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Abstract 

Models have become important decision making aids. Model evaluation (i.e., global 
sensitivity analysis, calibration and uncertainty analysis), is crucial to improve their 
prediction accuracy and reduce the likelihood of making decisions that could lead to 
undesirable policy outcomes. The conventional approach assumes that model parameters are 
insensitive to season irrespective of the temporal variability of input forcings such as rainfall. 
This assumption could significantly compromise model performance for low flow seasons 
and/or high flow seasons depending on the calibration method pursued. This study will 
demonstrate the advantage of dynamic (seasonal) model evaluation in improving 
performance compared to the traditional approach. In addition, the impact of the goodness-
of-fit criteria (e.g., mean of sum of square of residuals, Nash-Sutcliffe efficiency criteria, 
volume based efficiency criteria, etc) used as an objective function during automatic 
calibration on model performance has been examined. Objective functions that would 
improve the accuracy of simulating high flows as well as low flows were identified. The 
added values of using multiobjective calibration, over the more widely used single objective 
calibration, has also been explored. The Little River Experimental Watershed, one of the U.S. 
Department of Agriculture’s experimental watersheds, has been used to illustrate the 
approaches tested in the study. Soil and Water Assessment Tool is the watershed simulation 
model used for the work. Results show that the season based model calibration approach 
significantly improved model performance, and calibration is sensitive to the efficiency 
measure used as object function. As such, multiple efficiency criteria should be used to report 
model performance as no single efficiency measure performed consistently well in describing 
goodness of model results. Another important finding is that parameter values that are 
significantly divergent from their “true” values may lead to model performance that may be 
considered near perfect even when judged using multiple efficiency measures underlining the 
challenge of parameter identifiability. 

Introduction 

Computer models are routinely used for planning and management of water resources and 
address the challenges faced by local and global stressors such as climate change, land use 
change and population increase. However, because models are simplifications of the real 
world, accuracy of model predictions cannot be taken for granted. Models must be calibrated 
before they are used as decision making aids to ensure that simulation results are 
scientifically sound and defensible (U.S. EPA, 2002). Sensitivity analysis (SA), a technique 
used to identify the relative significance of model inputs, parameters and/or structures on 
output uncertainty, is an essential model evaluation procedure (Saltelli et al. 2008).  
Sensitivity analysis helps to understand model behaviors and its consistency with the 
watershed dynamics exhibited from observations. SA is commonly used to identify (1) the 
most influential model parameters (inputs that are not readily measurable and must be 
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estimated) that need to be calibrated (2) model inputs that describe significant portion of the 
output uncertainty, and that if measured more accurately, has the greatest potential to reduce 
output uncertainty (3) dominant model structures (i.e., model assumptions, abstractions, and 
methods/theories) that may be more applicable to the watershed and would help reduce 
output uncertainty.  

Many methods are available to perform SA, but can be broadly classified as local and 
global methods (Saltelli 2000). In local SA, the response of the output is investigated around 
a fixed point in the input space. As the analysis is done around a local point, the entire 
parameter range cannot be explored. As such, when the perturbation moves away from the 
local point used during the SA, results become less descriptive of the actual input-output 
response surface. Also, the more nonlinear the relationship between the input and output 
variables, which is typical in hydrologic models, the less reliable it is to employ local 
techniques. Unlike the local techniques, global SA methods explore the entire range of input 
factors thus improving the accuracy of describing the actual input-output relationship. 
Following Saltelli’s (1999) review of various SA methods and their relative weaknesses and 
strengths, application of global SA methods has been steadily rising in the area of water 
resources modeling. Using global SA, several studies including Tang et al. (2007), Wagener 
et al. (2003) and van Werkhoven et al. (2008) have demonstrated sensitivity of influential 
model parameters to season for the watersheds they studied. However, most model evaluation 
procedures practices in hydrology today assume temporal invariability of the dominant 
parameters and their respective “optimal” values. This assumption could compromise 
capability of the model to effectively extract information from the observed data and to 
develop more accurate model that can simulate acceptable watershed responses during dry as 
well as wet seasons of a year. For example, White et al. (2009) obtained slight improvement 
in model performance by allowing seasonal variability of a single parameter during model 
calibration. This study investigates the advantage of conducting season based global 
sensitivity analysis and automatic calibration in improving accuracy of model simulations 
compared to the conventional approach of assuming seasonal invariability of dominant 
parameters and their optimal values. 

