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Abstract

Background Detection of unknown risks with marketed

medicines is key to securing the optimal care of individual

patients and to reducing the societal burden from adverse

drug reactions. Large collections of individual case reports

remain the primary source of information and require

effective analytics to guide clinical assessors towards likely

drug safety signals. Disproportionality analysis is based

solely on aggregate numbers of reports and naively disre-

gards report quality and content. However, these latter

features are the very fundament of the ensuing clinical

assessment.

Objective Our objective was to develop and evaluate a

data-driven screening algorithm for emerging drug safety

signals that accounts for report quality and content.

Methods vigiRank is a predictive model for emerging

safety signals, here implemented with shrinkage logistic

regression to identify predictive variables and estimate

their respective contributions. The variables considered for

inclusion capture different aspects of strength of evidence,

including quality and clinical content of individual reports,

as well as trends in time and geographic spread. A refer-

ence set of 264 positive controls (historical safety signals

from 2003 to 2007) and 5,280 negative controls (pairs of

drugs and adverse events not listed in the Summary of

Product Characteristics of that drug in 2012) was used for

model fitting and evaluation; the latter used fivefold cross-

validation to protect against over-fitting. All analyses were

performed on a reconstructed version of VigiBase� as of

31 December 2004, at around which time most safety

signals in our reference set were emerging.

Results The following aspects of strength of evidence

were selected for inclusion into vigiRank: the numbers of

informative and recent reports, respectively; dispropor-
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tional reporting; the number of reports with free-text

descriptions of the case; and the geographic spread of

reporting. vigiRank offered a statistically significant

improvement in area under the receiver operating charac-

teristics curve (AUC) over screening based on the Infor-

mation Component (IC) and raw numbers of reports,

respectively (0.775 vs. 0.736 and 0.707, cross-validated).

Conclusions Accounting for multiple aspects of strength

of evidence has clear conceptual and empirical advantages

over disproportionality analysis. vigiRank is a first-of-its-

kind predictive model to factor in report quality and con-

tent in first-pass screening to better meet tomorrow’s post-

marketing drug safety surveillance needs.

1 Introduction

Medicines enable patients to lead better lives and are

fundamental to modern healthcare. However, any effective

medicine comes with a risk of adverse effects, many of

which are serious enough to end or dramatically change the

lives of individual patients. Taken together, adverse drug

reactions (ADRs) impose an enormous burden on society,

causing hundreds of thousands of deaths annually [1, 2] at a

cost of several billion $US [3].

Pre-marketing clinical trials include too few patients

from groups that are too homogeneous to capture a drug’s

full spectrum of possible adverse effects, which makes

extensive post-marketing surveillance a necessity [4]. The

detection of a previously unknown safety issue can have

great impact on the overall benefit–risk balance of a drug,

as evidenced for example by the market withdrawal of

rofecoxib upon the detection of its increased myocardial

infarction risk.

Individual case reports of suspected harm from medi-

cines remain the primary basis to detect unexpected risks of

medicines [5, 6]. Their most important strength is that they

draw on the astute observations of patients and health

professionals to capture information specifically for the

purpose of causality assessment [7]. Further, they cover all

types of medicines and all patient groups in a single sys-

tem. Their major limitations include that far from all sus-

pected ADRs are identified as such, with fewer still being

reported to the authorities, and that many reports lack the

necessary detail to support solid causality assessment. A

number of broad research initiatives currently explore the

use of longitudinal health data for safety signal detection,

and the results suggest that these may complement but not

replace individual case reports for this purpose [8].

A major practical issue in the analysis of individual case

reports to uncover possible new drug risks is their sheer

numerosity. For many concerned organizations, both the

number of submitted reports in itself and the number of

associated drug–ADR combinations are too large for

exhaustive manual review. This necessitates the use of

triages to guide clinical assessment [9–11]. Generally, such

triages can consider three main criteria: strength of evi-

dence, novelty, and medical impact [12]. Since the 1990s,

computerized evaluation of strength of evidence has relied

largely on so-called disproportionality analysis [13–15].

