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Abstract 

The low-speed flowfield for a generic unmanned combat air vehicle (UCAV) is investigated both experimentally and numerically. A wind 
tunnel experiment was conducted with the Boeing 1301 UCAV at a variety of angles of attack up to 70 degrees, both statically and with various 
frequencies of pitch oscillation (0.5, 1.0, and 2.0 Hz). In addition, pitching was performed about three longitudinal locations on the configuration 
(the nose, 35% MAC, and the tail). Solutions to the unsteady, laminar, compressible Navier-Stokes equations were obtained on an unstructured 
mesh to match results from the static and dynamic experiments. The computational results are compared with experimental results for both static 
and pitching cases. Details about the flowfield, including vortex formation and interaction, are shown and discussed, including the non-linear 
aerodynamic characteristics of the vehicle. 
Published by Elsevier Masson SAS. 
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1.� Introduction lift. Several researchers have shown the effects of dynamic stall 
on airfoils, both with experimental and numerical studies [5, 
13,15]. In fact, excellent review articles on dynamic stall have 

Unmanned combat air vehicles (UCAVs) have shown their been written by Ekaterinaris and Platzer [9], as well as Carr [4]. 
value as reconnaissance vehicles, and even tactical weapons, Experimental and numerical studies have also been conducted 
over the past few years. Aircraft such as Predator and Global on wings undergoing dynamic stall, including rectangular and 
Hawk are fast becoming essential tools in the day-to-day op swept wing [6,17,22,24] as well as delta wings [19,23]. Very 
erations of the military. Eventually, UCAVs will be called little work, however, has been done on studying the dynamic 
upon to take advantage of their pilotless state and pull many lifting capabilities offull aircraft configurations with mid-range 
more g's than manned aircraft. Issues such as control actu levels (30° to 60°) of sweep, such as generic UCAVs [16]. This 
ation [12], morphing wings [11], fuel cell-based propulsion research hopes to better understand the impact of vortex lift and 
systems [2], MEMS-based control systems [18], and semi vortex breakdown, coupled with dynamic lift, for these config
autonomous flight [3] will be essential to the further develop urations. 
ment of these vehicles. One such capability will be utilizing The results of dynamic stall studies for airfoils may be sum
dynamic lift (also known as dynamic stall) due to fast pitch-ups marized by the lift and pitching moment results shown in Fig. 1. 
for super-maneuverability and agility. Depending on the pitching frequency, an airfoil will exceed 

Dynamic lift utilizes hysteresis effects and vortex formation 
on airfoils or wings pitching up at rapid rates to delay the onset 
of stall. As airfoils pitch up there is a time lag in the separation 
of flow over the upper surface, which allows for the attainment 
of higher angles of attack than during static conditions. In addi
tion, leading-edge vortices form that aid in the development of 



Nomenclature 

b wing span, 12 in (0.305 m) q dynamic pressure, ≡ ρV 2/2 
c̄ mean aerodynamic chord, 5.24 in (0.133 m) Sref wing planform area, 46.82 in2 (302.1 cm2) 
CD drag coefficient, ≡ D/q∞Sref s wing semi-span, ≡ b/2 
CL lift coefficient, ≡ L/q∞Sref St c/V∞Strouhal number, ≡ f ¯
Cm pitching moment coefficient, ≡ m/q∞Sref c̄ t physical time or wing thickness 

∗ CN normal force coefficient, ≡ N/q∞Sref t non-dimensional time, ≡ tV∞/c̄

D drag V velocity
 
E modulus of elasticity for wing material V∞ freestream velocity, 65.4 ft/s (20  m/s)
 
f pitching frequency . . . . . . . . . . . . . . . . . . . . . . . . . Hz xcp center of pressure, ≡ −c̄Cm/CN
 
k reduced frequency, ≡ πf ¯ α angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 c/V∞	 deg 
L	 lift ν Poisson’s ratio for wing material 
l	 vehicle length, 8.50 in (0.216 m) ρ air density 
m	 pitching moment (about 35% mean aerodynamic ω rotation rate, = 2πf 

chord) ∞ freestream condition 
Fig. 1. Dynamic stall events on an airfoil (Refs. [9] and [4]). 