How well a model simulation fits the observed data is evaluated either visually (i.e., 
graphical comparison of model simulations with observations) or using one or more 
statistical measures commonly referred to as efficiency criteria or goodness-of-fit criteria. 
Efficiency criteria are derived from the residual (error) between the simulated and observed 
output. Many such measures have been used in water resources modeling (Nash and 
Sutcliffe, 1970; Legates and McCabe, 1999; Krause et al., 2005; Moriasi et al., 2007; Gupta 
et al., 2009). The Nash-Sutcliffe efficiency (NSE) criteria originally proposed by Nash and 
Sutcliffe (1970) and the root of mean of square of errors (RMSE) between the simulated and 
observed hydrologic variable are the most commonly used efficiency measures (Gupta et. al, 
2009). In automatic calibration studies, in addition to evaluating how well model simulations 
fit observed data, one or more efficiency criteria are used as objective function(s) during 
optimization to help identify parameter sets that result in model simulations that closely 
match observations.  The studies done in the past on NSE and other goodness-of-fit criteria 
examined how well the measure(s) describe model performance. However, no study has 
investigated sensitivity of model performance to the goodness-of-fit criteria used as objective 
function during automatic calibration. As such, this study examines the effect of the 
efficiency criteria used as objective function during automatic calibration on model 
performance; identifies objective functions that are reasonably sensitive to both low flows 
and high flows, and ought to be used for single objective automatic calibration attempts and 
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investigate an efficiency measure that best describes model performance and needs to be used 
to report goodness of modeling results. 

A widely used watershed simulation model known as Soil and Water Assessment 
Tool (SWAT) has been applied to the headwaters of the Little River Experimental 
Watershed, one of the United States Department of Agriculture (USDA)-Agricultural 
Research Service (ARS) experimental watersheds. A global SA method known as Sobol’ 
(Sobol’ 1993) has been used to investigate sensitivity of SWAT’s streamflow parameters at 
three time periods: annual, months with low runoff coefficient, and months with high runoff 
coefficient in an attempt to identify the dominant model and watershed behaviors during wet 
and dry seasons. Then, the Dynamically Dimensioned Search (DDS) (Tolson and Shoemaker 
2007) algorithm has been used to calibrate SWAT using the principle parameters indentified 
by each global SA methods. The most widely used efficiency criteria have been examined 
with regard to their effectiveness as objective function during the calibration attempt, and 
performance of the calibrated models have been evaluated using a number of goodness-of-fit 
criteria. Performance of the calibration results has been verified using the traditional split-
sampling approach as well as by assessing effectiveness of the model in predicting internal 
watershed behaviors through comparison of simulated streamflow with observations at 
multiple internal sites not used for model calibration.  

