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1 Introduction

Heralded entanglement between particles separated by 
large distances is a valuable resource in quantum commu-
nication. The applications range from fundamental tests 
of quantum physics like loophole-free Bell tests [1, 2] to 
device-independent quantum key distribution (QKD) [3, 4]. 
The distribution of entanglement via the direct transmis-
sion of photons via fiber optics is practically impossible 
for large distances, because the inevitable losses in opti-
cal fibers cause an exponential decrease of the success rate 
with distance. This can be overcome by dividing the dis-
tance into smaller segments with quantum-repeater nodes 
in between [5].

The performance of quantum repeaters can be charac-
terized by the rate at which pairs of quantum memories 
separated by a given distance can be entangled with high 
fidelity. The obvious benchmark for a quantum repeater 
to beat is the rate achievable via direct transmission. The 
critical parameter in the latter case is the attenuation length 
of the optical fiber, which is maximal at telecom wave-
lengths around 1.3 and 1.5 μm, where the absorption in 
optical fibers is low [6, 7]. In order to keep the technologi-
cal overhead minimal, it is therefore essential to operate 
a quantum repeater at a telecom wavelength. Additional 
requirements for an efficient quantum repeater are quan-
tum memories with coherence times by far exceeding the 
average time required for the protocol to succeed and high-
efficiency and high-fidelity implementations of all subparts 
of the protocol. These include entanglement generation and 
entanglement distribution via photons as well as entangle-
ment swapping using single-qubit operations, two-qubit 
operations and state readout. Against this backdrop, various 
systems have been proposed for the implementation of a 
quantum repeater, e.g., atomic ensembles [8], single neutral 
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atoms and ions [9], nitrogen vacancy centers [10], quantum 
dots [9] and ion-doped solids [11].

Single atoms in optical cavities are especially promising 
[12], because they can be isolated from the environment to 
provide long coherence times [13] and have been shown to 
be an efficient light-matter interface [14]. Several subparts 
of a quantum-repeater protocol have been successfully 
implemented with these systems at near-infrared wave-
lengths, e.g., the generation of atom-photon entanglement 
[15], an atom-photon quantum gate [16] and the heralded 
storage of a photonic quantum bit [17]. Demonstrations of 
a quantum repeater that go beyond proof of concept will 
have to find a way to combine these operations with tel-
ecom-wavelength photons. This has recently sparked very 
active research in external devices that convert photonic 
qubits at wavelengths in the near-infrared to telecom wave-
lengths [18, 19]. An alternative route being pursued is the 
generation of an entangled photon pair via spontaneous 
parametric down-conversion, with one photon at telecom 
wavelength and the other in the near-infrared, followed by 
storage of the near-infrared photon in a quantum memory 
[20, 21]. While these strategies seem straightforward, they 
come at the price of a large technological overhead and 
reduced efficiency.

Here, we therefore propose to perform the required oper-
ations directly at telecom wavelengths, thereby avoiding 
any issues that arise from combining the different technolo-
gies. We describe a realistic scheme for a simple quantum 
repeater that can be implemented using current technol-
ogy and show that it is capable of outperforming schemes 
based on direct transmission. The basic unit is illustrated 
in Fig. 1. Heralded entanglement between a single atom in 
a crossed-cavity setup and a photon at telecom wavelength 
is created. The telecom photons from two remote atoms 
are sent to a photonic Bell-state analyzer to create heralded 
remote entanglement. Once the two atoms at the central 
node are each entangled with a different remote node, an 
atomic Bell-state measurement (BSM) is performed for 
entanglement swapping. The scheme can be implemented 
with current technology and provides a clear path to an 
experimental demonstration of a quantum repeater.