Reflecting its practical value, disproportionality analysis

has evolved from a specialist to a mainstream activity over

the past 15 years [5, 16]. Nevertheless, it provides a very

basic analysis that only accounts for statistical associations

in the co-reporting of drugs and suspected ADRs. It is

entirely based on aggregate numbers of reports and naively

disregards the strength of individual reports. More recently,

multivariate methods have been proposed that account for

co-reported medicines and the indication for treatment [17–

20]. These methods should yield strength-of-association

measures less liable to confounding, although their prac-

tical value for pharmacovigilance is yet to be definitively

demonstrated [21]. In any case, even the multivariate

methods do not consider other information on a given

report beyond its listed drug(s) and ADR(s), and occa-

sionally the indication for treatment. Automated screening

based on deviating patterns of reported time to onset [22] is

conceptually different, but still focuses on a single aspect

of strength of evidence.

This is contrasted by clinical assessment of potential

safety signals, which attempts to manually account for all

relevant aspects [11, 12]. In particular, the quality and

content of individual reports is of fundamental importance

[23]. Consequently, we aim in this paper to combine the

benefits of automation with the breadth of aspects used in

clinical assessment. Specifically, the aim of this paper is to

derive a predictive model for emerging signals of suspected

ADRs from large collections of individual case reports,

accounting for a broad variety of aspects of strength of

evidence, ranging from disproportionality analysis and case

series diversity to individual report quality and content.

This algorithm, denoted vigiRank, is inspired by similar

work for adverse drug interaction surveillance [24].

2 Methods

vigiRank is a predictive model for emerging safety signals,

here implemented with shrinkage logistic regression to

identify predictive variables and estimate their respective

contributions.

2.1 Variables Considered for Inclusion into vigiRank

The variables considered for inclusion into vigiRank cap-

ture inherently different aspects of a reporting pattern that
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might strengthen our suspicion of a true causal association

between the drug and the suspected ADR. This includes

variables that measure the quality and clinical content of

individual reports, as well as more quantitative aspects of a

reporting pattern such as trends in time and geographic

spread. Each considered variable is defined at the level of a

drug–ADR pair and is based on the reporting pattern of that

pair in a specific collection of individual case reports.

Table 1 provides an overview of all proposed variables, with

descriptions and motivations. The final selection of vari-

ables to be empirically evaluated was made by the co-

authors through consensus. Candidate variables were ini-

tially identified through consultation with experienced

pharmacovigilance professionals with clinical (four), phar-

maceutical (five), and statistical (one) expertise. Below, two

non-trivial variables are described in greater detail.

2.1.1 Informative Reports

The ‘informative reports’ variable measures the number of

reports with a vigiGrade completeness score of 0.90 or

more [25]. This score is 1 for a report with full information

on the type of report, type of notifier, time to onset, country

of origin, patient age and sex, indication for treatment,

dosage, outcome, and free text description. It then

decreases with a pre-specified multiplicative factor for each

of these fields that is undocumented. A report with a

vigiGrade completeness score of 0.90 or more may lack

information on only one of the following information

items: type of report, type of notifier, outcome, or free text

description; all other items described above must be

documented.

2.1.2 Disproportional Reporting

The ‘disproportional reporting’ variable is a binary indi-

cator of whether the combination is disproportionally

reported, either on the full dataset or a subset thereof. In

this study, disproportionality is measured using the Infor-

mation Component (IC), a disproportionality measure

based on shrinkage observed-to-expected ratios [13, 26].

The IC is computed as:

IC ¼ log2

Oþ 0:5

E þ 0:5
ð1Þ

where O and E are the observed and expected numbers,

respectively, of reports on the drug–ADR pair. E is given

by (NA 9 ND)/N, where NA is the total number of reports

on the ADR; ND is the total number of reports on the drug;

and N is the total number of reports. Credibility intervals

for the IC are obtained via the Gamma distribution [26],

and ICa denotes the a percentile of the posterior distribu-

tion for the IC.

Here, a drug–ADR pair is considered disproportionally

reported when one or more of the following criteria are

fulfilled: IC025 [ 0 on the full data; IC005 [ 0 on the full

data when adjusting for age group, notifier, calendar year,

or country; IC0005 [ 0 in a stratum of the data based on age

group or notifier; IC005 [ 0 in two strata for the same

covariate based on age group, notifier, or country; or

IC0005 [ 0 for the full data when excluding one stratum

based on age group, notifier, country, or calendar year.

Here, IC025, IC005, and IC0005 denote the lower limits of 95,

99, and 99.9 % credibility intervals for the IC, respectively.

Stratifications and interval widths have been selected to

protect against spurious associations from multiple com-

parisons according to Hopstadius and Norén [27].