Watershed Simulation Model and Study Watershed 

Soil and Water Assessment Tool (SWAT) (Arnold et.al., 1999), the simulation model used 
for this study, is one of the most widely-used and well supported watershed simulation 
models in use today (Gassman et al., 2007).  SWAT is a physically-based, spatially-
distributed model that uses information regarding climate, topography, soil properties, land 
cover, and human activities such as land management practices to simulate numerous 
physical processes including surface runoff, groundwater flow, streamflow, sediment 
concentration, pesticides, nutrients such as nitrogen and phosphorous, pathogens and 
bacteria. Spatially, the model subdivides a watershed in to subwatersheds and, potentially, 
further partitions subwatersheds into hydrologic response units (HRUs) based o land cover, 
soil, and overland slope diversity in the subwatershed.  Major hydrologic processes modeled 
by SWAT include snowpack and snow melt, surface runoff, potential evapotranspiration, 
estimated by Penman-Monteith, Hargreaves or Priestley method; percolation, simulated by a 
combination of a layered routing technique with a crack flow model; lateral subsurface flow 
or interflow, simulated by a kinematic storage model; and ground water flow.  SWAT 
operates within ESRI’s ArcGIS platform greatly simplifying the preparation of model inputs 
and visualization of outputs.  SWAT has been extensively used) in the United States and 
Europe (Gassman et al., 2007).  In this study, SWAT version 2005 (Neitsch et al., 2005) has 
been used to solve the governing hydrologic equations, and to determine streamflow outputs 
at desired locations throughout the demonstration watershed. For detailed technical theory of 
the hydrologic processes modeled by SWAT, the reader is referred to Neitsch et al. (2005). 

As shown in Figure 1 headwaters of the Little River Experimental Watershed 
(LREW), one of the USDA-ARS’s experimental watersheds, located in Geogria, United 
States, has been used to demonstrate the research objectives. The LREW has been selected 
because it is heavily gauged for rainfall as well as streamflow (Bosch et al, 2007), and 
because data are readily accessible online (ftp://www.tiftonars.org/) from the Southeast 
Watershed Research Laboratory (SEWRL). The watershed consists primarily of low-gradient 
streams and is located mainly on sandy soils underlain by limestones that form locally 
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confined aquifers. Land use within the watershed is made up of about 31% row crop 
agriculture, 10% pasture, 50% forest, and 7% urban area (Bosch et al. 2006). 

Only the upper 116 km2 of the LREW has been used for this study to minimize 
computational demand of the model, and also because the headwater subwatersheds have 
denser streamflow and rainfall gauges. Twelve precipitation gauges and five streamflow 
gauges (see Figure 1) with long-term data (i.e., 1967-2006) are available for the headwaters 
from the SEWRL. Climate data for a station near the watershed has been obtained from the 
U.S. Historical Climatology Network (http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html) as 
the climate data available from SEWRL starts only from 2004. The geographic data used to 
setup SWAT model including topography, land use, stream networks, and rainfall and 
streamflow gauging locations have been obtained from the SEWRL. SSURGO soil map has 
been obtained from the Natural Resources Conservation Service (NRCS) soil data mart 
(http://soildatamart.nrcs.usda.gov/). 

Figure 1. Location Map of the Study Area and the Gauging Stations 

Global Sensitivity Analysis and Calibration Methods 

Sobol’s method (Sobol' 1993), the global sensitivity analysis method used for this study, is a 
variance-based SA approach that decomposes total variance of the output (y) into the 
contribution of the individual model parameters (xi). Variance of the output can be 
decomposed in to:  the sum of the linear (first-order) terms due to individual parameters (xi); 
the sum of two-way interactions (i.e., the effect of parameters xi and xj that cannot be 
explained by the sum of the individual effects of xi and xj); plus sums of higher order 
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interactions. As such, the method can determine the first-order (main-effect) as well as the 
total sensitivity indices for each parameter accounting for higher order interaction effects 
between the parameters. In addition, the method is model independent in that, unlike 
regression and correlation analysis based techniques, it works for nonlinear and non-additive 
models.  