In the following, we describe the implementation of 
the individual parts of the scheme. In Sect. 2 we propose 
a way to directly generate entanglement between single 
atoms and a telecom-wavelength photon using a cascaded 
scheme. We will estimate the performance of a particular 
implementation using 87Rb and realistic cavity parame-
ters. In Sect. 3 we investigate the indistinguishability of 
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Fig. 1  Basic quantum-repeater scheme featuring single atoms in 
optical cavities and telecom photons. A single repeater node consists 
of a heralding cavity (blue, horizontal cavity mode axis) and two tel-
ecom-wavelength entangling cavities (red, vertical mode axis). The 
atoms (black dots) are individually controlled by laser beams per-
pendicular to the image plane (indicated by green circles around the 
atoms). Two nodes separated by distance L/2 are entangled by first 
creating atom-photon entanglement locally at each of the nodes and 
then performing an optical BSM at a distance L/4 from each node. 
Entanglement swapping between pairs of nodes is implemented at 

the central node. A cavity-assisted quantum gate is performed on the 
two atoms via reflection of a single photon originating from a cav-
ity-based single-photon source (SPS). Subsequent detection of the 
atomic quantum states in suitable bases allows for an unambiguous 
determination of the two-particle Bell state. This results in an entan-
gled state between the two outermost nodes separated by a distance 
L. This basic unit can be extended to a larger number of swap lev-
els by appending further quantum-repeater nodes at the ends of the 
quantum-repeater link (cf. the additional entangling cavities in gray)
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the telecom photons created in this way and show that 
they are well suited for a photonic BSM that entangles 
the two remote single-atom quantum memories. Entan-
glement swapping by atomic BSM will be the topic of 
Sect. 4. In Sect. 5 we analyze the performance of the full 
repeater scheme and show that it can outperform entan-
glement generation based on direct transmission. We 
furthermore discuss the prospects of integrating entan-
glement purification in our scheme. While all required 
components can be implemented in our cavity-based 
approach, we show that under the assumption of realistic 
fidelities, entanglement purification is of little use for a 
quantum repeater over moderate distances with a small 
number of swap levels.

2  Heralded atom‑photon entanglement at telecom 
wavelength

Direct coupling of an atom to single photons requires an 
atomic transition at the desired wavelength. Unfortunately, 
the atomic species that can be easily laser-cooled show 
no suitable transitions from the ground states at telecom 
wavelengths. However, there are suitable transitions from 
excited states, which have already been used for wave-
length conversion [18] and entanglement generation using 
cascade transitions [22] in atomic ensembles. Here, we pre-
sent a related cascaded scheme that uses these transitions 
to generate entanglement between an atom and a telecom-
wavelength photon without wavelength conversion. We 
propose to use a single atom trapped at the intersection of 

two high-finesse cavities (see Fig. 2a) such that it is cou-
pled to two different, spatially and spectrally well-defined 
modes. This enables efficient emission of single photons at 
telecom wavelength entangled with the atom via one of the 
cavities and herald photons at near-infrared wavelength via 
the other. The herald photons signal the successful creation 
of entanglement.

2.1  Cascaded entanglement scheme

We assume an atom with a level scheme compatible with 
the one depicted in Fig. 2b, which resembles the levels of 
bosonic alkali atoms. Essential for the protocol are two 
degenerate, long-lived states |±1�f , which are Zeeman sub-
levels with mF = ±1 and will be used to store the atomic 
qubit. These states are each coupled via a π-transition at 
wavelength �h to one of the two short-lived, intermedi-
ate states |±1�i, which also feature mF = ±1. The excited 
state |e�, with mF = 0, can decay to |±1�i at wavelength 
�t. The atom is initialized in a third ground state |g� with 
mF = 0 and can be coupled to |e� via a two-photon transi-
tion far detuned from an intermediate state |k�, which may 
be identical to |i�. The atom is placed at the intersection of 
two perpendicular cavity modes. The cavities are named 
heralding and entangling cavity and are resonant at �h and 
�t, respectively. To describe the system, we choose the 
quantization axis to coincide with the axis of the entangling 
cavity. This way, the entangling cavity supports σ−- and 
σ+-polarization and the heralding cavity supports linear 
polarization modes, one of which needs to be aligned with 
π-polarization.