2.2 Reference Set

To be able to identify reporting characteristics of emerging

safety signals, a reference set of positive and negative

controls was created. A total of 532 historical European

Medicine Agency (EMA) safety signals from September

2003 to March 2007 for 267 European centrally authorized

products (CAPs) were considered as potential positive

controls of our reference set [28]. Each had an index date

reflecting when the EMA first became aware that it

required investigation.

Data on the proposed variables were extracted from the

World Health Organization (WHO) global individual case

safety report database, VigiBase� [29], for all potential

controls. As of March 2014, VigiBase included more than

8.5 million reports from 118 countries. Here, vaccine

reports and suspected duplicate reports were excluded [30].

Since we focused on emerging safety issues, a VigiBase

reconstruction as of 31 December 2004 was used; this date

is the end of the quarter in which the median of the index

dates fell. No attempt was made to recreate the actual

composition of VigiBase at that time. Instead, reports were

time-stamped based on the date of the suspected ADR, or

an approximation thereof.

After updating to the Medical Dictionary for Regulatory

Activities (MedDRA�), version 14.1, matching substance

names to the preferred base level of WHO Drug Dictionary

EnhancedTM, excluding vaccines, and requiring reports

from at least two countries, 264 positive controls from 65

CAPs remained. As intended, by the rollback date of 31

December 2004, a vast majority of these were emerging

rather than established safety signals: by this date only 30

of 264 (11 %) had led to regulatory action by the EMA,

and for 118 (45 %) this date preceded the point in time

when EMA first became aware of the potential safety

signal. The reference set also included randomly selected

negative controls, at a 20:1 ratio with the positive controls.

Negative controls were pairs of the initial 267 CAPs and

Improved Statistical Signal Detection in Pharmacovigilance 619
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MedDRA� preferred terms for which no other preferred

term from the same MedDRA� high-level term was

included in Section 4.8 of the 2012 European summary of

product characteristics (SPC) of that drug. MedDRA�-

encoded European SPCs were obtained from the PRO-

TECT database, available at http://www.imi-protect.eu/

methodsRep.shtml. All 5,544 drug–ADR pairs of the ref-

erence set were required to have reports from at least two

countries in VigiBase by 31 December 2004.

2.3 Fitting the vigiRank Model

vigiRank was derived by fitting a shrinkage logistic

regression model to the reference set, using all variables

described in Table 1 as candidate explanatory variables.

Shrinkage regression was employed on account of its ability

to avoid over-fitting to sampling variability of the training

data [31]. The specific type of shrinkage called ‘lasso’ was

used, as it simultaneously selects variables and estimates

their relative contributions to the predictive model; that is, it

sets the weights of most explanatory variables to zero [32].

2.3.1 Variable Transformation

Prior to regression modelling, all numerical variables, i.e.

all except ‘disproportional reporting’ and ‘time trend’ (see

Table 1), were subjected to mathematical transformation

(see Fig. 1). The main aim of this was to impose a law of

diminishing returns, gradually decreasing the impact from

additional reports of a given kind, e.g. with positive de-

challenge. This is important in order not to exclusively

rank very large case series at the top.

As seen in Fig. 1, the transformations all have an

identical shape but differ in the first number of reports (or

countries) to be rewarded. The shape of the transformation

was selected prior to modelling and not altered in light of

its results. The threshold for each covariate was determined

empirically as the lowest number that applied to fewer than

20 % of a random sample of negative controls, separate to

those used to subsequently fit and evaluate the model. For

example, 30 % of negative controls in the random sample

have two or more dechallenge reports, whereas only 19 %

have three or more. Hence, the threshold for ‘dechallenge’

was set to three reports. Whereas the transform for ‘recent

reporting’ follows the same shape, it yields values between

-1 and 0 instead of between 0 and 1. It therefore penalizes

drug–ADR pairs with few recent reports rather than

rewards pairs with many recent reports.

2.3.2 Regression Modelling

All regression analysis relied on the specific implemen-

tation of lasso logistic regression provided by Friedman

et al. [33]. Prior to model fitting, all transformed vari-

ables were standardized to unit variance. However, all

presented coefficients apply to the transformed variables

on their original scale, as shown in Fig. 1. For details on

the lasso logistic regression model, please see the

Appendix.