static loads as it pitches up, with lift continuing to increase un
til separation becomes apparent on the upper surface near the 
trailing edge (a). Eventually, as the separation region grows, a 
vortex will form near the leading edge of the airfoil (b). The 
vortex momentarily increases the rate of lift increase, but even
tually the stall region reaches its full extent (c). Finally, as 
the airfoil pitches down the boundary layer begins reattach
ing to the upper surface, and the flow returns to its original 
state (d). The combination of flow separation and vortex for
mation also has a large impact on pitching moment, as can 
also be seen in Fig. 1. Again, these results are based on two-
dimensional airfoils pitching at approximately the same fre
quencies. 

Slender delta wings exhibit similar behavior as airfoils, how
ever for very different reasons [1,16,19,23]. Delta wings create 
leading edge vortices, which cause non-linear lifting charac
teristics. As the angle of attack is increased, however, vortex 
breakdown causes this lift to decrease, eventually leading to 
stall. Under unsteady pitching, the vortex breakdown phenom
enon experiences a hysteresis which delays stall. Eventually the 
pitching delta wing stalls (although at a higher angle of attack 
than in the static case), and as the wing pitches down the forces 
and moments return to their static values [20]. It is not known 
whether these results would be reproduced on a full UCAV con
figuration. 
� � 

2. Experimental approach 

A full-scale model for the Boeing 1301 UCAV configuration 
is shown in Fig. 2; the configuration has many similar features 
to the X-45A UCAV configuration (see Fig. 3). The 1301 con
figuration has a straight, 50◦ sweep leading edge, an aspect 
ratio of 3.1, a top-mounted engine inlet, and a B-2-like wing 
planform. The full-scale configuration has a mean aerodynamic 
chord of 20.2 ft and a reference area of 694 ft2. 

A 1:46.2 scale model of the configuration was tested in the 
USAF Academy 3 ft × 3 ft  (0.914 m × 0.914 m) open return 
low-speed wind tunnel (see Fig. 4). The scaled model has a 
mean aerodynamic chord of 5.24 in (0.133 m) and a reference 
area (wing planform area) of 46.82 in2 (302.1 cm2). The tunnel 
has less than 0.05% freestream turbulence levels at all speeds. 
The test was conducted at a freestream velocity of 65.4 ft/s 
(20 m/s), which corresponds to a chord-based Reynolds num
ber of 1.42 × 105. The model was sting-mounted from the rear, 
and forces and moments were measured with a six-component 
force balance, with a normal force range of 50 lb (223 N). Both 
static and dynamic testing was done; forces during the dynamic 
runs were obtained by subtracting the force history with the 
tunnel off from the dynamic data. The balance calibration was 
accurate to ±0.5% of the full measurement force of the bal
ance, or 0.25 lb (1.12 N). It should be noted that the maximum 
forces measured on the balance were only 15% to 20% of the 
full range of 50 lb, which could further add error to the exper
imental data. The lift and drag coefficients are only accurate to 
±1.9% partially due to inaccurate readings of the room static 
pressures on the testing days. 

The dynamic pitching was done with a shifted cosine oscil
lation, starting at a certain angle of attack and pitching up to 
twice the peak amplitude of the cosine wave, then back to the 
original angle of attack. The pitch variation was defined as: 

α(t) = α◦ + m ◦ 1 − cos(ωt)	 (1) 

where α◦ and m were varied to obtain results for 0◦ � α � 45◦ 
in three pitching cycles. This pitching function was used since 



Fig. 2. Boeing 1301 UCAV configuration. 
Fig. 3. X-45A UCAV configuration (photo courtesy of NASA Dryden Flight 
Research Center). 

Fig. 4. USAF Academy 3 ft × 3 ft low-speed wind tunnel. 

it produces a motion without any discontinuities in acceleration 
or velocity at the beginning and end of the motion, thus being 
easier to implement in an experiment or a CFD code. 