(a) (b) (c)

Fig. 2  a Experimental setup for creating entanglement between 
a single atom and a telecom-wavelength photon. A single atom is 
placed at the intersection of the modes of a heralding cavity at �h 
and an entangling cavity at �t. The cavities are single-sided, such that 
intracavity photons leave through the respective output-coupling mir-
ror (lighter color) with high probability. The atom is driven on a two-
photon transition via control beams impinging perpendicular to the 

image plane. b Atomic energy level scheme. The required states are 
labeled and drawn in black. Unwanted decay paths at �h are indicated 
by the gray dashed arrows. The relative transition amplitudes are 
indicated by the letters a(′) − c

(′). c A particular implementation with 
87Rb. Zeeman states of hyperfine levels not relevant for the scheme 
have been omitted for clarity. The level spacings are not to scale
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To create atom-photon entanglement, the atom is first 
initialized in state |g� by optical pumping and then coupled 
to the state |e� by a two-photon control pulse. Due to the 
presence of the resonant entangling cavity, this state cou-
ples cavity-enhanced to the states |−1�i and |+1�i and emits 
a photon in a superposition of the polarization states |σ+�t 
and |σ−�t into the entangling cavity. This controlled photon 
production is similar to entanglement generation schemes 
at near-infrared wavelengths [15]. By varying the shape of 
the control pulse, the envelope of the generated photon can 
be controlled. If the process succeeds, the atomic state and 
the polarization of the photon leaving the entangling cavity 
are entangled:

The relative phase θ can take the values 0 and π and 
depends on the relative sign of the transition dipole matrix 
elements and thus on the particular transition chosen.

|Ψ1� is already an entangled state between the atom and 
a photon at the wavelength �t, but it is short lived, because 
the states |±1�i quickly decay. If the decay leads to emis-
sion of a π-polarized photon, the entangled atom-photon 
state is transferred to the long-lived, final state

Again, the relative phase θ̃ can take values of 0 and π . 
Detection of a π-polarized photon at �h thus heralds the 
successful creation of the desired entangled state. To 
achieve the high success probabilities required for quantum 
repeaters, this decay path should dominate and the herald 
photons need to be efficiently collected. Both requirements 
are accomplished by the heralding cavity.

The proposed scheme is suitable for all bosonic isotopes 
of alkali atoms. Implementations with rubidium, cesium 
and francium are particularly interesting, because these ele-
ments have suitable transitions at wavelengths in telecom 
bands.

2.2  Implementation with 87Rb

To evaluate the performance of the proposed scheme with 
current technology, we investigate a particular imple-
mentation with 87Rb (Fig. 2c) more closely. We choose 
the hyperfine states |F = 1;mF = 0�, |F = 2;mF = −1� 
and |F = 2;mF = +1� of the 52S1/2 state as |g�, |−1�f  , 
and |+1�f , respectively. As intermediate states |±1�i the 
|F ′ = 1;mF = ±1� substates of the 52P1/2 manifold are 
used and the 42D3/2|F ′′ = 1;mF = 0� state serves as 
the excited state |e�. The 52P3/2 state can be employed as 
the intermediate state |k� for the two-photon control. This 
requires a heralding cavity resonant at �h = 795 nm and 

(1)|Ψ1� =
1√
2

(

|−1�i|σ+�t + eiθ |+1�i|σ−�t
)

.

(2)|Ψ2� =
1√
2

(

|−1�f |σ+�t + eiθ̃ |+1�f |σ−�t
)

.

will generate entangled photons at �t = 1476 nm, which is 
in the S-band of optical fiber communication.

The proposed scheme requires two cavities with small 
mode volumes and intersecting modes. We propose to use 
a Fabry–Perot cavity based on CO2 laser-machined optical 
fibers [23] as the entangling cavity, because this type of cav-
ity combines low mode volumes, high finesse and excellent 
optical access due to small external dimensions. Using tel-
ecom fibers as substrates also provides direct fiber integra-
tion, which facilitates long-distance communication. Fiber 
cavities can support degenerate polarization eigenmodes 
[24]. This is assumed for the entangling cavity, such that the 
atomic state gets entangled with the polarization of the emit-
ted telecom photon, but not with its frequency. Starting from 
realistic cavity parameters (see “Appendix 1” for details), we 
calculate an atom-light coupling rate of gt = 2π × 70MHz , 
a cavity field decay rate through the outcoupling mirror of 
κoct = 2π × 95MHz, and an additional cavity decay caused 
by other losses of κ lt = 2π × 8MHz for the entangling cav-
ity. Photons leaving this cavity through the output coupler 
couple to the mode of a standard single-mode telecom fiber 
with an efficiency of 0.96.