Shrinkage regression requires selecting a degree of

shrinkage that determines the model size. In this study, all

considered variables were designed to be positive predic-

tors, i.e. to independently add to the likelihood that a drug–

ADR pair represents a safety signal, if at all included.

Therefore, any estimated negative coefficient was taken to

suggest over-fitting, and consequently the selected shrink-

age was set to yield the largest possible model without

negative coefficients.

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

−1.0

−0.5

0.0

Certain causality

Rechallenge
Informative reports

Probable/certain causality
Narrative

Multiple reporting elements

Dechallenge

Geographic spread

Solely reported
Time−to−onset

Recent reporting

0 1 2 3 4 5 6 7 8 9 10

Number of units

T
ra

ns
fo

rm
 o

ut
pu

t v
al

ue

Fig. 1 Mathematical transforms used for numerical variables to

gradually decrease the reward from additional units (i.e. reports or

reporting countries). The respective points at which the transforms

begin to increase were determined empirically based on the variables’

frequency among the negative controls
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2.4 Performance Evaluation

vigiRank utilizes a logistic regression model, and produces

a score for each drug–ADR pair reflecting the probability

that it represents an emerging safety signal (for details, see

the Appendix). This score has no natural threshold, for

which reason performance was evaluated in terms of

receiver operating characteristic (ROC) curves, which

display sensitivity and specificity at varying thresholds.

The area under the ROC curve (AUC) was used as

aggregate measure of predictive performance. AUC is a

standard summary metric for comparisons over all possible

thresholds in ROC analyses.

To study its performance relative to standard dispro-

portionality analysis, vigiRank was compared with the IC

(see Sect. 2.1.2). Following routine use, the IC was

employed without adjustments or stratifications, and IC025

was used to decide which drug–ADR pairs to highlight at a

given threshold. Comparison was also made against a crude

screening strategy based on a drug–ADR pair’s raw num-

ber of reports, representing the first paradigm of quantita-

tive analysis in pharmacovigilance. The performance of all

three methods was evaluated with the reference set of

historic EMA safety signals as benchmark.

2.5 Cross-Validation

Because the same data were used to develop and evaluate

vigiRank, there might be a risk of over-estimating its

predictive performance. To manage this risk, regression

modelling and performance evaluation was repeated

within fivefold cross-validation. First, the entire reference

set was randomly divided into five equally sized folds.

Then, withholding one fold at a time, a lasso logistic

model was fitted as described for the entire reference set

above; notably, the degree of shrinkage was determined

anew in each of the five iterations. For each of the five

models, the withheld fold was used as benchmark in the

evaluation.

Accurate ascertainment of predictive performance was

not the only purpose of this cross-validation scheme.

Investigation of vigiRank’s robustness was enabled by

comparing the model fitted from the entire reference set

with the five models obtained in cross-validation.

3 Results

3.1 vigiRank: A Predictive Model for Emerging Safety

Signals

The variables selected by lasso logistic regression for

inclusion into vigiRank are shown in Fig. 2a: ‘informative

reports’, ‘recent reporting’, ‘disproportional reporting’,

‘narrative’, and ‘geographic spread’. Further, Fig. 2b dis-

plays the models obtained in cross-validation. Robustness

does not appear to be an issue: the above five variables

were selected in each of the five cross-validation iterations,

with little variability in the magnitude of the estimated

coefficients. The only other variable selected was ‘de-

challenge’, which was included with small coefficients in

two iterations.

Figure 3 provides a fictional example to schematically

describe how vigiRank works in practice.

3.2 Overall Predictive Performance

The results from the performance evaluation based on the

entire reference set are shown in Fig. 4a. The ROC curve

corresponding to vigiRank is consistently above the other

two, indicating that, at any given specificity, vigiRank will

yield higher sensitivity than both IC025 and raw numbers of

reports; and conversely, at any given sensitivity, vigiRank

will yield higher specificity. This obviously includes the

region around the natural threshold for IC025, zero. Fur-

thermore, vigiRank offered a statistically significant

improvement in AUC over IC025 (0.775 vs. 0.736, cross-

validated), which is greater in magnitude than the differ-

ence between IC025 and raw numbers of reports (0.736 vs.

0.707). For reference, when considered in isolation, the

predictive performance of disproportionality analysis

extended for subgroup discovery as described in Sect.

2.1.2, was 0.743.

For vigiRank, the mean AUC value across the five cross-

validation iterations differed only marginally compared

with that obtained with the entire reference set, and there

was no difference at all for the other two methods (see

Fig. 4b). In all five iterations, vigiRank performed best and

IC025 second best.

