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Abstract: Previous studies have reported limitations of the efficiency criteria commonly used in hydrology to describe goodness of model 
simulations. This study examined sensitivity of model performance to the objective function used during automated calibrations. Nine widely 
used efficiency criteria were evaluated for their effectiveness as objective function, and goodness of the model predictions were examined 
using 13 criteria. Two cases (Case I: Using observed streamflow data and Case II: Using simulated streamflow) were considered to accom
plish objectives of the study using a widely used watershed model (SWAT) and good-quality field data from a well-monitored experimental 
watershed. Major findings of the study include (1) automated calibration results are sensitive to the objective function group—group that 
work based on minimization of the absolute deviations (Group I), group that work based on minimization of square of the residuals 
(Group II), and groups that use log of the observed and simulated streamflow values (Group III)—but not to objective functions within 
the group; (2) efficiency criteria that belong to Group I were the most effective when used as objective function for accurate simulation 
of both low flows and high flows; (3) Group I and Group II objective functions complement each other’s performance; (4) with regard 
to the capability to describe goodness of model simulations, efficiency criteria that belong to Group I showed superior robustness; 
(5) for the study watershed, use of the long-term interannual calendar day mean as baseline model did not improve capability of an efficiency 
criterion to describe model performance; and (6) even for ideal conditions where uncertainty in input data and model structure are fully 
accounted for, identifying the so-called global parameters values through calibration could be daunting as parameter values that were 
significantly divergent from predetermined values produced model simulations that can be considered near perfect even when judged using 
multiple efficiency criteria. 

Introduction 

Computer models are routinely used for planning and management 
of water resources. Because models are simplifications of the real 
world, accuracy of their predictions cannot be taken for granted. 
Consequently, models must be calibrated to ensure that simulation 
results are sound and defensible (U.S. EPA 2002). Calibration 
refers to the process of identifying model parameters (i.e., nonmea
surable model inputs) that produce model outputs that closely 
match the observed watershed characteristics. Calibration can be 
performed manually with trial-and-error procedure, automatically 
with the help of optimization methods or using their combination. 
Automated calibration is favored as manual calibration is often 
tedious, time-consuming, and requires experienced personnel 
(Muleta and Nicklow 2005). Irrespective of the method pursued, 
the ultimate goal of calibration is to develop a model that simulates 
the watershed characteristics as accurate as possible. 

How well a model simulation fits the observed data is evaluated 
graphically (i.e., visual comparison of observed and simulated val
ues using various kinds of plots) as well as by using one or more 
statistical measures commonly referred to as efficiency criteria, 

goodness-of-fit criteria, or efficiency measures. Efficiency criteria 
are derived from the residual (error) between the simulated and ob
served values. Many such measures have been used in hydrologic 
modeling (Nash and Sutcliffe 1970; Legates and McCabe 1999; 
Krause et al. 2005; Moriasi et al. 2007; Gupta et al. 2009). The 
Nash-Sutcliffe efficiency (NSE) criterion originally proposed by 
Nash and Sutcliffe (1970) and the root of mean of square of errors 
(RMS) are the most commonly used criteria (Gupta et al. 2009). In 
spite of its popularity, NSE has many well-documented limitations 
(ASCE 1993; Legates and McCabe 1999; Seibert 2001; Krause 
et al. 2005; McCuen et al. 2006; Moriasi et al. 2007; Schaefli and 
Gupta 2007; Criss and Winston, 2008; Jain and Sudheer 2008; 
Gupta et al. 2009). 

The first concern is tha.t the use of mean of the observations 
(Omean) as a benchmark model would lead to overestimation of 
the hydrologic model performance for highly seasonal watershed 
variables (Gupta et al. 2009; Schaefli and Gupta 2007; Sharad 
and Sudheer 2008). This means that interpretation of model perfor
mance is inconsistent as the reference model has different meaning 
for different watersheds depending on seasonality of the watershed 
variable. Large value of NSE can be obtained with a poor model if 
the data have high variability. As an example, Schaefli et al. (2005) 
showed that a trivial model that assigns mean observed discharge 
for each calendar day resulted in NSE of 0.85 for mountainous 
watersheds that have strong annual discharge cycle. In the contrary, 
if observations exhibit less variability and the values are close to 
Omean, NSE can approach negative infinity even if the model is 
good predictor of the observations. This makes model performance 
communication very misleading is NSE alone is used. The second 
limitation is oversensitivity of NSE to peak flows as it uses the 
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squared deviations making it less than adequate to measure ability 
of the hydrologic model to simulate low flows (Legates and 
McCabe 1999; Krause et al. 2005; Criss and Winston 2008). 

Several solutions have been proposed to address shortcomings 
of the NSE. The major recommendations include (1) using more 
meaningful baseline model that a hydrologist is likely to adopt 
in the absence of a model for the watershed. Suggested baseline 
models include interannual mean for each calendar day (Schaefli 
and Gupta 2007), simple models such as the storage and lag 
(Schaefli and Gupta 2007) or rational formula (Seibert 2001); 
(2) using other efficiency criteria that are modified to lessen over-
sensitivity of NSE to peak flows (Legates and McCabe 1999; 
Krause et al. 2005; Criss and Winston 2008); and (3) evaluating 
and reporting model performance using multiple efficiency criteria 
including the NSE (Legates and McCabe 1999; Krause et al. 2005). 

Besides describing how well model simulations fit observed 
data, one or more efficiency criteria are also used as objective func
tion(s) during automated calibrations to help identify optimal 
parameter sets. Many studies have demonstrated sensitivity of 
calibration results to the objective function used as a calibration 
criterion (Sorooshian et al. 1983; Yan and Haan 1991; Gupta et al. 
1998). Recommendations to address the sensitivity include using 
the objective function(s) consistent with the anticipated application 
of the model and/or implementing multiobjective calibration ap
proaches (Gupta et al. 1998). While application of multiobjective 
calibration has been steadily rising (Yapo et al. 1998; Madsen 2000; 
Tang et al. 2006; Bekele and Nicklow 2007; Efstratiadis 2010), 
single objective calibration is still more widely used in many prac
tical applications. Using an objective function that best represents 
the expected application of the model may work well if the antici
pated application of the model is distinct (e.g., accurate simulation 
of peak flows for flood control application). For general (broad) 
purpose models that are expected to accurately simulate all parts 
of a hydrograph including low flows and peak flows; however, 
identification of an objective function that meets all requirements 
may be daunting. 

The objectives of this study are to (1) examine sensitivity of 
model performance to the efficiency criteria used as objective func
tion during automated calibration; (2) identify objective functions 
that are reasonably sensitive to both low flows and high flows and 
should be used for single objective automated calibration attempts; 
(3) identify objective functions that complement each other and 
should be used for multiobjective calibration applications; and 
(4) identify efficiency criteria that are robust in describing model 
performance and should be used to report model results. While 
most of these objectives have been examined by several authors in 
the past using lumped conceptual models (Sorooshian et al. 1983; 
Yan and Haan 1991; Gupta et al. 1998), this study revisits the issues 
using a widely used, spatially distributed watershed model on a 
data rich experimental watershed that has dense precipitation 
and streamflow gauges and good-quality geospatial data including 
topography, land cover, and soil. The multiple streamflow gauges 
available in the study watershed helped to examine robustness 
of the results to reasonably simulate internal responses of the 
watershed. 