For the heralding cavity, fiber integration is not neces-
sary, and we therefore propose to use CO2 laser-machined 
glass plates as mirror substrates [25]. Degeneracy of its 
polarization eigenmodes is undesirable, because the mode 
with polarization orthogonal to π can enhance wrong decay 
paths (shown as dashed arrows in Fig. 2). This is detectable, 
because it does not result in a π-polarized herald photon. 
Consequently, the failed entangling attempt is discarded, 
thereby reducing the efficiency. To avoid this problem, we 
suggest to employ a heralding cavity with a large frequency 
splitting of the polarization eigenmodes [26], such that the 
mode orthogonal to π-polarization is far detuned from the 
atomic transition. We assume the heralding-cavity param-
eters to be {gh, κoch , κ lh} = 2π × {16.3, 11.9, 1.5}MHz . 
The total cavity decay rates are given by κt = κoct + κ lt 
and κh = κoch + κ lh. The cooperativity of the atom-cav-
ity system is Ct(h) = g2t(h)/

(

κt(h)Γt(h)

)

= 25 (3.4) for 
the entangling (heralding) atom-cavity system. Here, 
Γt = 2π × 1.92MHz (Γh = 2π × 5.75MHz) is the decay 
rate of the 42D3/2 (52P1/2) state of 87Rb.

We perform numerical simulations on this system using 
two methods. The first one is integration of the corre-
sponding Lindblad master equation, from which we extract 
the independent expectation values for the heralding- 
and entangling-cavity output. In the situation depicted in 
Fig. 3, the control pulse is long enough to result in a near-
Gaussian shape of the telecom photons, but short enough 
that the bandwidth of the telecom and herald photons is 
limited by the respective coupling and cavity decay rates. 
Because the timescale for the decay of the heralding cavity 
is different from that of the entangling cavity, the arrival 
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time of the herald photons is determined by the properties 
of the heralding cavity and only weakly correlated with the 
arrival time of the telecom photon. This enables the emis-
sion of near-indistinguishable telecom photons (inset of 
Fig. 4). 

The second method is a Monte Carlo wave-function 
approach [27–29], which yields information about correla-
tions between the cavity outputs. From the latter, we calcu-
late the overall success probability pht, i.e., the probability 
to obtain a telecom photon in the optical fiber and a herald 
photon leaving the heralding cavity through the output cou-
pler. For the parameters chosen here, we find pht = 0.57 , 
basically independent of the length of the control pulse 
(see Fig. 4). The exception are very short control pulses, 
for which we calculate lower success probabilities, because 
the control pulse gets spectrally broad enough to excite the 
42D3/2|F ′′ = 3;mF = 0� state. The main loss channels are 
spontaneous decay of the 52P1/2 state (probability 0.24) 
and parasitic losses in the entangling and heralding cav-
ity (probability 0.08 and 0.07, respectively). By increas-
ing the coupling between atom and heralding cavity and 
decreasing the parasitic losses in both cavities, these loss 
channels could be minimized. Thus, with improvements 
in technology, the scheme could be performed almost 
deterministically.

2.3  Fidelity

At the start of the protocol the atom needs to be initialized 
in |g�. This can be achieved by optical pumping, which is 
susceptible to experimental imperfections. Because there 
is no fundamental limit and various strategies are possible, 
we assume that the atom is initialized in |g� with unit effi-
ciency and the control pulse addresses the state |e� without 
exciting any other state. Under these conditions, the fidelity 
of the intermediate atom-photon state with the ideal state 
|Ψ1� is determined solely by the geometry of the system 
and we assume any photon leaving the entangling cav-
ity to be in the correct entangled state. This is a very good 
approximation if the 52P1/2 state of 87Rb is used as the 
intermediate state, because undesired processes are far off-
resonant. The transition from the intermediate to the final 
state is unambiguously heralded by a photon with the cor-
rect polarization at wavelength �h. Therefore, conditioned 
on the detection of a herald photon, high-fidelity entangle-
ment generation should be possible. In the following, we 
study two potentially detrimental effects and demonstrate 
that their influence on the fidelity of the entangled state is 
marginal for the particular implementation and parameters 
chosen here.