3.3 Examples of Emerging Signals Highlighted

or Overlooked by vigiRank

In line with vigiRank’s overall better performance, some

emerging signals missed by IC025 were highly ranked by

vigiRank. Others yet obtained lower ranks, reflecting

vigiRank’s less-than-perfect performance as a first-pass

filter. Table 2 shows the three positive controls with neg-

ative IC025 that obtained highest ranks and the three posi-

tive controls that obtained overall lowest ranks, according

to vigiRank.

The example olanzapine–bradycardia (see Table 2)

illustrates vigiRank’s ability to consider local stratum-

specific or adjusted effects. This allows it to highlight

emerging safety signals not detected by standard dispro-

portionality analysis: while the global IC025 is negative,
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there is disproportional reporting (IC005 [ 0) for the age

groups 12–17 years and 18–44 years.

Even in the complete absence of disproportional

reporting, vigiRank can utilize other reporting patterns to

yield high ranks, as for the two clopidogrel signals in

Table 2, which are driven by the other four included pre-

dictors. Each of these three signals have additional support

from variables not included in this vigiRank implementa-

tion, such as ‘dechallenge’, ‘rechallenge’, ‘probable/certain

causality’, and ‘solely reported’.

The three low-ranked positive controls naturally have

minimal reporting on the variables included in vigiRank.

Two of them, raloxifene–arterial thrombosis and pramip-

exole–hyperkinesia (see Table 2), have very little empirical

support overall. However, for nelfinavir–erythema multi-

forme, the underlying data—in particular the five positive

dechallenge reactions—might have been able to support a

positive statement on causality in a subsequent clinical

assessment.

4 Discussion

Adverse effects from medicines are a major impediment to

beneficial pharmacological therapy: they cause mortality

and morbidity, and trigger patients to stop otherwise

effective treatment. With many risks unknown at the time

of marketing, detecting those risks as timely and accurately

as possible is of utmost importance. One of the greatest

opportunities towards this end is to adapt first-pass

screening to account for the varying strength of individual

case reports. As in clinical assessment, computational

methods can then look beyond aggregate numbers and

prioritize case series more likely to contain convincing

reports and reporting patterns. Our results indicate that this

may improve performance as much as did the previous

paradigm shift from screening based on raw numbers of

reports to disproportionality analysis.

Our new screening algorithm, vigiRank, considers the

amount and type of information on individual reports, the
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Fig. 2 a Estimated coefficients by lasso logistic regression for all considered variables. The top five variables with non-zero coefficients define

our new screening algorithm, vigiRank. The model intercept was -3.45. b All non-zero coefficients estimated by lasso logistic regression for any

variable, either based on all data (as in a) or when excluding a fold during fivefold cross-validation. Positive and negative controls were randomly

assigned to one of five folds, so that each fold contains 20 % of the entire reference dataset
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timing and geographic spread of the case series, and the

unexpectedness of the reporting pattern. Our version of

disproportionality analysis goes further than what is cus-

tomary today: it also identifies local associations unique to,

for example, geographic regions or age groups [27].

Markers of presumed clinical relevance of individual

reports were considered as potential predictors but not

selected for the final model. These include explicit

assessment of causality by the reporter or national center,

records of dechallenge interventions where the adverse

event had resolved upon end of treatment, and records of

rechallenge interventions where the adverse event had

reappeared upon re-exposure to the drug. The latter was

identified by experts as an important aspect of strength of

evidence for pharmacovigilance triages [12]. However, an

important difference is that their ascertainment of positive

rechallenges is based on manual review, whereas we rely

on already encoded information in the database, which may

not be perfectly trustworthy. As regards strong causality

assessment, this may be unlikely for adverse events not yet

known to be associated with the drug, as considered here.

Conversely, the predictive ability of informative reports

and case narratives was not expected. These predictors

measure the amount of information, but not whether it

supports a causal association. As a case in point, the

vigiGrade completeness measure looks at whether there is

information on time to onset, but not whether the reported

time to onset is suggestive of a causal association. Of

course, the amount of information on a report may corre-

late with the strength of suspicion and perceived impor-

tance of the case. Viewed differently, case series with no

informative reports or case narratives may be less likely to

reflect true adverse effects.