Model Efficiency Criteria: Overview 

The efficiency criteria described below have been used in this 
study either as objective function during optimization and/or to 
test how well the calibrated model fits the observed data. The effi
ciency criteria have been selected based on recommendations in the 
literature. 

Nash-Sutcliffe Efficiency 

P
N 
i¼1ðSi  OiÞ2 

NSE ¼ 1  P ð1ÞN Þ2 
i¼1ðOi  Omean

where S = model simulated output; O = observed hydrologic var
iable; Omean = mean of the observations that the NSE uses as a 
benchmark against which performance of the hydrologic model 
is compared; and N = total number of observations. NSE values 
range from negative infinity to 1, where 1 shows a perfect model. 
NSE is zero, implies the observed mean is as good a predictor as 
the model, and if NSE is less than zero, then the model is worse 
predictor than Qmean. 

Root Mean Square Error 

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u 
N u X1 tRMS ¼ ðSi  OiÞ2 ð2Þ

N 
i¼1 

RMS ranges from zero (for the ideal model) to positive infinity 
(worst model). RMS is biased toward peak flows. 

Nash-Sutcliffe Efficiency with Calendar Day Mean as 
Reference Model 

One of the major limitations of NSE is the use of mean of all 
observations as the baseline model. Various studies, including 
Schaefli and Gupta (2007), have suggested alternative benchmark 
models such as the interannual calendar day mean. Accordingly, 
NSE formulation has been modified as follows to test the effect 
of using the interannual calendar day average (OOD) as a reference 
model 

P
N 
i¼1ðSi  OiÞ2 

NSD ¼ 1  P ð3ÞN 
i¼1ðOi  OODÞ2 

For this study, OOD has been calculated for each calendar day of a 
year at five streamflow gauging sites in the study watershed from 
39 years (i.e., 1967–2006) of observed data. The premise of using 
OOD as a baseline model is that in the absence of any model OOD 
would be better predictor of streamflow at the site for that specific 
calendar day of the year than the mean of observations (Omean) used 
in the original NSE formulation. 

Modified Forms of Nash-Sutcliffe Efficiency and 
Nash-Sutcliffe Efficiency with Calendar Day Mean 

Oversensitivity of NSE and Nash-Sutcliffe Efficiency with 
Calendar Day Mean (NSD) to peak flows can be minimized by 
modifying formulation of the measures as follows (Krause et al. 
2005): 

P
N 
i¼1 jSi  OijMNS ¼ 1  P ð4ÞN 

i¼1 jOi  Omeanj 
P

N 
i¼1 jSi  OijMNSD ¼ 1  P ð5ÞN 
i¼1 jOi  OODj 

where MNS and MNSD = modified forms of NSE and NSD, 
respectively. These modified forms are expected to better describe 
model performance as they are more evenly sensitive to low flows 
as well as high flows. 



 

 

 

  

 

 
 

  
  

  
  

 

 
 
 
 
 

 
 

Nash-Sutcliffe Efficiency and Nash-Sutcliffe Efficiency 
with Calendar Day Mean Calculated from Logarithmic 
Values 

Another proposal to ease oversensitivity of NSE to high flows 
was to use logarithmic of the observed and predicted values. 
The approach was tested for both NSE as well as NSD 

P
N 
i¼1ðlnðSi þ 0:001Þ lnðOi þ 0:001ÞÞ2 

LNS ¼ 1 P ð6ÞN Þ2 
i¼1ðlnðOi þ 0:001Þ Oln;mean

P
N 
i¼1ðlnðSi þ 0:001Þ lnðOi þ 0:001ÞÞ2 

LNSD ¼ 1 P ð7ÞN OO ln;DÞ2 
i¼1ðlnðOi þ 0:001Þ 

where LNS and LNSD = the NSE and NSD calculated using log 
of the observed and simulated values, respectively. Oln;mean and 
OO ln;D = mean of the log of all observations and mean of the log 
of each calendar day observations, respectively. 

Mean Absolute Error (MAE) 

MAE is expected to be less sensitive to high flows and more sen
sitive to low flows than NSE and RMS and is expected to describe 
model performance more evenly 

N X1
MAE ¼ jSi Oij ð8Þ

N 
i¼1 

Volumetric Efficiency 

Criss and Winston (2008) proposed the volumetric efficiency (VE) 
criterion to address the limitations of NSE and its modifications 

P
N 
i¼1 jSi OijVE ¼ 1 P ð9ÞN 

i¼1 Oi 

Percent Bias 

Moriasi et al. (2007) recommended percent bias (PBIAS) as one of 
the measures that should be included in model performance reports. 
Percent bias describes whether the model simulations overestimate 
or underestimate the observations 

P
N 
i¼1ðOi SiÞPBIAS ¼ 100  P ð10ÞN 

i¼1 Oi 

Ratio of Standard Deviation of Observations to RMS 

Ratio of standard deviation of observations to RMS (RSR) stan
dardizes RMS using standard deviation of the observations and 
can be used to compare performances across watersheds or various 
constituents (Moriasi et al. 2007) 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P
N 
i¼1ðSi OiÞ2 

RSR ¼ pffiffiffiffiffiffiffiffiffiffiffiffiP ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð11Þ 
N Þ2 
i¼1ðOi Omean

Coefficient of Determination 

Coefficient of determination (R2) is an indicator of the extent to 
which the model explains the total variance in the observed data. 
A major limitation of R2 is that it describes the linear relationship 
between the two data sets, and one may obtain large R2 value with a 
poor model that consistently overestimates or underestimates the 
observations. 

P  N 2 
i¼1ðOi OmeanÞðSi SmeanÞR2 ¼ P P ð12Þ ½ N Þ2 0:5½ N Þ2 0:5i¼1ðOi Omean i¼1ðSi Smean

where Smean = mean of the model simulations. 

Index of Agreement 

Willmott (1981) proposed the index of agreement (D) to overcome 
the limitation of R2 described previously. D suffers from oversen
sitivity to extreme flows (Legates and McCabe 1999) 

P  N 
i¼1ðOi SiÞ2 

D ¼ 1 P ð13ÞN Omean Omeani¼1ðjSi j þ jOi jÞ2

PBIAS, RSR, R2, and D were used in the study only to describe 
goodness of model results, but not as objective function during 
optimization. For easy reference, all the efficiency criteria consid
ered in the study are summarized in Table 1 with regard to the acro
nym used, range of values they assume, the formulation group they 
belong to, and whether they are used as objective function. 

