simulate flow conditions 
of any level of complexity including those experiencing backwater effect, flow reversal, 
and pressurized flow. Because it simultaneously solves the solution for both water levels 
at nodes and flows in conduits, the model can be applied to any general network layout, 
even those containing multiple downstream diversions and loops. The model also offers 
advanced Real-Time Control (RTC) scheme for the operational management of hydraulic 
structures. 

InfoSWMM is a complete decision support system embedding intrinsic modeling and 
optimization capabilities in GIS. It explicitly integrates ESRI ArcGIS geospatial model 
with the extended version of SWMM5 and other modules including automated dry 
weather flow generation and allocation, automated subcatchment delineation and 
parameter extraction, automatic model calibration, an optimization capability for 
screening design alternatives to address every facet of urban drainage infrastructure 
management, a sophisticated tool that dynamically determines storage in gravity 
conduits, an advanced pond design module. The GIS interface allows seamless 
communication between the GIS and the various modeling applications. It provides the 
geospatial platform for developing and calibrating network models, screening and 
analyzing design alternatives, and reporting and displaying results. The resulting decision 
support system effortlessly reads GIS datasets, extracts necessary modeling information, 
and automatically constructs, loads, designs, calibrates, analyzes and optimizes a 
representative urban drainage models considering hydrologic, hydraulic, and water 
quality performance requirements. It also makes it easy to run, simulate and compare 
various modeling scenarios, identify system deficiencies, and determine cost-effective 
physical and operational improvements to achieve optimum performance and regulatory 



 
 

compliance. These combined capabilities provide a consistent environment to plan, 
design, and operate safe and reliable urban drainage systems. 

4. Problem Formulation 

The goal of the multiobjective urban drainage formulation is to identify the “best” 
combination of conduit sizes, storage volumes, and pumping capacities needed for one or 
more facilities in the collection system that meet target system performance requirements 
(i.e., avoid flooding) at minimum cost. The objective functions of the optimization 
problem consist of minimizing both the overall design cost and overflow volume under a 
specified set of loading and operating conditions. They can be mathematically expressed 
as: 

C S P 

Minimize ∑Cc Lc + ∑CsVs + ∑C p (1) 
c=1 s=1 p=1 

t=T 

Minimize ∑Vt + Penality (2) 
t =0 

where c, Cc and Lc used in the left-hand side term of equation (1) refer to the number of 
conduits, the replacement cost which is a function of conduit size, and the length of the 
conduit, respectively. Likewise the s, Cs, and Vs used in the middle term of equation (1) 
refer to storage node counter, cost per unit volume of storage and volume of the storage 
unit, respectively. The p and Cp used in the last term of equation (1) refer to pump 
counter and cost associated with the pump, respectively. The V term in the second 
equation refers to overflow volume from all the facilities in the collection system at time 
t. Overall, equation (1) evaluates economic implication of the design solutions and 
equation (2) describes the performance of the design solution from the perspective of 
reducing overflow volume. The decision variables, which consist of conduit, storage and 
pump sizes, are automatically determined to minimize the objective functions while 
satisfying implicit system constraints, explicit bound constraints and explicit variable 
constraints. The implicit constraints on the sewer collection system are equality 
constraints defining the hydraulic equilibrium state of the system. They correspond to the 
conservation of mass and momentum equations (Saint Venant equations) that govern the 
unsteady flow of water through a drainage network of channels and pipes. These 
equations are solved implicitly using InfoSWMM, by converting them into an explicit set 
of finite difference formulas that compute the flow in each conduit and head at each node 
for time t + �t as functions of known values at time t. 

ExplicitConstraints
 
The explicit bound constraints represent system performance criteria and may include 
constraints on conduit flow velocity (V), conduit slope (S), and head loss (HG) in force 
mains for a given set of sewer system loading and operating conditions. Conduit 
constraints describe hydraulic limits on the conduits. These limits include minimum and 
maximum velocities, maximum head losses for force mains, and maximum and minimum 



 

 

invert elevations. These limits are based on design criteria consistent with local 
regulations or engineering practice. The minimum velocity constraint ensures that a 
sufficient velocity is maintained to keep solids in suspension and to encourage passage of 
sewer floatables. The maximum velocity criterion is critical for pressurized mains to 
ensure that momentum forces are not objectionably high on the system especially at 
joints. For gravity mains, maximum velocity is usually not a significant issue; however, 
under some conditions, the transition from supercritical to subcritical flows can create a 
large hydraulic jump and may be of concern to the engineer. The maximum head loss 
constraint ensures that pressurized mains have sufficient lift to carry the water to the 
upstream location. 