Fig. 3  Expectation value of the entangling-cavity output (blue solid 
line) and the heralding-cavity output (green dashed line) for the 
parameters given in the main text and a Gaussian control pulse (red 
dotted line) with a full width at half maximum (FWHM) of 5.9 ns. 
Because the control pulse is short, the bandwidth of the photons is 
limited by the coupling strengths and the bandwidths of the cavities. 
Correlations of spectral and temporal properties between herald and 
telecom photons are therefore suppressed. At times beyond the 45 ns 
plotted here, there is a small revival of the heralding-cavity output, 
which, however, contains less than 3 % of the total output

Fig. 4  Overall success probability (blue dots and solid line, left 
axis) and estimated contrast (green crosses and dashed line, right 
axis, see Sect. 3.1) for Gaussian control pulses of different widths. 
The amplitude of the control pulses has been set to the minimum 
value that leaves less than 1 % population in the initial state. Dots 
and crosses are the results of the numerical simulations, which have 
been connected by lines to guide the eye. The inset shows the expec-
tation value of the entangling-cavity output as a function of time, 
conditioned on a photon leaving the heralding cavity after 15 ns (i.e., 
early, blue dashed line), 22 ns (green solid line) and 35 ns (i.e., late, 
red dotted line) for a control pulse with a FWHM of 5.9 ns (as in 
Fig. 3). There is a weak correlation between the arrival time of the 
herald photon and the telecom-photon envelopes, leading to a slightly 
reduced contrast
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2.3.1  Second polarization mode of the heralding cavity

Degenerate polarization eigenmodes of the heralding cav-
ity reduce the efficiency of the protocol. Besides this obvi-
ous effect, the unwanted resonant mode of the herald cav-
ity also has a subtle but detrimental impact on the fidelity, 
because it leads to a state-dependent probability for herald 
generation (cf. “Appendix 2”).

To see this, we rewrite |Ψ1� in a linear polarization basis 
for the telecom photon:

The two atomic states correlated with a horizontally or ver-
tically polarized photon, respectively, are coupled differ-
ently to the mF = 0 sublevel of the final state |f � by the sec-
ond mode of the heralding cavity. The transition amplitudes 
from one of the two superpositions (|−1�i ± |+1�i)/

√
2 

will interfere destructively, while the other interferes con-
structively. If the second mode of the heralding cavity with 
a polarization orthogonal to π-polarization is resonant as 
is the case for a cavity with degenerate polarization eigen-
modes, these superpositions have different probabilities 
to emit a π-polarized photon, because one of these cannot 
decay to the state with mF = 0 via the herald cavity, while 
the other one can. Therefore, the final state, postselected 
on a correctly polarized herald photon, is not exactly |Ψ2�, 
but has unequal amplitudes and is consequently not a maxi-
mally entangled state. To prevent that and thereby maxi-
mize the fidelity, the atom should not couple to the second 
mode.

In the implementation with 87Rb (Sect. 2.2), the effect 
is small, because the unwanted mode of the heralding cav-
ity couples only weakly to the state with mF = 0 compared 
to the coupling to the states with mF �= 0. This is due to 
the specific branching ratios of the states involved. Even if 
the orthogonal polarization mode is degenerate with the π
-polarized heralding mode, the reduction in fidelity is only 
0.15 % (see “Appendix 2”). The effect is minimized if 
there is a large frequency splitting between the polarization 
eigenmodes, as also required to maximize the efficiency.

2.3.2  Free‑space decay

If the atom decays via free-space emission, a state different 
from the desired one might be created. If no herald photon 
is emitted, the resulting state can be discarded. This results 
in a reduced efficiency but leaves the process fidelity unaf-
fected. But, if the intermediate states |±1�i can decay back 
to the initial state |g� or any other state that can be excited 
by the control, there is a chance for multi-photon events. 

(3)
|Ψ1� =

1

2

[

|H�t
(

|−1�i + e
iθ |+1�i

)

+ |V�t
(

|−1�i − e
iθ |+1�i

)]

.