The model was suspended from downstream using a 
C-shaped bracket with a center mount for the balance and 
model. The bracket was mounted vertically in the test section 
of the tunnel, so that the center of rotation was a vertical axis 
through the center of the tunnel. Two separate synchronized 
servo motors on the top and bottom of the tunnel drove the 
pitching motion through a timing belt/arc sector with a 20 : 1 
gear ratio setup. 
3. Experimental results 

The configuration was first tested in a static mode for angles 
of attack ranging from 0◦ � α � 70◦; the resulting lift and drag 
coefficients, as well as the center of pressure, are presented in 
Fig. 5. As can be seen, the configuration has linear lift char
acteristics up to an angle of attack of α = 10–12◦, with stall 
occurring at approximately α = 20◦. The stall is not deep, how
ever, and the configuration quickly re-establishes an increasing 
lift variation up to α = 32◦, where an abrupt loss of lift takes 
place. The cause of the increased lift above the initial stall an
gle of attack, and the loss of lift above α = 32◦ were not initially 
known, but will be explained in a later section. The configura
tion is unstable (as most flying wing configurations are) with the 
center of gravity at 35% MAC with pitch reversal at α = 20◦ , 
32◦, and 46◦. The neutral point for the configuration at low 
speeds and low angles of attack is approximately 20% MAC, 
which means that the aircraft will be slightly unstable for most 
realistic center of gravity locations. 

The configuration was then pitched at 0.5, 1.0, and 2.0 Hz 
(k = 0.01, 0.02, and 0.04, respectively), with the center of 
rotation being at the nose, 35% of mean aerodynamic chord 
(MAC), and the tail. The pitch cycles were completed for three 
ranges of angle of attack: 0◦ � α � 20◦, 16◦ � α � 35◦, and 
25◦ � α � 45◦. A representative set of experimental data is pre
sented in Fig. 6, where the pitch rate is 2 Hz (k = 0.04) and the 
pitching is about the 35% MAC location (a nominal c.g. lo
cation). The static lift and drag results are also presented for 
reference. 

Notice the hysteresis for 0◦ � α � 20◦, with increased lift 
(relative to the static case) being obtained during the pitch-up 
motion through the past-stall region. During the pitch-down 
motion there is decreased lift for the remainder of the cycle. 
In addition, the hysteresis effect decreases as the angle of at
tack range increases. Also, while the pitching effect on lift is 



Fig. 5. Experimental longitudinal static force coefficients and center of pressure for the UCAV 1301 configuration. 
Fig. 6. Experimental pitch-up forces (pitching about 35% MAC at 2 Hz, 
k = 0.04). 

obvious, there is very little impact on the drag of the configura
tion. The results are not similar to airfoil or delta wing results, 
since airfoils and delta wings rarely gain or lose lift at angles 
of attack in the linear range during the pitch-up or pitch-down 
motion. While these results are interesting, very little knowl
edge is gained about the fluid dynamic processes that cause the 
experimental results due to the integrated affect of measuring 
forces. 

Other representative results for pitching about the nose and 
tail are presented in Figs. 7 and 8, respectively (Figs. 6–8 all use 
the same scales for comparison purposes). While these pitching 
centers are not normally feasible for conventional configura
tions, they could be attained with vectored thrust or pneumatic 
flow control. Notice that each of these cases has somewhat dif
ferent characteristics than the 35% MAC case, with pitching 
about the tail providing the biggest differences when compared 
with the other cases. 

While the results for pitching about the nose (Fig. 7) only 
show slight differences when compared with the 35% MAC 
center of pitch results, pitching about the tail (Fig. 8) shows 
Fig. 7. Experimental pitch-up forces (pitching about the nose at 2 Hz, k = 0.04). 

Fig. 8. Experimental pitch-up forces (pitching about the tail at 2 Hz, k = 0.04). 



markedly different results. While the pitch-up portion of the cy
cle yields dramatically higher lift coefficients in the post-stall 
region, the pitch-down lift is dramatically lower than the static 
results for most of the cycle. Pitching about the tail, while inter
esting, may not afford the overall increases in lift that would be 
of interest in a UCAV, with the lift increase during the pitch-up 
being counterbalanced by the lift decrease during the pitch-
down, except in the post-stall region. This might lead to the use 
of various flow control methods to obtain similar results with
out the adverse impact on lift at the lower angles of attack. 