Dynamically Dimension Search (DDS) (Tolson and Shoemaker 2007), used for 
calibration in the study, has been developed to improve computational efficiency of 
calibrating spatially distributed watershed simulation models. DDS is a simple, single-
objective, heuristic search method that starts by globally searching the feasible region and 
incrementally localizes the search space as the number of simulation approaches the 
maximum allowable number of simulations (the only stopping criteria used by the 
algorithm). Progress from global to local search is achieved by probabilistically reducing the 
number of model parameters modified from their best value obtained thus far. New potential 
solutions are created by perturbing the current parameter values of the randomly selected 
model parameters only. The perturbation magnitudes are randomly sampled from a normal 
distribution with a mean of zero. The best solution identified thus far is maintained, and 
never updated with a solution with an inferior value of the objective function. One beauty of 
the DDS is that it requires no algorithmic parameter tweaking as the only parameters to set 
are the maximum number of model evaluations and the scalar neighborhood size perturbation 
parameter (r) that defines the random perturbation size standard deviation as a fraction of the 
decision variable range. The recommended value of 0.2 (Tolson and Shoemaker 2007) has 
been used for r in this study. 

Data Preprocessing and Watershed Delineation 

The data required by SWAT2005, the watershed simulation model used in this study, have 
been obtained for the headwaters of the LREW mainly from the SEWRL. Missing values for 
the precipitation data have been filled using areally averaged precipitation determined from 
gauges with available data for that particular day. Areal average precipitation was used 
because of homogeneity of precipitation in the study area. Based on the 1968 to 2006 data, 
mean daily precipitation of the twelve rain gauges in the study watershed varied from 3.18 
mm to 3.45 mm. The minimum and the maximum daily rainfall correlation factors among the 
twelve rain gauges were 0.77 and 0.98, respectively. These results indicate reasonably 
homogeneous spatial rainfall pattern across headwaters of the LREW. Precipitation and other 
climate data were then formatted in the way that is readable by ArcSWAT, the ArcGIS 
interface that prepares SWAT2005 inputs and parameters from climate and watershed data 
(Winchell et al. 2008). 

The Soil Survey Geographic (SSURGO) soil data used in this study provides the 
highest resolution soil map for a county-wide soil database in the United States. Because 
SSURGO soils cannot be directly used by ArcSWAT, SWATioTools (Sheshukov et al. 
2009), an ArcMap GIS extension tool that processes the SSURGO soils into the format that is 
readable by ArcSWAT, has been used to preprocess the SSURGO soils. The land cover 
image used for the study was for year 2003, and was also preprocessed to synchronize the 
names used in the original map with SWAT’s land cover types. Once the climate, the land 
use and the soil data were preprocessed, the 116 km2 study watershed was delineated and 
subdivided into 37 subbasins and 96 HRUs using ArcSWAT (Winchell et al. 2008) as shown 
in Figure 1. 
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Seasonal Model Evaluation 

Through dynamic identifiability analysis, several studies have shown that model and 
watershed behaviors may react differently to the same model parameter during various 
periods of a year (Wagener et al. 2003; Tang et al. 2007). Dominant model structure and 
parameters may depend on forcings and antecedent conditions (Tang et al. 2007). According 
to Tang et al. (2007) and van Werkhoven et al. (2008), forcings, mainly rainfall, is 
responsible for dynamic sensitivity of the model they used on their demonstration watershed. 
For the headwaters of LREW, however, careful review of the observed rainfall and runoff 
data showed strong seasonality of rainfall-runoff relationship that cannot be described using 
rainfall alone. As a result, seasonality of the watershed’s rainfall-runoff behavior was 
described in this study using monthly runoff coefficients determined from 39 years (i.e., 
1968-2006) of rainfall and runoff data. Runoff coefficient, as used here, is defined as the ratio 
of areally averaged total monthly rainfall to the total monthly runoff measured at the outlet of 
the watershed. Areally averaged monthly rainfall totals, monthly runoff totals and monthly 
runoff coefficients obtained for the watershed are given in Table 1.  