Methods and Materials 

Study Watershed and Simulation Model 

As shown in Fig. 1 headwaters of the Little River Experimental 
Watershed (LREW), one of the USDA-ARS’s (AU: Please spell 
out acronym.) experimental watersheds, located in Georgia, was 
used to demonstrate the research objectives. The LREW was se
lected because it is heavily gauged for rainfall as well as streamflow 
(Bosch et al. 2007), and because data are readily accessible online 
(ftp://www.tiftonars.org/) from the Southeast Watershed Research 
Laboratory (SEWRL) (SEWRL 2010). The watershed consists pri
marily of low-gradient streams and is located mainly on sandy soils 
underlain by limestones that form locally confined aquifers. Land 
use within the watershed consists of about 31% row crop agricul
ture, 10% pasture, 50% forest, and 7% urban area (Bosch et al. 
2006). Only the upper 116 km2 of the LREW was used for this 
study to minimize computational demand of the model and also 
because the headwater subwatersheds have denser streamflow 
and rainfall gauges. 

Table 1. Summary of Efficiency Criteria Considered for Study 

Application 

Criterion Range of values Group Eff. criterion Obj. function 

NSE ∞ to 1.0 II x x 

RMS 0.0 to ∞ II x x 

NSD ∞ to 1.0 II x x 

MNS ∞ to 1.0 I x x 

MNSD ∞ to 1.0 I x x 

LNS ∞ to 1.0 III x x 

LNSD ∞ to 1.0 III x x 

MAE 0.0 to ∞ I x x 

VE ∞ to 1.0 I x x 

PBIAS ∞ to ∞ IV x No 

RSR 0.0 to ∞ II x No 

R2 0 to 1.0 II x No 

D 0 to 1.0 II x No 

Note: Group I represents efficiency criteria that work based on minimiza
tion of absolute deviations; Group II represents efficiency criteria that work 
based on minimization of square of deviations; Group III represents effi
ciency criteria that use log of observed and simulated values; Group IV 
measure deviations between observed and simulated values; x = yes. 

http:ftp://www.tiftonars.org


Fig. 1. Location map of study area and gaging stations 

Twelve precipitation gauges and five streamflow gauges (see 
Fig. 1) with long-term daily data (i.e., 1967–2006) are available 
for the headwaters from the SEWRL. Daily minimum and daily 
maximum temperature data for a station near the watershed was 
obtained from the U.S. Historical Climatology Network (http:// 
cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html) as the air temperature 
data available from SEWRL starts only from 2004. The geographic 
data used to set up SWAT model including topography, land use, 
stream networks, and rainfall and streamflow gauging locations 
were obtained from the SEWRL. Soil survey geographic 
(SSURGO) soil map was obtained from the U.S. Department 
of Agriculture, Natural Resources Conservation Service (NRCS) 
soil data mart (http://soildatamart.nrcs.usda.gov/). SWATioTools 
(Sheshukov et al. 2009), an ArcMap geographic information sys
tem (GIS) extension tool that converts SSURGO soils into the for
mat readable by ArcSWAT (Winchell et al. 2008) was used to 
preprocess the SSURGO soil map. The land cover image used for 
the study was for 2003. After the climate, streamflow, land use, and 
soil data were preprocessed, the 116 km2 study watershed was 
delineated and subdivided into 37 subwatersheds and 71 hydro
logic response units (HRUs) using ArcSWAT as shown in Fig. 1. 

Soil and water assessment tool (SWAT) (Arnold et al. 1999), the 
simulation model used for this study, is one of the most widely used 
watershed simulation models in use today (Gassman et al. 2007). 
SWAT is a physically based, spatially distributed model that uses 
information regarding climate, topography, soil properties, land 
cover, and human activities such as land management practices 

to simulate numerous physical processes including surface runoff, 
groundwater flow, streamflow, and many water quality fluxes. 
Spatially, the model subdivides a watershed in to subwatersheds 
and, potentially, further partitions them into hydrologic response 
units based on land cover, soil, and the overland slope diversity in 
the subwatershed. The reader is referred to Neitsch et al. (2005) for  
details on SWAT. 

Automated Calibration Method 

Automated model calibration was performed to identify optimal 
values of 12 most sensitive streamflow parameters of SWAT that 
were previously identified by the author (Muleta 2012) using a 
global sensitivity analysis model known as Sobol (Sobol’ 1993). 
All 12 parameters were assumed to follow uniform distribution 
as done in Muleta and Nicklow (2005), and the bounds recom
mended in Neitsch et al. (2005) were used for majority of the 
parameters. List of the parameters and their bounds are provided 
in Table 2. Some of these model parameters (e.g., NRCS curve 
number, CN2) can vary spatially depending on soil, land cover, 
slope, and/or other watershed characteristics. During calibration, 
the baseline values originally assigned to the spatially varying 
parameters were altered by adding or multiplying the baselines 
by a sampled value as described in Table 2. This way, the param
eters were adjusted while preserving their spatial variability. 
The dynamically dimension search (DDS) algorithm described in 
Tolson and Shoemaker (2007) was obtained from the first writer 
and integrated with SWAT for automated calibration. 

http:http://soildatamart.nrcs.usda.gov


 

 

 
 

 

 

Table 2. SWAT’s Most Sensitive Streamflow Parameters and Ranges Used 
for Analysis 

Bounds of values 

Name Description Min. Max. 

Alpha_Bf	 Base flow alpha factor (days) 0.1 1 

Canmx	 Maximum canopy storage index 0  10  

(unit less) 

Ch_K2	 Effective hydraulic conductivity in 0 150 

main channel alluvium (mm∕hr) 
Ch_N2	 Manning’s n for the main channels 0.0 0.1 

(unit less) 

Cn2a	 SCS runoff curve number for 25% 25% 

moisture condition II 

Esco	 Soil evaporation compensation 0 1 

factor (unit less) 

Gwqmnb	 Threshold depth of water in the 5;000 5,000 

shallow aquifer required for return 

flow to occur (mm) 

Slopea	 Average slope steepness (m∕m) 50% 50% 

Sol_Awca	 Available water capacity of the soil 50% 50% 

layer (mm∕mm soil) 

Sol_Ka	 Soil hydraulic conductivity 50% 50% 

(mm∕hr) 
Sol_Za	 Soil depth (mm) 50% 50% 

Surlag	 Surface runoff lag time (days) 0 10 
aIndicates spatially varying parameters whose baseline values are adjusted
 
during calibration by multiplier sampled from bound.

bIndicates spatially varying parameters whose baseline values are adjusted
 
during calibration by adding it to value sampled from bound.
 

Methodology 

Season-Based Calibration 
Season-based calibration was used in this study based on the find
ings of Muleta (2012). In season-based calibration, model param
eters that are physically expected to change from dry season to wet 
season are allowed to vary seasonally. In the conventional calibra
tion technique, parameters are assumed constant during low flow 
seasons as well as high flow seasons. The study by Muleta (2012) 
demonstrated significant improvement in model performance when 
season-based calibration is pursued. Various diagnostic analysis 
studies have also shown sensitivity of dominant model character
istics to various seasons of a year (Li et al. 2012; Tian et al. 2012). 
According to Tang et al. (2007) and van Werkhoven et al. (2008), 
forcings, mainly rainfall, are responsible for temporal sensitivity 
for the model watershed they used. For the headwaters of LREW, 
however, Muleta (2012) showed that the observed rainfall and run
off exhibited relationships that cannot be described using rainfall 
alone. Monthly runoff coefficients determined from 39 years 
(i.e., 1968–2006) of rainfall and runoff data for the watershed, how
ever, proved effective in defining dry and wet season for the water
shed (Muleta 2012). Months with runoff coefficient greater than 
0.1 (i.e., January to April) were considered wet season, and months 
with runoff coefficient less than 0.1 (i.e., June to November) were 
considered dry season. December and May were transition months 
where parameters values linearly vary from the dry season values to 
the wet season values and vice versa, respectively. 