An advantage of vigiRank over rule-based alternatives is

that it imposes no hard requirement on any individual

predictor. Lack of informative reports can be compensated

for, for example, by disproportional reporting, narratives,

and recent reporting; and fewer than expected reports

overall can be compensated for, for example, by informa-

tive reports and geographic spread. The previously

described triage for adverse drug interaction surveillance in

VigiBase [24] conforms to the vigiRank framework. One

important new development in the implementation pre-

sented here compared with that for interactions is the

principle of diminishing returns for additional reports ful-

filling the same criteria (recent, informative, or with nar-

ratives), and for additional countries with disproportional

reporting rates. This is important since emerging safety

signals must be detected early, and it would be unwise to

place undue focus on series of very large numbers of

reports. By design, vigiRank is less likely than basic dis-

proportionality analysis to highlight report series with as

few as three reports. Three reports has been taken as a rule

of thumb of minimal support for a safety signal, but the

original publication from which this derives actually calls

for three strongly supportive cases, which is quite different

[23].

We developed and evaluated a first-pass screening

algorithm for VigiBase, which is the world’s largest data-

base of its kind. Its implementation in a different context

would require the predictor variables to be adapted. For

example, an informative report may be defined as one that

carries information in a minimum number of record fields

important for the database of interest, and geographic

spread in a national dataset could be measured in terms of

states or regions. As for unexpectedness, a different mea-

sure of disproportionality and threshold can replace our

proposed combination of global and local IC analysis. We

believe that vigiRank would also bring value over basic

disproportionality analysis in other databases. Ideally, the

weights of the model should be optimized to the new set-

ting. If so, the transformations for predictor variables based

on numbers of reports and geographical units could be

adapted to peak earlier for smaller databases. With less

resource, one may consider recycling the weights presented

here. In either case, empirical evaluation of performance

for the dataset of interest is crucial.

Fig. 3 Outline of how vigiRank applies to a set of eight reports on a

fictional drug–adverse drug reaction pair. The first part shows a

conceptual summary of each report. As an example, the top left report

is a report from Switzerland that includes a case narrative, attains a

vigiGrade completeness score of 1.0, and was received in 1995. The

second part shows the raw data for each of the predictors (three

informative reports, four recent reports, disproportionality = TRUE,

three reports with case narratives, and four countries of origin with

positive Information Component). The third part displays the

corresponding transformed values that are multiplied with their

corresponding estimated coefficients. The fourth part sums the

independent contributions from all variables with the intercept

(-3.45) to produce the overall score of -1.45 on logit scale, which

corresponds to a 19 % probability. Either the score or the probability

could be used for ranking purposes. Note: here the year 2014 is used

as a reference point to determine whether or not a report is recent
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The main limitation of our study is the lack of an

external benchmark to evaluate predictive performance.

Cross-validation indicates that vigiRank is not over-fitted

to sampling variability of the reference dataset: the mean

cross-validated AUC is marginally below that for the

reference dataset as a whole, the selected predictors and

their coefficients are remarkably consistent over the five

cross-validation iterations, and vigiRank consistently

outperforms IC025 over all iterations. However, vigiRank

could be over-fitted to the nature of the reference set in

question. The strengths of the reference set from Alvarez

et al. [28] include its focus on risks identified post-mar-

keting, and the possibility to backdate the analysis to

before their discovery. However, it is restricted to Euro-

pean safety signals in the early 2000s, and these could

differ systematically from safety signals in different

regions and time periods. Our positive controls do have

lower proportions of North American reports than does

VigiBase overall, but beyond that European reports are

not over-represented compared with other continents. This

is important since the proportion of informative reports in

VigiBase is higher from Europe than from other regions

[25].

This implementation of vigiRank is not a proposed final

solution, but a first step towards a new paradigm that will

allow more effective automated screening of individual

case reports. It has clear advantages over basic dispropor-

tionality analysis, conceptually as well as empirically, and

should be adopted for routine use. However, further

enhancements must follow. Other predictive models should

be considered, including ensemble methods, which have

proven powerful in other settings [34]. Other benchmarks

should be utilized to ensure generalizability. Some of the

predictors developed here, but not selected, should be

considered further, particularly ‘dechallenge’, which was

included in two of the cross-validation models. Additional

‘negative’ predictors aimed at eliminating false positives,

similar to (lack of) recent reports in the current version of

vigiRank is an interesting possibility. As an example,

lack—or a very low proportion—of reports without co-

reported drugs could potentially eliminate false positives.