Table 1. Monthly Runoff Coefficients Calculated for the Study Area 
Month Monthly Rainfall  

Total (mm) 
Monthly Runoff Total 

(mm) 
Runoff 

Coefficient 
January 248.6 57.7 0.23 
February 258.3 63.4 0.25 
March 698.4 76.0 0.11 
April 286.8 43.4 0.15 
May 186.9 18.6 0.10 
June 437.4 15.2 0.03 
July 473.8 15.0 0.03 
August 320.2 13.8 0.04 
September 455.7 10.3 0.02 
October 272.6 7.2 0.03 
November 279.2 11.5 0.04 
December 255.9 25.3 0.10 

Table 1 reveals interesting information regarding rainfall-runoff characteristics of the 
watershed. Except for March, the highest monthly rainfall totals were recorded for the 
watershed in June, July and September. However, monthly runoff coefficients of these three 
months (i.e., June, July and September) are among the lowest. This indicates that unlike the 
finding of Tang et al. (2007) and van Werkhoven et al. (2008), dynamic parameter sensitivity 
may not be described based on rainfall alone for the watershed used in this study. To test 
seasonal sensitivity of SWAT2005 streamflow parameters and also to test the improvement 
in model accuracy that may be achieved by calibrating SWAT2005 for separate seasons, both 
SA and calibration runs were performed on the following three time periods: 1) months with 
runoff coefficient greater than 0.1 (i.e., December to April); 2) months with runoff coefficient 
less than 0.1 (i.e., June to October); 3) all months combined irrespective of their runoff 
coefficients which is typical of the model evaluation methods practiced today. For the season 
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based evaluation; November and May were used as transition months where model 
parameters were changed linearly from their respective dry season values to wet season 
values and vice versa, respectively. The conventional model evaluation approach has been 
used as baseline to compare advantage of the dynamic (i.e., seasonally varying) model 
evaluation technique attempted in this study. 

The streamflow data collected at gauge F (outlet of the study watershed as shown in 
Figure 1) was used for the SA as well as calibration. One year data (i.e., 1999) was used as a 
warm-up period to diffuse the effect of antecedent conditions, and four year data (i.e., 2000 - 
2003) was used for the sensitivity analysis as well as calibration. Performance of the 
calibration attempt was verified using the traditional split sampling approach (i.e., the 2004- 
2006 data at the calibration site was used for verification) as well as by assessing the 
capability of the calibrated model to simulate streamflow with reasonable accuracy at the 
internal gauges not used for calibration (i.e., gauges I, J, K, and M). The Nash-Sutcliffe 
efficiency (NSE) criterion (Nash and Sutcliffe, 1970) was used as output for the SA and as 
objective function for the calibration attempts. Root Mean Square Error (RMSE), Percent 
Bias (% Bias), and agreement of the observed and simulated mean annual streamflow have 
been used as additional criteria to compare goodness of the calibrated model predictions. 
Moriasi et al. (2007) recommended percent bias as one of the measures that should be 
included in model performance reports. Percent bias describes whether model simulations 
over/under estimate the observations. Results of the dynamic model calibration and the 
conventional calibration attempts are summarized in Table 2. The results clearly show 
superiority of season based model calibration in improving model performance. 

Table 2. Efficiency Criteria Values Obtained Using Seasonal and Conventional Calibrations 
at Gauges F and J 

Gage Period 

RMSE (m3/sec) NSE % Bias Mean Annual Streamflow (mm) 

Seas. Conv. Seas. Conv. Seas. Conv. Observed Seas. Conv. 

F Cal. 

Ver. 

1.12 

2.36 

1.91 

2.57 

0.67

0.41

 0.41 

0.45 

-3.3

-4.8

 55.3 

47.2 

248.4 

282.6 

240.0 

269.0 

385.7 

416.0 

J Cal. 

Ver. 