From the 12 sensitive parameters listed in Table 2, Slope, 
Sol_AWC, Sol_Z, and Sol_K were assumed season insensitive and 
the other eight parameters were allowed to vary seasonally. Single 
objective automated calibration was performed using nine different 

efficiency criteria as objective function, one objective function 
per calibration run. Performance of each calibration attempt was 
then tested using 13 different efficiency criteria. Streamflow data 
from gauge F (outlet of the study watershed as shown in Fig. 1) 
were used for the calibration. One-year data (i.e., 1999 data) were 
used as a spin-up period to diffuse the effect of antecedent condi
tions, and four-year data (i.e., 2000–2003) were used for calibra
tion. Performance of the calibration result was verified using the 
split-sampling approach (i.e., 2004–2006 data at the calibration site 
were used for verification) as well as by examining capability of 
the calibrated model to simulate reasonable streamflow at internal 
gauges not used for calibration (i.e., gauges I, J, K, and M) using 
seven-year data (i.e., 2000–2006). 

The DDS algorithm guarantees uniqueness of calibration results 
for a given objective function as long as the random seed generator 
used by the algorithm is not altered. Conducting multiple calibra
tion runs for the same objective function and random seed does 
not affect calibration result. This was confirmed in the study by 
conducting 10 separate calibration attempts using NSE as objective 
function and same random seed for all 10 calibration runs. This 
implies that the difference exhibited between the results of two 
calibration attempts that use two different objective functions is 
attributed purely to the objective functions. As such, only one cal
ibration run per objective function was performed to accomplish 
goals of the study. 

Cases Considered 
Two cases were considered for the research. In the first case, re
ferred to as Case I, the actual data (i.e., soil, land use, topography, 
climate, and streamflow) available for the watershed were used to 
build the SWAT model. Then, DDS was used to calibrate the model 
using nine different objective functions using the season-based 
calibration method. For each calibration run, 3,000 SWAT simula
tions were used for DDS. In the second case, referred to as Case II, 
instead of the actual streamflow available for the watershed, the 
streamflow simulated by the calibrated SWAT in Case I using 
one of the nine objective functions was used as observed stream-
flow and calibrations were repeated for each of the nine objective 
functions. 

In Case II, uncertainties from model structure, input data, and 
observed streamflow were eliminated from the modeling process. 
This is because (1) the streamflow simulated by the calibrated 
model is considered as observed streamflow implying that the 
output data (i.e., streamflow) used for calibration are error free; 
(2) forcings (inputs) have no error as the inputs that produced 
the observed streamflow are used to recalibrate the model; and 
(3) structure of the simulation model is perfect for the watershed 
characteristics being modeled as the streamflow simulated by the 
model is used to recalibrate the same model. Additionally, because 
optimal values of the 12 parameters that produced the observed 
streamflow are known, Case II helped to identify capability of the 
objective functions to reproduce these known optimal parameters 
values. Therefore, Case II was designed to further elucidate relative 
effectiveness of the nine objective functions. Total of nine calibra
tion attempts, each with 3,000 SWAT simulations, were performed 
for Case II as well. 

Results and Discussion 

Case I: Using Observed Data 

Sample results for Case I are given in Fig. 2 and Tables 3–5. Fig. 2 
compares observed streamflow with the streamflow simulated us
ing the optimal parameters values identified when NSE and MNSD 



 

Fig. 2. Comparison of observed and simulated streamflow at gauge F 
for case I when NSE and MNSD are used as objective function; the 
light dash line shows perfect fit line and darker lines show bounds 
of 95% confidence interval 

were used as objective functions. For easy observation, the perfect 
fit line (i.e., 1∶1 line) and lower and upper bounds of the 95% con
fidence interval are also given in Fig. 2. The tables show efficiency 
criteria values calculated from the streamflow simulated using op
timal solutions of each of the nine objective functions considered. 
The efficiency criteria given in the rows represent the criteria used 
as objective function for the attempt. The best efficiency criteria 
values are given in bold for easy comparison. Results are given 
for the calibration site (i.e., gauge F), and for an internal site 
(i.e., gauge J) for both calibration period (i.e., 2000–2003) and 
verification period (i.e., 2004–2006). Similar results are available 
for other internal gauges (i.e., gauges I, K, and M), but are not 
shown here for brevity. Gauge J is representative of the results 
obtained at the other internal gauges. 

The efficiency criteria values determined considering all months 
of a year (i.e., dry months, wet months, and transition months 
combined) are given in Table 3. To examine sensitivity of model 
performance to season, the results given in Table 4 were calculated 
using streamflow from the wet months (i.e., January to April) and 
those in Table 5 were determined using streamflow simulated for 
the low flow months (i.e., June to November). Streamflow simu
lations are generally considered satisfactory if NSE > 0:5, PBIAS 
is within ±25%, and RSR is ≤ 0:70 (Moriasi et al. 2007). Accord
ing to these criteria, Tables 3–5 indicate, for the most part, satis
factory results for both calibration and verification periods for the 
year-round, wet season and dry season cases at the calibration site 
as well as at the internal gauges. Fig. 2 also shows satisfactory re
sults as the model simulations, except for the high flows, align well 
with the perfect fit line and are within the 95% confidence interval. 
These results confirm robustness of the season-based calibration 
approach pursued in the study. 

Performance Sensitivity to Objective Function 
A closer look at Eqs. (1)–(9) reveals that the nine objective func
tions can be grouped (see Table 1) as (1) Group I: those that 
minimize absolute deviations of the simulated and observed flows 
(i.e., MAE, MNS, MNSD, and VE); (2) Group II: those that 
minimize square of the residuals (i.e., RMS, NSE, and NSD); and 
(3) Group III: those that use log of the observed and simulated val
ues (i.e., LNS and LNSD). Interestingly, the results given in Table 3 
exhibited sensitivity only to the three objective function groups, 
but not to the objective functions within the group. In other words, 
MAE, MNS, MNSD, and VE produced identical results when used 
as objective function except for the trivial differences observed in 
the PBIAS values. Likewise, RMS, NSE, and NSD generated iden
tical solutions, and LNS and LNSD produced results that are alike. 
Similar performances were exhibited for the wet and the dry season 
results. This shows that model performance is not sensitive to the 
baseline model used for the objective function (e.g., NSD and NSE 
produced identical optimal solutions). Based on this finding and 
to avoid redundancy, Tables 4–6 show the results obtained using 
one objective function per group (i.e., NSE, MNSD, and LNSD). 
However, RMS results are also reported in Table 7 to demonstrate 
nonuniqueness of the optimal parameters values. 