4. Numerical approach 

The unstructured flow solver Cobalt (a commercial version 
of Cobalt60) was chosen because of its speed and accuracy, 
as well as our experience in using it for massively separated 
flowfields. Cobalt solves the Euler or Navier–Stokes equations, 
including an improved spatial operator and improved tempo
ral integration. The code has been validated on a number of 
problems utilizing turbulence models, including the Spalart-
Allmaras model [25]. Tomaro, et al., converted Cobalt60 from 
explicit to implicit, enabling CFL numbers as high as one mil
lion [27]. Grismer, et al., then parallelized the code, yielding a 
linear speedup on as many as 1024 processors [14]. Forsythe, 
et al., provided a comprehensive testing and validation of the 
RANS models, including the Spalart-Allmaras, Wilcox k–ω, 
and Menter’s turbulence models [10]. 

The computations were performed on an Origin 2000 com
puter (using 30 processors) and a Beouwulf cluster (using 
38 processors). The solutions were obtained using unstruc
tured grids with a combination of prisms and tetrahedrons. The 
meshes were generated for half of the configuration, with sym
metry assumed about the configuration centerline in the span-
wise direction. This was deemed acceptable for high angle of 
attack flow predictions because the left and right vortices have 
very little interaction due to the span of the UCAV configura
tion, and very little flow asymmetry was expected. The center-
line plane was modeled as a symmetry plane, the UCAV surface 
was modeled as a solid wall with a no slip condition, and the 
outer boundaries were modeled with freestream conditions. In 
order to more closely match the wind tunnel model, the inlet 
and exhaust areas of the configuration were covered over with 
solid surfaces. The outer boundary was placed 8 mean aerody
namic chords in front of, 10 mean aerodynamic chords behind, 
and 4.5 mean aerodynamic chords above and below the config
uration. 

The flowfield for the 1301 UCAV configuration was com
puted for three grids of varying sizes: 1.3 million, 2 million, 
and 4 million cells. The 2 million cell mesh is shown in Fig. 9. 
Mesh refinement was made in the region above the wing in 
order to more effectively model the leading-edge vortices and 
vortex breakdown above the wing. 

A grid resolution study was performed with the three grids 
by running each grid to a steady-state solution at α = 20◦. The  
normal force variation with iterations is shown in Fig. 10 for 
the coarse, medium, and fine grids, 1.3, 2.0, and 4.0 million 
cells, respectively. While both solutions show that the results 
Fig. 9. UCAV 1301 with 2 million cell mesh. 

Fig. 10. Grid resolution study at α = 20◦ . 

are somewhat unsteady, they have converged to the same nor
mal force levels. Based on these results, all further computa
tions have been performed on the 2.0 million cell mesh. 

5. Numerical results 

Fig. 11 shows a representative numerical simulation of the 
configuration at α = 20◦ , with the flowfield being visual
ized with streamlines and crossflow planes of x-vorticity. The 
leading-edge vortices are clearly visible closely following the 
50◦ sweep leading edge, until approximately x/l = 0.60 when 

Fig. 11. Steady laminar numerical simulation (crossflow planes of x-vorticity 
with streamlines); α = 20◦ , Re ¯ = 1.42 × 105.c 



Fig. 12. Numerical (steady) and experimental (static) force coefficient and center of pressure comparisons. 
vortex breakdown is evident. Low surface pressures are vis
ible beneath the vortex prior to breakdown; these low pres
sures account for the lift on the configuration at α = 20◦. After  
breakdown, the vortex wake quickly moves up and behind the 
leading-edge, leading to higher pressures on the upper surface 
of the wing. The vortices are very wide compared with their 
height, most likely due to the rounded leading edges of the 
wing, and the possible formation of a double primary vortex 
system [8,21]. Secondary vortices are also visible beneath the 
primary vortices. The primary vortex is seen splitting into two 
vortical flow structures after the breakdown location. 