0.19 

0.43 

0.40 

0.47 

0.79

0.37 

0.38 

0.49 

12.3

-36.3 

85.1 

6.1 

237.2 

144.5 

266.5 

91.9 

438.8 

153.2 

Sensitivity of Model performance to Efficiency Criteria 

Based on results of the seasonal sensitivity analysis study summarized in Table 2, dynamic 
model calibration was pursued to examine sensitivity of model performance to the efficiency 
criteria used during model calibration. Single objective automatic calibration was performed 
using nine commonly used different efficiency measures as objective function, one efficiency 
measure per calibration run. Performance of each calibration result was then tested using 
eleven different efficiency criteria. Streamflow data from gage F was used for the calibration. 
One year data (i.e., 1999 data) was used as a warm-up period to diffuse the effect of 
antecedent conditions, and four year data (i.e., 2000 - 2003) was used for calibration. 
Performance of the calibration exercise was verified using the traditional split sampling 
approach (i.e., the 2004- 2006 data at the calibration site (gage F) was used for verification) 
as well as by analyzing capability of the calibrated model to simulate accurate streamflow at 
internal gauges not used for calibration (i.e., gages I, J, K, and M) for 2000-2006 data. 
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Two case studies were considered for the research. In the first case, the actual data 
(i.e., soil, land use, topography, climate and streamflow) available for the watershed were 
used to build SWAT model. Then, DDS was used to calibrate the model using 9 different 
objective functions. For each objective function, three separate calibration attempts were 
made: one for the low flow season only, one for the wet season only, and one using the 
conventional calibration approach (i.e., both seasons combined) where model parameters are 
assumed season insensitive. For each calibration run, 3000 SWAT simulations were used for 
DDS. This means that a total of 27 calibration attempts (i.e., three calibration scenarios for 
each of the 9 objective functions), where each calibration requires 3000 SWAT simulations, 
were made for the first case study. In the second case, instead of using the actual streamflow 
available for the watershed, the streamflow simulated by the calibrated SWAT during the 
first case study with one of the objective functions was used as observed data, and then 
calibrations were repeated with each one of the 9 efficiency measures used as objective 
function one at a time. This second approach would eliminate uncertainties due to model 
structure and input data from the modeling process as the streamflow simulated by the 
calibrated model is considered as “observed data”, and the same input data that produced the 
“observed streamflow” is being used to recalibrate the same model. Furthermore, true values 
of the 12 sensitive parameters are known and that would help to identify the objective 
function that produces “optimal” parameters that are the closest to the true values. Therefore, 
the second case study would help further elucidate relative effectiveness of the 9 efficiency 
measures as objective function to minimize parametric uncertainty. To minimize the 
computational demand, only dynamic model evaluation approach was considered for the case 
study implying that total of 18 calibration attempts were made for the second case. In 
addition, for both dry season and wet season calibration runs, only 2000 SWAT simulations 
per calibration attempt were used for this hypothetical scenario.  

For both case studies, all twelve sensitive parameters were assumed to follow 
uniform distribution as done in Muleta and Nicklow (2005), and the lower and upper bounds 
recommended in Neitsch et al. (2005) were used for majority of the parameters. List of the 
parameters and their ranges are provided in Table 2. Some of these model parameters (e.g. 
NRCS’s curve number, CN2) vary from HRU to HRU, from subbbasin to subbasin, or from 
reach to reach depending on soil, land cover, slope and/or other watershed behaviors. During 
the model calibration, the baseline values assigned to each spatially varying parameter were 
altered by multiplying the base lines by the sampled multipliers, or by adding the sampled 
values to the baseline. This way, the parameters would be scaled up or down while 
preserving their spatial variability.  Results of the hypothetical scenario are summarized in 
Table 3. 

Conclusions 

The major conclusions of the study are 1) the season based model calibration approach has 
significantly improved model performance and the identified optimal parameter values 
showed significant sensitivity to season; 2) automatic model calibration is sensitive to the 
efficiency measure used as object function; 3) multiple efficiency criteria should be used to 
report model performance as no single efficiency measure performed consistently well in 
describing goodness of model results; 4) relative to all the efficiency measures tested in the 
study, MNSED was identified as the most robust with regard to its effectiveness as objective 
function during automatic model calibration for both low flow seasons as well as high flow 
season. This shows that MNSED may be a better choice for use as objective function for 
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single objective calibration applications; 5) parameter values that are significantly divergent 
from their true values may lead to model performance that may be considered near perfect 
even when judged using multiple efficiency measures. 