Sensitivity of the optimal solutions to the three objective func
tion groups can be examined from Tables 3–5. As an example, 
Table 3 shows that the optimal solutions obtained when LNSD and 
NSE were used as objective functions produced NSE of 0.30 and 
0.73, and PBIAS of 21% and 1.89%, respectively, at gauge F for 
the calibration period. None of the nine objective functions pro
duced solutions that consistently outperformed the other objective 
functions when evaluated using all 13 efficiency criteria. In other 
words, using an NSE as an objective function may produce solution 
that improves one or more efficiency criteria, but would also result 
in inferior values of the other efficiency criteria. A typical example 
is the NSE result shown in Table 3 for gauge J for the calibration 
period, where it produced the best NSE of 0.71, but the worst 
LNSD (i.e., 0:35) and PBIAS (i.e., 16.90). Generally speaking, 
however, it can be concluded that performance of Group I objective 
functions (those minimizing the absolute deviations) was more ro
bust. Group I objective functions either outperformed or produced 
fairly comparable results to that of Groups II and III for all year-
round Table 3, wet season Table 4, and low flow season Table 5. 

Another important finding is that Group I and Group II objective 
functions seem to complement each other’s performance. In 
Tables 3–5, for the most part, the best performing objective func
tion belongs to either of the two groups. This emphasizes the 
benefit of multiobjective calibrations (Gupta et al. 1998; Yapo et al. 
1998) that use an objective function from each group (e.g., RMS 
and MNSD) to improve accuracy of simulating both low flows as 
well as peak flows (Madsen 2000; Efstratiadis and Koutsoyiannis 
2010). One surprising observation is that no seasonal sensitivity 
has been exhibited by the performance of the objective functions. 
Objective functions in Group II did not show significant improve
ment in simulating wet season flows compared to how they simu
lated the dry season flows. This is counterintuitive given the notion 
that objective functions that minimize square of the residuals would 
be biased toward high flows and would more accurately simulate 
wet season flows. 

Robustness in Describing Model Performance 
With regard to explaining the goodness of model performance, with 
the exception of LNS and LNSD, all the other efficiency criteria 
seem consistent. From Tables 3–5, it can be observed that, for the 
most part, a calibration result seems to either improve or deteriorate 
all efficiency criteria (except for LNS and LNSD) consistently. 



  
  
 
  
  
  

 
 

  

 
 
 

  
  

  
 
 
 
  
  

   
   

  

 
 
  
  

 
 

  
  

 

Table 3. Efficiency Criteria Values Obtained for Case I for All Months 

Criteria MAE RMS NSE NSD MNS MNSD LNS LNSD VE PBIAS RSR R2 D 

Calibration period 

Gauge F 

MAE 0.49 1.06 0.68 0.64 0.55 0.57 0.20 0:30 0.46 8:71 0.01 0.69 0.89 

RMS 0.51 0.97 0.73 0.69 0.53 0.55 0.24 0:23 0.44 1:95 0.01 0.73 0.92 

NSE 0.51 0.97 0.73 0.69 0.53 0.55 0.24 0:24 0.44 -1:89 0.01 0.73 0.92 

NSD 0.51 0.97 0.73 0.69 0.53 0.55 0.24 0:24 0.44 2:16 0.01 0.73 0.92 

MNS 0.49 1.06 0.68 0.64 0.55 0.57 0.20 0:30 0.46 8:77 0.01 0.69 0.89 

MNSD 0.49 1.06 0.68 0.64 0.55 0.57 0.20 0:30 0.46 8:71 0.01 0.69 0.89 

LNS 0.66 1.58 0.30 0.20 0.40 0.42 0.42 0.06 0.28 21:01 0.02 0.36 0.75 

LNSD 0.66 1.58 0.30 0.19 0.40 0.42 0.42 0.06 0.28 19:90 0.02 0.36 0.75 

VE 0.49 1.06 0.68 0.64 0.55 0.57 0.20 0:30 0.46 8:71 0.01 0.69 0.89 

Gauge J 

MAE 0.09 0.20 0.71 0.72 0.51 0.62 0.27 -0:28 0.36 9.43 0.01 0.71 0.91 

RMS 0.10 0.21 0.71 0.71 0.48 0.60 0.23 0:35 0.31 16.76 0.01 0.72 0.92 

NSE 0.10 0.21 0.71 0.71 0.48 0.60 0.23 0:35 0.31 16.90 0.01 0.72 0.92 

NSD 0.10 0.20 0.71 0.72 0.48 0.60 0.23 0:35 0.31 16.50 0.01 0.72 0.92 

MNS 0.09 0.20 0.71 0.72 0.51 0.63 0.27 -0:28 0.36 9.35 0.01 0.71 0.91 

MNSD 0.09 0.20 0.71 0.72 0.51 0.62 0.27 -0:28 0.36 9.43 0.01 0.71 0.91 

LNS 0.10 0.25 0.56 0.57 0.45 0.58 0.23 0:34 0.28 10:18 0.02 0.57 0.86 

LNSD 0.10 0.25 0.58 0.59 0.46 0.58 0.23 0:34 0.29 8:91 0.02 0.59 0.87 

VE 0.09 0.20 0.71 0.72 0.51 0.62 0.27 -0:28 0.36 9.43 0.01 0.71 0.91 

Verification period 

Gauge F 

MAE 0.68 1.92 0.50 0.49 0.43 0.47 0.23 0:15 0.35 7:41 0.02 0.50 0.80 

RMS 0.71 2.57 0.12 0.09 0.41 0.44 0.24 0:13 0.31 0.28 0.03 0.40 0.77 

NSE 0.71 2.54 0.13 0.11 0.41 0.44 0.24 0:13 0.32 0.15 0.03 0.41 0.78 

NSD 0.71 2.56 0.12 0.10 0.41 0.44 0.24 0:13 0.31 0.06 0.03 0.40 0.77 

MNS 0.68 1.92 0.50 0.49 0.43 0.47 0.23 0:15 0.35 7:50 0.02 0.50 0.80 

MNSD 0.68 1.92 0.50 0.49 0.43 0.47 0.23 0:15 0.35 7:41 0.02 0.50 0.80 

LNS 0.90 3.68 0:82 0:87 0.25 0.29 0.42 0.14 0.13 23:08 0.04 0.20 0.60 

LNSD 0.90 3.70 0:84 0:89 0.24 0.29 0.43 0.15 0.13 22:62 0.04 0.20 0.59 

VE 0.68 1.92 0.50 0.49 0.43 0.47 0.23 0:15 0.35 7:41 0.02 0.50 0.80 

Gauge J 

MAE 0.17 0.48 0.55 0.54 0.49 0.48 0.42 0.05 0.35 33:06 0.02 0.64 0.80 

RMS 0.17 0.46 0.60 0.59 0.49 0.48 0.34 0:07 0.35 -26:93 0.02 0.61 0.87 

NSE 0.17 0.45 0.60 0.59 0.49 0.48 0.34 0:07 0.35 27:06 0.02 0.61 0.87 

NSD 0.17 0.45 0.60 0.59 0.49 0.48 0.35 0:07 0.35 27:14 0.02 0.61 0.87 

MNS 0.17 0.48 0.55 0.54 0.49 0.48 0.42 0.05 0.35 33:09 0.02 0.64 0.80 

MNSD 0.17 0.48 0.55 0.54 0.49 0.48 0.42 0.05 0.35 33:06 0.02 0.64 0.80 

LNS 0.21 0.64 0.21 0.19 0.37 0.36 0.28 0:18 0.20 45:29 0.03 0.36 0.75 

LNSD 0.21 0.64 0.21 0.20 0.37 0.36 0.28 0:18 0.20 45:20 0.03 0.36 0.75 

VE 0.17 0.48 0.55 0.54 0.49 0.48 0.42 0.05 0.35 33:06 0.02 0.64 0.80 

Note: Table shows efficiency criteria values calculated using optimal solution identified when criterion shown in rows is used as objective function during 
optimization; MAE is in m3∕s; RMS is in m3∕s; PBIAS is in %; other efficiency criteria are unitless. 