Reexcitation of |e� can result in a second telecom photon, 
which leaves the system in an undesired entangled state, 
but can still result in the generation of a herald. There are 
two ways to minimize the generation of multiple telecom 
photons. The first one is to choose the intermediate states 
in such a way that spontaneous decay preferably puts the 
atom in states that are not excited by the control laser. The 
second one is to execute the scheme quickly on the time 
scale of atomic decay. In the limit of fast excitation [30], 
for example with a picosecond laser, the detrimental effect 
would be eliminated. However, this would remove the abil-
ity to influence the shape of the photonic wave packet with 
the control lasers and a broadband pulse might excite other 
states, which do not couple to the entangling cavity and 
thus reduce the efficiency.

We employ the Monte Carlo wave-function approach to 
calculate an upper bound for multi-photon events for the 
parameters of Sect. 2.2 and a short Gaussian control pulse 
of 5.9 ns FWHM. We assume the worst case, namely that 
all decays to states outside the simulated system will result 
in a decay to the initial state, from which the atom can 
be efficiently excited again by the control laser. We com-
pare the number of calculated quantum trajectories which 
result in multiple photons being generated to the number 
of desired trajectories and find that less than 0.4 % of the 
herald photons are accompanied by more than one telecom 
photon. More realistically, the atom will also decay to other 
states, which might not be excited as efficiently as the ini-
tial state, such that the number of multi-photon events 
should be lower than this upper bound.

3  Remote entanglement of two systems

The creation of remote entanglement between two of the 
quantum-repeater nodes described in the previous section 
can be achieved by an optical BSM [31, 32] on the polari-
zation of the two telecom-wavelength photons that are 
entangled with the atom at their respective repeater node. 
The BSM is based on two-photon interference and there-
fore requires the telecom photons to be indistinguishable 
in their temporal, spectral and spatial properties, despite 
their remote origins. Single atoms in optical cavities can be 
controlled to exactly defined conditions, enabling indistin-
guishable photon-generation processes at remote locations 
[33]. However, possible temporal correlations of the tele-
com photon with the herald photon have to be considered. 
Emission via a two-photon cascade in free space shows a 
clear order of the photons. Emission of a first photon from 
the upper part of the cascade is followed by an exponen-
tial decay of the photon belonging to the lower part. Con-
ditioned on the arrival time of the second photon, the first 
photon will have an exponentially rising envelope, with a 
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sharp drop to zero at the detection time of the second pho-
ton [34]. Telecom photons corresponding to herald photons 
detected at different times will thus have different arrival-
time distributions, which renders the photons distinguisha-
ble. Postselecting on events where the herald photons were 
detected with the same delay relative to the control pulse 
would reestablish indistinguishability, but also severely 
limit the efficiency.

The cavity for the herald photon offers a way out: If the 
lifetime of the heralding cavity is very long compared to 
the wave-packet envelope of the generated telecom pho-
ton, the former will determine the wave packet and there-
fore the detection-time distribution of the herald photon. 
Consequently, the correlations between the detection time 
of the herald photon and the wave-packet shape of the tel-
ecom photon will be erased by the heralding cavity, thereby 
restoring indistinguishability between telecom photons 
of different origin. The ideal implementation requires an 
entangling cavity with large coupling between atom and 
telecom photon and large cavity decay rate. The heralding 
cavity should have a smaller decay rate, and a smaller cou-
pling between atom and herald photon can be tolerated.