Table 3. Efficiency Criteria Values Obtained At Gauge F When Various Efficiency 
Measures Were Used As Objective Function 

Period Criteria MAE RMSE NSE NSED MNSE MNSED LN_NSE LN_NSED VE PBIAS RSR 
Cal. MAE 

RMSE 
NSE 
NSED 
MNSE 
MNSED 
LN_NSE 
LN_NSED 
VE 

0.22 0.57 0.89 0.90 0.78 0.80 0.88 0.88 0.76 -1.79 11.56 
0.16 0.28 0.97 0.97 0.84 0.86 0.81 0.80 0.83 3.46 5.61 
0.30 0.53 0.91 0.91 0.72 0.74 0.79 0.78 0.67 10.59 10.74 
0.24 0.41 0.95 0.95 0.77 0.80 0.74 0.76 0.74 -5.68 8.19 
0.12 0.25 0.98 0.98 0.88 0.90 0.97 0.97 0.87 -0.81 5.02 
0.08 0.22 0.98 0.98 0.92 0.93 1.00 1.00 0.92 -2.14 4.45 
0.25 0.71 0.84 0.84 0.74 0.77 0.99 0.98 0.72 -7.02 14.44 
0.16 0.37 0.95 0.95 0.84 0.86 0.97 0.97 0.82 -5.04 7.51 
0.25 0.59 0.86 0.87 0.75 0.77 0.95 0.94 0.72 -5.87 11.97 

Ver. MAE 
RMSE 
NSE 
NSED 
MNSE 
MNSED 
LN_NSE 
LN_NSED 
VE 

0.39 1.80 0.70 0.71 0.67 0.71 0.85 0.92 0.62 -3.33 21.85 
0.18 0.36 0.98 0.98 0.85 0.87 0.84 0.89 0.82 0.94 4.40 
0.42 1.61 0.75 0.76 0.68 0.70 0.81 0.87 0.59 5.14 19.46 
0.33 1.57 0.76 0.77 0.74 0.78 0.78 0.87 0.68 -4.16 19.02 
0.13 0.38 0.97 0.97 0.89 0.91 0.97 0.98 0.88 -0.50 4.64 
0.08 0.30 0.98 0.99 0.94 0.94 1.00 1.00 0.92 -1.91 3.60 
0.27 0.76 0.90 0.91 0.77 0.80 0.96 0.97 0.74 -5.22 9.20 
0.19 0.54 0.96 0.96 0.85 0.87 0.88 0.90 0.82 -4.37 6.51 
0.30 0.71 0.90 0.91 0.75 0.78 0.90 0.91 0.71 -7.85 8.59 

References 

Arnold, J.G., Williams, J.R., Srinivasan, R., King, K.W.(1999). “SWAT: Soil and Water 
Assessment Tool.” U.S. Dept. of Agriculture, Agricultural Research Service, Temple, 
TX. 

Bosch, D. D., Sheridan, J. M., Lowrance, R. R, Hubbard, R. K., Strickland, T. C., Feyereisen, 
G. W., Sullivan, D. G.(2007). “Little River Experimental Watershed database.” 
Water Resour. Res. 43, W09470, doi:10.1029/2006WR005844. 

Bosch, D.D., Sullivan, D.G., Sheridan, J. (2006). “Hydrologic impacts of land-use changes in 
coastal plain watersheds.” Transactions of the ASABE, 49(3), 423-432. 

Gassman, P.W., Reyes, M.R., Green, C.H., and Arnold, J.G.(2007). “The Soil and Water 
Assessment Tool: Historical Development, Applications, and Future Research 
Directions.” Transactions of the ASABE, 50(4), 1211-1250. 