Solutions that improve LNS and LNSD, however, seem to result the criteria in Group II. The same optimal solution would likely 
in inferior performance when judged by the other 11 efficiency produce NSE value closer to 1.0 than it would for MNSD. In this 
criteria. This issue may be attributed to the fact that Little regard, VE appears very conservative criterion. A solution that 
River is an intermittent river and that both LNS and LNSD are highly leads to higher value of VE is likely to produce more desirable 
sensitive to low flows. Trivial inaccuracy in estimating low flows values of the other efficiency criteria as well. However, VE seems 
may significantly deteriorate LNS and LNSD. Application of similar stringent criterion as solutions that can easily be considered sat-
analysis to a perennial river could further elucidate this observation. isfactory using, for example, NSE produce poor values of VE. On 

Overall, the criteria in Group I (i.e., MNS, MNSD, VE, and the contrary, almost all solutions produced very high values of D 
MAE) seem more robust in describing model performance. Notice indicating that D is less suitable to describe model performance. 
from Tables 3–5 that it is easier to obtain values that suggest These findings lead to the conclusion that model performance 
better agreement between observed and simulated flows using should be described using multiple efficiency criteria, preferably 



 
 

  

  
 

   

  
 

   

   

   

  
  

  

  
  

  

   
 

  

 
   

Table 4. Efficiency Criteria Values Obtained for Case I for Wet Season 

Criteria MAE RMS NSE NSD MNS MNSD LNS LNSD VE PBIAS RSR R2 D 

Calibration period 

Gauge F 

NSE 0.80 1.29 0.78 0.74 0.43 0.59 0.80 0:23 0.13 -16:52 0.03 0.78 0.93 

MNSD 0.72 1.32 0.77 0.73 0.49 0.63 0.90 0.37 0.21 22:13 0.03 0.77 0.93 

LNSD 1.05 2.07 0.43 0.34 0.25 0.46 0.84 0.02 0:15 47:01 0.05 0.46 0.79 

Gauge J 

NSE 0.16 0.26 0.82 0.82 0.43 0.66 0.63 0:10 0:10 -5:30 0.03 0.81 0.95 

MNSD 0.15 0.30 0.77 0.77 0.46 0.68 0.78 0.34 -0:04 7:41 0.04 0.77 0.92 

LNSD 0.17 0.32 0.72 0.73 0.39 0.64 0.45 0:66 0:19 50:40 0.04 0.73 0.91 

Verification period 

Gauge F 

NSE 0.84 1.90 0.72 0.72 0.41 0.61 0.45 0:34 0.19 32:22 0.04 0.72 0.91 

MNSD 0.86 2.11 0.65 0.65 0.39 0.60 0.75 0.38 0.17 34:42 0.04 0.66 0.89 

LNSD 1.07 2.75 0.41 0.41 0.24 0.50 0.47 0:30 0:03 68:31 0.05 0.50 0.82 

Gauge J 

NSE 0.20 0.40 0.80 0.80 0.44 0.61 0:03 0:71 0.21 60:74 0.03 0.88 0.93 

MNSD 0.20 0.44 0.77 0.76 0.45 0.62 0.51 0.19 0.24 -59:73 0.04 0.86 0.91 

LNSD 0.24 0.47 0.73 0.72 0.33 0.54 0:56 1:59 0.07 85:57 0.04 0.80 0.90 

Note: Table shows efficiency criteria values calculated using optimal solution identified when criterion shown in the rows is used as objective function during 
optimization; MAE is in m3∕s; RMS is in m3∕s; PBIAS is in %; other efficiency criteria are unitless. 

Table 5. Efficiency Criteria Values Obtained for Case I for Dry Season 

Criteria MAE RMS NSE NSD MNS MNSD LNS LNSD VE PBIAS RSR R2 D 

Calibration period 

Gauge F 

NSE 0.36 0.76 0.66 0.60 0.62 0.48 0:08 0:33 0.60 11.67 0.01 0.66 0.88 

MNSD 0.37 0.91 0.50 0.42 0.61 0.47 0:19 0:47 0.60 2.25 0.02 0.53 0.78 

LNSD 0.46 1.31 0:03 0:19 0.52 0.34 0.19 0.00 0.50 0.77 0.02 0.18 0.66 

Gauge J 

NSE 0.07 0.17 0.00 0.07 0.52 0.46 0:14 0:58 0.52 31.82 0.01 0.46 0.78 

MNSD 0.06 0.13 0.40 0.44 0.57 0.51 0:19 0:66 0.57 20.71 0.01 0.47 0.81 

LNSD 0.07 0.20 0:47 0:37 0.52 0.46 0.01 -0:38 0.52 15.79 0.02 0.18 0.65 

Verification period 

Gauge F 

NSE 0.60 2.94 0:60 0:70 0.47 0.28 0.22 0:11 0.42 14.75 0.04 0.27 0.66 

MNSD 0.55 1.90 0.34 0.30 0.52 0.34 0.16 0:21 0.47 2.39 0.03 0.35 0.63 

LNSD 0.82 4.35 2:50 2:71 0.28 0.03 0.45 0.21 0.21 0.69 0.06 0.10 0.43 

Gauge J 

NSE 0.15 0.50 0.41 0.39 0.54 0.35 0.44 0.06 0.42 -13:04 0.03 0.27 0.66 

MNSD 0.15 0.53 0.34 0.31 0.53 0.34 0.44 0.06 0.41 24:27 0.03 0.35 0.63 

LNSD 0.19 0.75 0:34 0:38 0.40 0.16 0.44 0.06 0.25 27:83 0.04 0.10 0.43 

Note: Table shows efficiency criteria values calculated using optimal solution identified when criterion shown in rows is used as objective function during 
optimization; MAE is in m3∕s; RMS is in m3∕s; PBIAS is in %; other efficiency criteria are unitless. 

one criterion from each of the three efficiency groups (e.g., NSE, information for one internal site (gauge K). The perfect fit line 
MAE, LNS) and PBIAS. and the lower and upper bounds of the 95% confidence interval 

are also given in both Figs. Table 6 shows values of the 13 efficiency 
Case II: Using Simulated Data criteria for the calibration period and the verification period at gauges 

F and J using solutions obtained when NSE, MNSD, and LNSD Case II results are summarized in Figs. 3 and 4, and Tables 6–8. 
Fig. 3 uses scatter plot analysis to compare model simulated and ob- were used as objective functions. Table 7 compares percent deviation 
served streamflow at the calibration site (gauge F) for the calibration of the known parameters values from the optimal parameters values 
and the verification durations (i.e., 2000–2006) when NSE and identified using RMS, NSE, MNSD, and LNSD as objective func-
MNSD were used as objective functions. Fig. 4 shows similar tions. The known parameters values are also given in Table 7. 