Fig. 12 shows a comparison between steady numerical re
sults (first-order accurate in time) and the static experimental 
data. The results are quite good for the linear range of angle 
of attack, but do not capture the stall region, with the numeri
cal prediction showing the flow remaining attached to a much 
higher angle of attack. Ordinarily, a fully laminar flow should 
separate sooner than a turbulent flow, so these results are most 
likely due to something other than transitional wind tunnel data, 
such as unsteadiness. The post-stall region is also not predicted 
well, although general trends seem to mimic the experimental 
data. Both the magnitudes for lift and drag coefficients in the 
post-stall region are significantly in error when compared with 
the data. The center of pressure results show that the CFD pre
diction is showing the center of pressure in a nominally stable 
position (compared with a nominal center of gravity located 
at 35% MAC), but somewhat aft of the location determined 
in the wind tunnel tests. This shows the difficult in predicting 
pitching moments for complex configurations such as the 1301 
UCAV. 

The numerical predictions for 15◦ � α � 45◦ were recom
puted in time-accurate mode (second-order accurate in time 
with two Newton sub-iterations per time step, �t = 0.00005 s, 
�t ∗ = 0.0075). The post-stall results were fairly dramatically 
changed after the time-accurate runs (some of which took a con
siderable amount of time to reach a final solution), with much 
improved comparisons between the predictions and the experi
mental data (see Fig. 13). While we would normally expect that 
a steady solution would give a prediction at the average value of 
an unsteady solution, this may not always be true when dealing 
with highly non-linear flowfields as are seen here. 

A frequency analysis of the impact of flow unsteadiness on 
the normal force at α = 20◦ showed a dominant frequency with 
a Strouhal number of St = 0.23. This frequency corresponds to 
the oscillation of the vortex breakdown location, a common un
steady flow feature [16]. A second frequency peak was found 
for a Strouhal number of St = 0.82 (although with an order of 
magnitude less power than the vortex breakdown frequency), 
which corresponds to the oscillations caused by vortex shed
ding from the leading edge. A more detailed study of the causes 
and locations of unsteadiness would be warranted in future re
search. 

One possible explanation for the poorer comparisons in the 
stall region is aeroelastic effects. Taylor, et al., [26] showed that 
nonslender delta wings with flexible structures could display a 
double stall (or delayed stall or enhanced lift) behavior simi
lar to that seen from the experimental data in Fig. 13. Their 
wind tunnel results showed that the behavior was especially 
pronounced on delta wings with between 40 and 55 degrees 
of leading edge sweep (Fig. 14 shows results for a delta wing 
with 50 degrees of sweep), but did not occur for delta wings 
with 60 degrees of sweep or larger. The delayed stall was found 
to occur due to an anti-symmetric vibration on the wing, where 
“the effect of flexibility is to reduce the extent to the region of 
flow reversal that occurs over the wing surface, and to promote 
the reattachment of the shear layer to higher incidences” [26]. 
The amount of flexibility required for the delayed stall char
acteristic to be exhibited was determined by the reciprocal of 
the spanwise bending stiffness of the wing normalized by the 
freestream dynamic pressure, λs , given by [26]: 

2 2 3 3λs = 12(1 − ν )ρ∞V∞s /Et (2) 

where ν is Poisson’s ratio for the wing material, s is the wing 
semi-span, E is the modulus of elasticity for the wing mate
rial, and t is the wing thickness. A higher value of λs cor
responds to a more flexible wing, and the experiments com
pared models with flexibility of λs = 3.1(highly flexible) and 
λs = 0.025(rigid). For the materials used to make the UCAV 



Fig. 13. Numerical (time accurate) and experimental (static) force coefficient 
comparison. 

Fig. 14. Stall behavior of rigid and flexible nonslender delta wings with 50◦ 
swept leading edges (from Ref. [26]). 

model that was tested in the USAF Academy wind tunnel, 
λs ≈ 1, which would be flexible according to the predictions 
of Ref. [26] (a fact that has been verified by an inspection of the 
wind tunnel model). Since the CFD predictions are for a wing 
with no flexibility, aeroelastic effects could possibly account for 
the difference between the computations and the experimental 
data seen in Fig. 13. 