Occasionally local codes specify geometric requirements for gravity sewer systems, 
which typically include slope and embedment depth. For constructability purposes, a 
minimum slope (and inter alia velocity) must be maintained. The embedment depth 
requirement accommodates areas where freezing weather or surcharge surface loading 
(beneath railways or streets) is of concern. The invert elevation at the downstream end of 
each conduit (expressed as an offset from the node invert elevation) constrains the design 
to meet the slope and embedment depth requirements. When a design solution does not 
satisfy an implicit bound constraint, a penalty method is used to handle the constraint 
violation. 

A penalty cost is added to the objective function to penalize an infeasible solution 
(degrade its fitness) and force the search procedure towards the region of feasible 
solutions. The penalty cost function is defined as the divergence (distance) of the 
computed solution from the feasible region or: 

N 

(3)PC = ∑ vi Ci (x) − Ci 
i=1 

where N represents the number of constraints; vi represents a weighting factor associated 
to constraint Ci, Ci(x) is the value of the ith constraint and Ci is the constraint limit. It is 
expected that different values of the penalty costs will result in different solutions and 
also affect the efficacy of the optimization calculation. Therefore, a number of trial 
optimization runs with different penalty costs may be required to better explore the 
solution space and narrow in to the lowest cost solutions. 

The explicit variable constraints are used to set minimum (lower) and maximum 
(upper) limits on the sewer sizes and to specify the discrete (commercially available) 
diameter values for the new conduits. Conduits should be lumped together in separate 
logical design groups based on their known physical characteristics such as size and 
location. As such, all conduits within a group will possess an identical size. For each 
conduit group, the conduit size is bound by an explicit inequality constraint as: 

0 0Dminn ≤ Dn ≤ Dmaxn ∀n,∀Dn ∈ D = {dk , k = 1,...K} (4) 

where Dminn designates the lower bound (the minimum value) of conduit sizes for 
conduit group n; Dmaxn represents the upper bound (the maximum value) of conduit 
sizes for conduit group n; and Dn is the conduit size for conduit group n and selected 
from a set of available conduit sizes of D0. Similarly, pump curves are selected from 



various user-specified pump curves to represent pump station expansion. Storage 
volumes are computed based on shape of storage, defined either as a mathematical 
function or in tabular form (head vs. area), and are bound by user-specified minimum and 
maximum storage depths. 

5. Solution Methodology 

The optimal urban drainage system design/rehabilitation problem formulated above is 
solved using a dual-level optimal control methodology that integrates SWMM5 drainage 
network simulator with NSGA-II, an evolutionary algorithm based multiobjective 
optimization method. Starting with an initial feasible set of decision variables, it is passed 
to InfoSWMM for use in explicitly satisfying the implicit system constraints and in 
evaluating the implicit bound constraints. The InfoSWMM solution is then passed back 
to the optimization model for use in quantifying the objective function and any violations 
in the implicit bound constraints. This information is then utilized to produce an 
improved set of decision variables that automatically satisfies the explicit variable 
constraints and that seeks to minimize the objective functions. This iterative process is 
repeated until the best solution is found. The resulting optimization model has been 
successfully applied to a number of actual sewer collection systems in the US. The results 
show that significant improvements in system performance can be realized. 

6. Conclusion 

Computer based network simulation models provide the most viable and effective means 
of evaluating urban drainage system performance, identifying deficiencies, and assessing 
the reliability of proposed design improvement alternatives to avoid sewer overflows and 
reduce risks to public health and protect the environment from water pollution. However, 
identification of improvement solutions that effectively circumvent overflow problems 
with least expenditure requires an optimal control methodology that integrates advanced 
multiobjective optimization tool with comprehensive urban drainage simulation model. 
Historically, most urban drainage model design/rehabilitation attempts have typically 
employed a manual trial-and-error approach. Such an iterative approach often proves 
time consuming and costly when dealing with most typical urban stormwater systems. In 
this paper, an improved design model is developed using multiobjective optimization 
theory. The optimization model computes the optimal combination of pipe upsizing and 
alignment, storage size, and pump capacity to best meet desired system performance 
requirements at lowest cost. NSGA-II is coupled with a network solver for use in 
determining optimal design solutions. The model is further integrated with a geographical 
information system to provide a consistent geospatial decision support system for use in 
developing and calibrating large and complex urban drainage system models, and 
optimizing them to achieve improved performance at maximum savings. The resulting 
decision support system should prove useful to any wastewater utility attempting to 
optimize its capital improvement program. 
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