 
   
   

     
   

  
       
        
       

   

 

 

 

 
 

Table 6. Efficiency Criteria Values Obtained for Case II for All Months 

Criteria MAE RMSE NSE MNSD LNSD VE PBIAS RSR R2 D 

Calibration period 

Gauge F 

NSE 

MNSD 

LNSD 

Gauge J 

NSE 

MNSD 

LNSD 

0.05 

0.03 

0.04 

0.02 

0.01 

0.01 

0.11 

0.09 

0.13 

0.04 

0.04 

0.03 

1.00 

1.00 

0.99 

0.99 

0.99 

1.00 

0.95 

0.97 

0.96 

0.93 

0.94 

0.96 

1.00 

1.00 

1.00 

0.98 

0.99 

0.99 

0.94 

0.96 

0.95 

0.88 

0.90 

0.92 

1.41 

-0:37 

0:63 

0.63 

0.16 

3:72 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.99 

1.00 

0.99 

0.98 

0.99 

0.99 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

Verification period 

Gauge F 

NSE 

MNSD 

LNSD 

Gauge J 

NSE 

MNSD 

LNSD 

0.07 

0.05 

0.06 

0.02 

0.01 

0.01 

0.29 

0.18 

0.24 

0.05 

0.04 

0.04 

0.99 

1.00 

0.99 

0.99 

1.00 

1.00 

0.94 

0.97 

0.95 

0.94 

0.96 

0.96 

0.99 

1.00 

1.00 

0.98 

0.99 

1.00 

0.93 

0.96 

0.94 

0.93 

0.95 

0.95 

0.32 

1:25 

0.24 

-0:68 

0:87 

1:18 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.99 

1.00 

1.00 

0.98 

0.98 

0.98 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

Note: Table shows efficiency criteria values calculated using optimal solution identified when criterion shown in rows is used as objective function during 
optimization; MAE is in m3∕s; RMS is in m3∕s; PBIAS is in %; other efficiency criteria are unitless. 

Effectiveness as Objective Function 
Figs. 3 and 4 and Table 6 show that all objective functions per
formed excellent. The efficiency criteria values given in Table 6 
are very close to their respective ideal values and the figures show 
almost perfect fit between the simulated and observed streamflow. 
Objective functions in Group I (e.g., MNSD) seem to have slightly 
outperformed objective functions in Group II (e.g., NSE). Unlike in 
Case I, objective functions in Group III (e.g., LNSD)performed 
very well in Case II. Overall, however, MNSD (a representative of 
Group I) either outperformed or produced very comparable results 
to the other objective functions. 

Uniqueness of Optimal Parameters 
Table 7 reveals several interesting findings. From observation of 
Figs. 3 and 4 and Table 6 it can be easily concluded, as done in 
the preceding paragraph, that the model performance is excellent. 
As such, it is expected that the parameters values identified by the 

calibration process be very close to the known values as well. How
ever, Table 7 shows that the percent deviation observed between 
the identified optimal values and the known values is significantly 
high for many of the calibrated parameters. The smallest percent 
deviation, and hence the best result, observed for each parameter 
has been given in bold. Interestingly, no clear superiority was 
observed among the objective functions with regard to producing 
parameters values that are the closest to their respective known val
ues. The “Within ±10%” column shows the number of parameters 
(out of the 12 calibrated parameters) whose optimal value is within 
±10% of the respective known value. In that regard, MNSD and 
LNSD performed better than the other objective functions. Another 
interesting observation from Table 7 is that RMS and NSE, both of 
Group II, produced very different optimal parameters values. 

Comparison of Tables 6 and 7 leads to the following important 
conclusions. First, even for ideal modeling conditions, such as 
Case II, where uncertainties from input data, observed data and 

Table 7. Known Values and Percent Deviation of Optimal Parameter Values from Known Values for Case II 

Criteria α_Bf Canmx Ch_K2 Ch_N2 Cn2 Esco Gwqmn Slope Sol_Awc Sol_K Sol_Z Surlag Within ±10% 

Wet season 

Known values 0.10 0.05 53.07 0.08 8.18 0.94 23.88 19:4 22.86 9.65 49.85 0.59 

RMS -0:2 9879.0 24:4 38:3 57.9 6.1 9;016:6 -4:1 0.6 −157.4 0.2 -28:5 5 

NSE -0:2 5117.0 22:5 40:0 54.1 3.7 -339:1 108.4 0.6 -143:9 6:9 -28:5 4 

MNSD 5:4 1378.4 15.0 5:6 0.6 1.9 7;699:4 125.7 1:2 409.9 1:1 42.5 6 

LNSD −5.1 -92:7 9.5 -5:1 37.0 8:2 8;992:7 143.3 0.3 306.8 5:8 32.4 6 

Dry season 

Known values 0.98 9.89 84.71 0.09 17:3 0.02 4995.70 19:4 22.86 9.65 49.85 4.94 

RMS 86:4 5;250:4 39:6 0.4 31:8 0.7 590:1 -4:1 0.6 157:4 0.2 438:3 5 

NSE 83:8 6:2 12:4 4:4 1:0 22.3 43:8 108.4 0.6 -143:9 6:9 35:1 5 

MNSD 28:1 3:4 1.8 1:1 0:3 97:2 -0:2 125.7 1:2 409.9 1:1 30.1 7 

LNSD -15:5 0.7 3:2 0.3 -0:1 225.1 0:4 143.3 0.3 306.8 5:8 44.9 7 

Note: “Within ±10%” column indicates number of parameters whose optimal values are within ±10 percent of respective known values when corresponding 
efficiency measure is used as objective function; see Table 2 for unit of known values. 



 
 

 
  
 

  
 

Fig. 3. Comparison of observed and simulated streamflow obtained 
at gauge F for case II when NSE and MNSD are used as objective 
function; light dash line shows perfect fit line and darker lines show 
bounds of 95% confidence interval 

model structure are fully accounted for (which is very difficult, if 
not impossible, to achieve for real world applications), obtaining 
efficiency criteria values that are close to their respective ideal val
ues does not guarantee optimal parameters values that are close to 
the known (if any) parameter values. Here it should be emphasized 
that there is no such thing as known parameter value in real world 
applications. Second, optimal parameters values are not unique 
as values that are very different from the known values produced 
streamflow simulations that could be considered excellent when 
judged by 13 different efficiency criteria. This conclusion is con
sistent with the equifinality concept of Beven and Freer (2001), 
which argues that multiple sets of parameters can simulate water
shed characteristics reasonably well. Third, because parameters 
values that are significantly divergent from the known values pro
duced very accurate streamflow simulations, for practical applica
tions, the minor limitations exhibited in calibration methods 

Table 8. Intercorrelation Coefficient among Various Efficiency Criteria 

Fig. 4. Comparison of observed and simulated streamflow obtained 
at gauge K for case II when NSE and MNSD are used as objective 
function; light dash line shows perfect fit line and darker lines show 
bounds of 95% confidence interval 

(e.g., calibration algorithm used, objective function selection) in 
identifying the global optimal parameters values may contribute 
only minimally to the overall hydrologic modeling uncertainty. 
Most of the prediction uncertainty experienced in hydrologic mod
eling can be attributed to the uncertainty from input and output 
data (i.e., poor quality and/or insufficient quantity of input and 
output data that do not accurately represent spatial and temporal 
heterogeneity of the watershed characteristics) and uncertainty 
from model structure (i.e., incapability of the hydrologic model to 
accurately characterize the watershed). The third conclusion is con
sistent with Kuczera et al. (2006) who pointed out that “…poorly 
determined parameters do not necessarily lead to high predictive 
uncertainty.” 