We should also consider novel predictors based on recent

innovations such as the measure of unexpected reported

time to onset proposed by Van Holle et al. [22]. Combi-

nation with multivariate methods to account for co-repor-

ted drugs and indications for treatment at the report level

through regression [17, 19, 20] or propensity score models

[18] is particularly interesting, since these aspects are not

captured by any of the predictors in the current model, and

have yielded similar increases in performance [18, 20]. As

they are conceptually distinct, their combination may well

be synergistic.

0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.8 0.6 0.4 0.2 0.0

Specificity

S
en

si
tiv

ity

vigiRank (AUC = 0.778)
IC025 (AUC = 0.736)
Number of reports (AUC = 0.707)

a

All data

Excluding fold 1

Excluding fold 2

Excluding fold 3

Excluding fold 4

Excluding fold 5

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

AUC

vigiRank IC025 Number of reports
b

Fig. 4 a Receiver operating characteristic curves for our new screening algorithm, vigiRank, standard disproportionality analysis (IC025), and

raw numbers of reports, relative to the benchmark based on historic European Medicines Agency safety signals. The difference between

vigiRank and IC025 is statistically significant (p \ 0.001 using DeLong’s test [36]). The circle corresponds to the standard threshold for IC025, 0,

and the 45� line corresponds to random guessing. b Area under the curve (AUC) values for the three methods from the evaluation on all data as

well as from the individual iterations of the cross-validation. The error bars indicate 95 % confidence intervals. The mean values over the cross-

validation folds are 0.775, 0.736, and 0.707 for vigiRank, IC025, and raw numbers of reports, respectively. IC information component, IC025 is the

lower limit of the two-sided 95 % credibility interval for the IC disproportionality measure
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5 Conclusions

Accounting for multiple aspects of strength of evidence has

clear conceptual and empirical advantages over dispro-

portionality analysis. vigiRank is a first-of-its-kind pre-

dictive model to factor in report quality and content in first-

pass screening to better meet tomorrow’s post-marketing

drug safety surveillance needs.
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Appendix: vigiRank as a lasso logistic regression model

To appreciate the lasso logistic regression model chosen

for the purpose of deriving the new screening algorithm

vigiRank in this study, consider first the ordinary logistic

regression model:

log
PðyjxÞ

1� PðyjxÞ ¼ b0 þ b1x1 þ � � � þ bpxp ð2Þ

where p denotes the number of candidate variables, xj

denotes the jth predictor variable, and y the outcome (in our

case emerging safety signal or not). The bj’s can be viewed

as log odds ratios adjusted for the impact of the other

covariates [35].

As shown in Fig. 1, all variables except those that are

binary undergo transformation. This can be described in the

following way:

log
PðyjxÞ

1� PðyjxÞ ¼ b0 þ b1f1ðx1Þ þ � � � þ bpfpðxpÞ ð3Þ

where fj is the transformation applied to the jth variable.

(Trivially, for the binary variables f(x) = x.)

Now, lasso logistic regression extends standard

logistic regression by imposing an L1 constraint on the

coefficients:T
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Xp

j¼1

bj

�� ��� t ð4Þ

There are multiple ways to estimate the bj coefficients

under this constraint. In this study, the algorithm provided

by Friedman et al. [33] was used, which allows the

coefficients to be estimated for the whole path of possible

values for the tuning parameter t in Eq. 4. This parameter

determines the amount of shrinkage and therefore the size

of the model; see Sect. 2.3.2 for a description of how the

model size of vigiRank was selected.

Since vigiRank is a logistic regression model, once its

coefficients have been estimated as described above, it can

be used to make predictions for arbitrary drug–ADR pairs

regarding their likelihood of representing emerging safety

signals. Solving Eq. 3 for P(y|x) yields:

PðyjxÞ ¼
expðb0 þ b1f1ðx1Þ þ � � � þ bpfpðxpÞÞ

1þ expðb0 þ b1f1ðx1Þ þ � � � þ bpfpðxpÞÞ
ð5Þ

Figure 3 provides a detailed description of how Eq. 5 is

applied to a set of eight reports for a fictional drug–ADR

pair, using the actual transformations fj and coefficients bj

of the final vigiRank model. In practice, there are a large

number of drug–ADR pairs, which are ranked according to

their respective predicted P(y|x).
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