3.1  Numerical calculation of the photon 
indistinguishability

In order to quantify the indistinguishability of the telecom 
photons, we use the Monte Carlo wave-function approach 
to generate arrival-time pairs of telecom and herald pho-
tons. These pairs are used as input to a kernel density esti-
mator in order to estimate the probability distribution of 
telecom photons conditioned on a photon leaving the her-
alding cavity at a specific time. As the kernel, we use a two-
dimensional Gaussian function with the bandwidth along 
the two axes set to 6κt and 6κh, respectively. This band-
width should be larger than the bandwidths of the processes 
occurring in the cavities, so the resulting probability dis-
tribution is likely undersmoothed. The resulting telecom-
photon probability, conditioned on the detection time of the 
herald photon, is shown in the inset of Fig. 4 for the same 
parameters used in the simulation depicted in Fig. 3. Under 
the assumption that the processes at remote locations are 
identical in all other aspects, we calculate the interference 
contrasts expected in a Hong–Ou–Mandel experiment [33, 
35] for the telecom photons conditioned on photons leaving 
the heralding cavity at different times. Weighting the result-
ing contrasts with the probability distribution for the her-
ald photons yields the average contrast C, which is 0.97 in 
this case. This two-photon interference contrast can be con-
verted into a remote-entanglement fidelity F = 1

2
(1+ C) 

under the assumption that all other processes are perfect 
[36]. Thus, a fidelity of close to 0.99 should be achievable 
with our model parameters.

We repeat the calculation for Gaussian control pulses 
of different width (Fig. 4). For long control pulses, the 
emission time of the herald photon is correlated with the 
emission time of the telecom photon, which reduces the 
indistinguishability and thus the interference contrast of 
the telecom photons. For very short control pulses, there is 
little correlation and the interference contrast is therefore 
high; the success probability, however, is not maximal. 
Both the success probability and the interference con-
trast are near their respective maximum for control pulses 
with a FWHM between 5 ns and 10 ns. This is therefore 
an ideal point of operation, with minimal sacrifices in the 
tradeoff between efficiency and fidelity. Because of the use 
of undersmoothed probability distributions, the values for 
the contrast are limited by the variance of the Monte Carlo 
method and therefore present a lower limit to the theoreti-
cally achievable contrast.

The width of the envelope of telecom and herald pho-
tons is well above the timing resolution of commercially 
available single-photon counters. It is therefore possible 
to postselect events using the arrival times of telecom and 
herald photons. This enhances the interference contrast and 
thereby the entanglement fidelity, however at the cost of 
a reduced total success probability. In the limit of identi-
cal detection time of the herald photons and in the absence 
of any other effect that makes the telecom photons distin-
guishable, an interference contrast of unity is reached.

4  Entanglement swapping

To connect separate repeater links, entanglement swapping 
has to be performed. This requires a BSM on two quan-
tum memories, each of which is entangled with a remote 
node. The small size of the fiber-based entangling cavities 
enables the placement of two of them in one and the same 
heralding cavity (Fig. 1). The heralding cavity can then be 
used for the collection of herald photons from both entan-
gling cavities. To this end, the creation of atom-photon 
entanglement has to be alternated between the two atoms, 
which is possible by addressing the atoms with individual 
control beams and selective detuning, e.g., via a local light 
shift. The remote-entanglement procedure described in the 
previous section can thus be repeated individually for each 
atom until it has succeeded for both.

A quantum repeater requires quantum memories with 
long coherence times. The coherence between the Zee-
man states |−1�f  and |+1�f  is limited by fluctuations of the 
effective magnetic field [37]. States with spin-orbit angular 
momentum J = 1/2, different hyperfine quantum number 
and the same magnitude but opposite sign of the magnetic 
quantum number feature a reduced differential Zeeman 
shift. Consequently, coherent superpositions of these states 
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have a strongly reduced sensitivity to magnetic field fluctu-
ations [38]. We therefore propose to use a microwave pulse 
to state-selectively transfer one of the Zeeman states (e.g., 
|−1�f ) to the other hyperfine ground state with the same mF 
with high fidelity. The corresponding final qubit states of 
87Rb are |F = 1;mF = −1� and |F = 2;mF = +1�. At a 
moderate magnetic field of about 3.23 G, the two atomic 
states experience the same first-order Zeeman shift and a 
coherence time of several seconds has been observed [13, 
39].

As the heralding cavity can couple to both atoms, it is 
a natural choice for the implementation of an interaction 
mechanism for entanglement swapping [40–42]. We pro-
pose to use a quantum gate between the two atoms based 
on the reflection of a resonant single photon from the 
cavity [16, 41]. As only one of the two hyperfine ground 
states couples to the heralding cavity, this results in a state-
dependent phase shift of π on the two-atom state, equiva-
lent to a controlled-Z quantum gate [43].