One of the purposes of the numerical simulation is to visu
alize the flowfield around the UCAV configuration at various 
angles of attack and determine what is causing the results seen 
in Fig. 13. A series of upper surface flowfield visualizations 
have been made at various angles of attack and are presented 
in Figs. 15a–15h; all figures use the same pressure scales for 
comparative purposes. At the lower angles of attack, such as 
α = 5◦ (Fig. 15a), the flow is fairly conventional, with stream
lines flowing over the airfoil sections creating lower pressures 
on the upper surface of the wing. A small region of separated 
flow is seen near the aft end of the configuration, however. 
When the angle of attack is increased to α = 10◦ (Fig. 15b), 
most of the flowfield remains approximately the same, how
ever a small vortex has developed along the leading-edge of the 
configuration. By the time α = 15◦ is reached (Fig. 15c), the 
leading-edge vortex is quite pronounced, although the vortex is 
already breaking down approximately half way along the lead
ing edge. While this leading-edge vortex provides additional lift 
(note the decreased upper surface pressures), the additional lift 
is not enough to maintain a linear lift curve (as seen in Fig. 13). 

At α = 20◦ the leading-edge vortex breakdown location has 
moved forward noticeably, although the vortical flowfield is still 
maintaining low pressures on the upper surface. As the angle of 
attack is further increased to α = 25◦, the vortex breakdown lo
cation has moved forward significantly, with breakdown taking 
place at approximately x/l = 0.24 and the leading-edge vortex 
is only impacting the forward section of the vehicle. In spite of 
this, the vortex is still producing considerable amounts of lift 
– the vortex can also be seen to have shifted toward the vehi
cle centerline, most likely due to the rounded leading edges on 
the vehicle. Rounded leading edges do not produce nearly as 
strong a vortex as sharp leading edges, and that impact is cer
tainly affecting the lift of the configuration at these angles of 
attack. The low pressure region near the nose of the vehicle has 
become more pronounced, while the pressures over the aft por
tion of the configuration have increased when compared with 
the α = 20◦ case. 

Finally, by the time the vehicle reaches α = 30◦ and above, 
the burst vortex slowly gives way to a largely stalled upper sur
face, although the leading-edge is still producing a vortex that is 
creating lift near the front of the vehicle. This explains the fairly 
constant lift variation with angle of attack from 32◦ � α � 50◦ 
(see Fig. 13 and compare with Figs. 15f–15h). 

The 1301 UCAV configuration was then run in a dynamic 
pitch-up to match the pitching motion of the wind tunnel test 
(see the pitch-up equation previously defined in Eq. (1)). The 
case was run for the 2 Hz pitching motion with pitching taking 
place about the 35% MAC location. The computations were run 
at a time step of �t = 0.00005 s, or a non-dimensional time step 
of �t ∗ = 0.0075, with 5 Newton sub-iterations. The pitching 
was initiated from α = 0◦ after running for 500 iterations and 
achieving a steady starting solution. 

Fig. 16 shows the pitching results from the computational 
simulation compared with the wind tunnel data. The pitching 
cycle begins by transitioning from a steady flowfield and then 
approaches the pitch-up results from the wind tunnel test. One 
issue in the results is why the pitching characteristics are dif
ferent from typical airfoil or delta wing dynamic stall results, 
which normally pitch up along or near the static lift curve and 
then extend into the post-stall region (see Fig. 1). After reaching 
the maximum pitch angle, the lift usually drops below the sta
tic value for the remainder of the cycle. In the case of the 1301 
UCAV, however, the computed lift is greater than the static case 
during the full cycle. 