Gupta, H., V., Kling, H., Yilmaz, K., K., and Martineza, G., F., 2009. Decomposition of the 
mean squared error and NSE performance criteria: Implications for improving 
hydrological modeling, J. Hydrol., 377 (1-2), 80-91. 

Krause, P., Boyle, D.P., and Bäse, F., 2005. Comparison of different efficiency criteria for 
hydrological model assessment, Advances in Geosciences, 5, 89–97. 

Legates, D.R. and G.J. McCabe, G.J., 1999. Evaluating the use of “goodness-of-fit” measures 
in hydrologic and hydroclimatic model evaluation, Water Resour. Res. 35, 233–241. 

 



10 
 

  

 

 

 

 

 

 

 

 
 

 

 

Moriasi, D. N.,  Arnold, J. G.,  Van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, T. L. 
( 2007).” Model evaluation guidelines for systematic quantification of accuracy in 
watershed simulations”, Transactions of the ASABE, 50(3), 885−900. 

Muleta, M.K., Nicklow, J.W. (2005). “Sensitivity and uncertainty analysis coupled with 
automatic calibration for a distributed watershed model.” J. Hydrol. 306, 1-19. 

Nash, J.E., Sutcliffe, J.V.(1970). “River flow forecasting through conceptual models. Part I- 
A discussion of principles.” J. Hydrol. 125, 277-291. 

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R.(2005). “Soil and Water Assessment 
Tool-Version 2005-Theoretical Documentation”, Temple, Texas, USA. 

Saltelli, A. (2000). “What is sensitivity analysis?” In: Saltelli, A., Chan, K., and Scott, E. M. 
(Eds.), Sensitivity analysis. Wiley, NY. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J. , Gatelli, D. , Saisana, M., 
Tarantola, S. (2008). “Global Sensitivity Analysis: The Primer.” Wiley, New York. 

Sheshukov, A., Daggupati, P.,  Lee, M. C., Douglas-Mankin, K.(2009). “ArcMap Tool for 
Pre-processing SSURGO Soil Database for ArcSWAT.” Proceedings of the 5th 
International SWAT Conference, Boulder, CO., Aug. 5-7. 

Sobol', I.M. (1993). “Sensitivity estimates for non-linear mathematical models”, Math. 
Modeling Comput. Experiment, 1(4), 407-414. 

Tang, Y., Reed, P.,  van Werkhoven, K., Wagener, T. (2007). “Advancing the identification 
and evaluation of distributed rainfall-runoff models using global sensitivity analysis.” 
Water Resour. Res., 43, W06415, doi:10.1029/2006WR005813. 

Tolson, B. A., Shoemaker, C. A.(2007). “Dynamically dimensioned search algorithm for 
computationally efficient watershed model calibration.” Water Resour. Res., 43, 
W01413, doi:10.1029/2005WR004723. 

U. S. EPA (2002). Guidance for quality assurance project plans for modeling. EPA QA/G-
5M. Report EPA/240/R-02/007, Washington, D.C. 

van Werkhoven, K., Wagener, T.,  Reed, P.,  Tang, Y. (2008). “Rainfall characteristics define 
the value of streamflow observations for distributed watershed model identification.”, 
Geophys. Res. Lett., 35, L11403, doi:10.1029/2008GL034162. 

Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S., Gupta, H. V. (2003). “Towards 
reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability 
analysis.” Hydrol. Process. 17(2), 455– 476. 

White, E.D., Feyereisen, G.W., Veith, T.L., Bosch, D.D. (2009). “Improving Daily Water 
Yield Estimates in the Little River Watershed: SWAT Adjustments”, Transactions of 
the ASABE, Vol. 52(1): 69-79 

Winchell, M., Srinivasan, R.,  	Di Luzio, M., Arnold, J. (2008). “ArcSWAT 2.1 Interface for 
SWAT 2005: User’s Guide”, Blackland Research Center, Temple, Texas. 

 