Criteria NSE NSD MNS MNSD LNS LNSD VE AbsPBIAS RSR R2 D 

NSE 1.00 1.00 0.83 0.83 0.25 0.60 0.79 -0:77 -0:92 0.43 0.82 

NSD 1.00 0.83 0.83 0.24 0.60 0.79 -0:76 -0:90 0.45 0.82 

MNS 1.00 1.00 0.63 0.90 0.99 0:67 -0:88 0.74 0.92 

MNSD 1.00 0.63 0.89 0.99 0:66 -0:88 0.75 0.93 

LNS 1.00 0.88 0.66 0.00 0:40 0.77 0.58 

LNSD 1.00 0.92 0:37 0:67 0.84 0.82 

VE 1.00 0:61 -0:83 0.80 0.93 

AbsPBIAS 1.00 0.76 0:07 0:50 

RSR 1.00 0:48 -0:82 

R2 1.00 0.84 

D 1.00 



Robustness in Describing Model Performance 
Relative robustness of the efficiency criteria in describing goodness 
of model performance was further examined using the intercorre
lation coefficients given in Table 8. The table shows intercorrelation 
coefficients among the efficiency criteria determined from the 
results of Case I and Case II for the calibration period and the 
verification period. Total of 180 sets of efficiency criteria values 
(i.e., 90 from Case I and 90 from Case II) were used to determine 
the coefficients. For each case, values of the efficiency criteria were 
calculated at five sites (i.e., gauges F, I, J, K, and M) for each of the 
nine objective functions. This leads to 45 sets of efficiency criteria 
values (i.e., results of nine objective functions at five sites) for the 
calibration period and another 45 sets for the verification period 
producing 90 data sets per case. 

Clearly, the efficiency criteria highly correlated to most of the 
other efficiency criteria is deemed the most robust in describing 
model performance. Intercorrelation coefficients with magnitude 
≥ 0:70 are considered good in this study and are shown in bold 
in Table 8. MAE and RMS have been excluded from the intercorre
lation analysis because of their scale dependence (i.e., MAE and 
RMS values depend on how big or small a river is at the gauge site) 
as results from five different gauges (i.e., F, I, J, K, and  M) were used 
to calculate the correlation coefficients. Table 8 indicates that except 
for LNS and AbsPBIAS (i.e., absolute value of PBIAS), all the 
other efficiency criteria are well correlated. MNS, MNSD, and D are 
best correlated to the other efficiency criteria. MNSD was least cor
related to LNS (correlation coefficient ¼ 0:63) and to AbsPBIAS 
(correlation coefficient ¼ 0:66), which still show reasonably good 
correlation. As described in Case I, D alone is not a suitable efficiency 
criterion to report model results as poor models could yield attractive 
D values. Therefore, MNS and MNSD are the most robust efficiency 
criteria to report model results among the efficiency criteria consid
ered for the study. MNS and MNSD also outperformed the other ef
ficiency criteria as objective functions for both Case I and Case II. 

Conclusions 

The study investigated effectiveness of the most commonly used 
efficiency criteria for use as objective function during automated 
calibration and examined their robustness in describing the good
ness of model performance. Two cases were considered to accom
plish the research objectives. In Case I, actual data were used to 
build SWAT model for the watershed and calibrations were per
formed using nine different objective functions. In Case II, the op
timal parameters values identified during the calibration performed 
in Case I using NSE as objective function were used to simulate 
streamflow at gauges F, I, J, K, and M using SWAT. The simulated 
streamflow was then considered as observed data and calibration 
attempts were repeated using nine objective functions. Case II 
was designed to eliminate uncertainties from input data, observed 
data used for calibration, and model structure and to further inves
tigate relative effectiveness of the objective functions under ideal 
condition. 

Major conclusions of the study are (1) automated calibration 
results are sensitive to the objective function group; group that 
work based on minimization of the absolute deviations (Group I); 
group that work based on minimization of square of the residuals 
(Group II); and groups that use log of the observed and simulated 
streamflow values (Group III), but not to objective functions within 
the group; (2) efficiency criteria that belong to Group I (i.e., MAE, 
MNS, MNSD, and VE) were the most effective when used as 
objective function for both low flows and high flows. Based on 
these two conclusions, either of MAE, MNS, MNSD, and VE is 

recommended as objective function for single objective calibration 
applications; (3) objective functions in Group I and those in Group 
II complement each other’s performance quite well. This implies 
that accuracy of multiobjective calibrations can be improved by us
ing one objective function from each group; (4) with regard to the 
capability to describe the goodness of model simulations, except 
for LNS and LNSD, the other 11 efficiency criteria behaved con
sistently (i.e., a calibration result would either improve or deterio
rate all the 11 measures consistently). The intercorrelation analysis, 
however, showed relative robustness of MNS and MNSD in de
scribing model performance because the two were fairly well cor
related (correlation coefficient ≥ 0:6) to all other efficiency criteria 
considered for the correlation analysis; (5) the study also showed 
that for the Little River watershed, use of long-term interannual 
daily mean as baseline model for NSE and MNS did not improve 
capability of the measures to describe model performance. How
ever, this finding is likely to be watershed specific; (6) even for 
ideal conditions where uncertainty in input data and model struc
ture are fully accounted for, as in Case II of this study, identifying 
the so-called global parameter values through calibration exercise 
could be daunting as the parameters values exhibited nonunique
ness. Parameter values that were significantly divergent from the 
known (global) values produced model performance that may be 
considered near perfect even when judged using multiple efficiency 
criteria; (7) the performance gap exhibited between the calibration 
attempts made for Case I (satisfactory but not very impressive per
formance) and Case II (excellent performance) can be attributed to 
uncertainty arising from errors in input data, the observations used 
for calibration, and the model structure. In other words, more ac
curate input data and streamflow observations and model that more 
accurately describes characteristics of the watershed would reduce 
predictive uncertainty. As observed from Case II, parameter uncer
tainty (i.e., inability to identify the global (known) parameters 
values) contributed minimally toward the predictive uncertainty. 
Therefore, most of the predictive uncertainty experienced in hydro
logic modeling may be attributed to inputs, outputs, and model 
structures. This implies that attention of hydrologists needs to shift 
toward building models that are better representative of the water
shed characteristics and collecting and utilizing more reliable data. 
If properly applied, the automated calibration approaches practiced 
in hydrology today are good enough to reduce parameter uncer
tainty if more accurate data and models are available. 
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