Figs. 17 through 19 help explain the results seen in Fig. 15. 
Fig. 17 shows the UCAV upper surface pressure distribution for 
the time-accurate static case at α = 15◦. Figs. 18 and 19 present 
the same views for α 15◦ from the pitch-up and pitch-down 



Fig. 15. Upper surface flowfields (surfaces colored by pressure; blue = lower pressure, red = higher pressure). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
Fig. 16. Pitching cycle comparison; 2 Hz (k = 0.04) pitching about 35% MAC. 

results, respectively. Notice that the leading-edge vortex for the 
pitch-up case is stronger (resulting in lower pressures), than the 
static result. This is the cause of the increase in lift during the 
Fig. 17. Static pressure distribution, α = 15◦ . 

pitch-up: the dynamic motion creates a leading-edge vortex that 
is stronger than for the static case. While the aft portions of the 
upper surface seem to have slightly different pressures as well, 
it is believed that most of the dynamic lift is coming from the 
leading-edge vortex. Since the pitch-up vortex is stronger, vor
tex breakdown could also take place at lower angles of attack, 
so there is a trade-off between increased lift during pitch-up and 
loss of the lift as the vortex breakdown location moves forward 



Fig. 18. Pitch-up pressure distribution, α = 15◦; 2 Hz pitching about 35% 
MAC. 

Fig. 19. Pitch-down pressure distribution, α = 15◦; 2 Hz pitching about 35% 
MAC. 

on the vehicle. This may explain the change in the incremental 
lift produced while pitching up (see Fig. 15 where the difference 
between the pitch-up lift and the static lift is more different at 
lower angles of attack than at higher angles of attack). 

Finally, a word should be said about the difficulty in mak
ing consistent measurements of unsteady flowfields such as the 
pitching UCAV shown here. The UCAV geometry displays dif
ferent characteristics depending on whether the vehicle is pitch
ing or static (as seen in the preceding figures). A question could 
be asked as to how accurate or repeatable wind tunnel mea
surements of these flowfields really can be, even if all modern 
testing techniques are used with high levels of care. Wern
ert, et al. [28] showed that airfoils undergoing dynamic pitch
ing through stall conditions did not yield repeatable flowfields. 
They used PIV measurements to quantify the unsteadiness of 
the wake of the airfoil and found that measurements could not 
be repeated to desirable levels from one test to another. While 
this should not keep researchers from performing wind tunnel 
tests, it does point to the benefits of conducting integrated ex
perimental/computational research [7], so that the strengths of 
each approach can be fortified and the weaknesses of each ap
proach can be reduced. 

6. Conclusions 

A representative unmanned combat aerial vehicle (UCAV) 
has been studied computationally and experimentally. The Boe
ing 1301 UCAV configuration, similar in shape to the X-45A, is 
a candidate configuration for future UCAV applications, where 
increased maneuverability and flight capabilities will be impor
tant. In order to assess the capabilities of such a configuration, 
the high angle of attack and pitching characteristics of the vehi
cle have been assessed. 

While the 1301 UCAV is not, in general, an optimum aero
dynamic configuration, it does have interesting aerodynamic 
characteristics. For example, in spite of the use of a rounded 
leading edge, a leading-edge vortex is clearly developing at 
α = 10◦, and the vortex enables the configuration to continue 
developing lift up to α = 25◦ and beyond. In the post stall re
gion, the vehicle continues to maintain lift, in spite of the fact 
that the leading-edge vortex has clearly broken down. 

The pitching cycle characteristics of the vehicle are some
what unusual when compared with pitching airfoils and delta 
wing geometries. Instead of having largely the same lift during 
a pitch-up maneuver (when compared with the static lift char
acteristics), the experimental 1301 UCAV results actually gain 
lift during the pitch-up cycle and lose lift during the pitch-down 
cycle. The computational results show a lift enhancement dur
ing the entire cycle, with the difference probably being caused 
by aeroelastic effects on the wind tunnel model. 

Finally, some recommendations for further study are in or
der. The UCAV configuration studied here offered a great deal 
of complexity, and while we have spent a lot of time looking at 
the configuration, there is certainly more that could be time. The 
unsteady nature of the flowfield about the 1301 UCAV offers 
a potential for greater understanding, possibly by investigating 
the levels of unsteadiness found in local regions of the flow. 
This would help to determine the causes of the overall unsteady 
behavior of the vehicle, and would aid in the design of future ve
hicles. Also, the dynamic lift characteristics of the 1301 UCAV 
call for more detailed study, especially to determine why this 
configuration behaves as it seems to. 
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