To perform entanglement swapping, we start with a 
Hadamard single-qubit rotation on one of the atoms and 
then apply the controlled-Z gate and subsequently a Had-
amard gate on each of the two atoms. This maps the four 
atomic Bell states unambiguously onto four separable 
atomic states. These can be detected with unity efficiency 
and high fidelity by performing cavity-assisted hyperfine 
state detection [44, 45] on each of the atoms. This entangle-
ment swapping projects the remote nodes into one of the 
four Bell states. The measurement result identifies the cre-
ated Bell state. Therefore, conditional single-qubit opera-
tions at the remote nodes might then be used to rotate the 
entangled state into a specific target state. Although realis-
tic implementations of reflection-based gates have a failure 
probability, the success of the gate is heralded by the detec-
tion of the reflected photon. The method requires a single-
sided cavity and equal reflectivities of the empty cavity and 
the coupled atom-cavity system. These requirements are 
compatible with the design criteria of the heralding cavity 
posed by the entanglement scheme presented in Sect. 2.

5  Quantum‑repeater performance

The techniques described in the previous sections can be 
used to implement a quantum repeater protocol with entan-
glement generation, entanglement distribution and entan-
glement swapping. To assess the performance of such a 
repeater, we consider two atoms trapped in remote cavities 
separated by the total distance L, which are to be entangled. 
We calculate the rate at which heralded entangled pairs 
are produced at these end points with the help of repeater 
nodes separated by the distance L0 and compare it to the 

rate achievable without repeater nodes. If all processes 
succeed with high fidelity, fidelity differences between 
the protocols are marginal and the entangled pair rates can 
be compared directly. In the case of experimental imper-
fections, the reduced fidelity has to be compensated by a 
higher entangled-pair rate, e.g., to generate a secret key of 
the same length (see Sect. 5.3).

5.1  Entangled‑pair rate

The probability to successfully generate remote entangle-
ment in a single attempt between two adjacent nodes sepa-
rated by distance L0 is

where pht is the success probability of the entanglement 
generation, ηh and ηt are the detector efficiencies at herald 
and telecom wavelength, respectively, and La is the attenu-
ation length of the fiber. The factor 1/2 results from the fact 
that with a photonic BSM, only two of the four Bell states 
can unambiguously be identified. The average number of 
attempts required for N parallel processes with individual 
success probability p to have each succeeded once is [46]

It thus on average takes ZN(pe(L0)) attempts to gener-
ate N entangled pairs. The atomic BSM is not completely 
deterministic, but succeeds with probability pes = Rppηh , 
where R is the reflectivity of the herald cavity and pp is 
the efficiency of the SPS that generates the photon to be 
reflected. Therefore, we consider two different strategies 
for entanglement swapping. The first one is to swap all 
entangled pairs at once and restart the whole protocol when 
one entanglement swapping attempt fails (with probabil-
ity 1− pes). In that case, the average number of attempts 
〈n(N)〉 until the protocol has succeeded over the distance 
L = NL0 is

The second strategy is to swap entangled pairs as soon 
as possible. Upon failure, all entangled pairs that were not 
part of the failed entanglement-swapping attempt are kept 
and entanglement between the others is reestablished. 
Obviously, for N > 2 this results in a higher rate of entan-
gled pairs, but the memories also need to store the entan-
gled states for a longer time, leading to increased decoher-
ence. To calculate 〈n(N)〉 for this strategy, we perform a 
Monte Carlo simulation with 106 runs per calculated point.

(4)pe(L0) =
1

2
(phtηhηt)

2 exp(−L0/La),

(5)ZN(p) =
N
∑

j=1

(

N

j

)

(−1)j+1

1− (1− p)j
.

(6)�n(N)� =
ZN(pe(L0))

pN−1
es

.
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The total time 〈T〉 that is on average required to entangle 
the endpoints can be immediately calculated:

Here, cf is the speed of light in the optical fiber and τ is the 
minimum latency between two attempts, which is expected 
to be dominated by the time required for cooling and opti-
cal pumping of the atom.

To be quantitative, we take pht as calculated in Sect. 2.2 
for a control pulse with 5.9 ns FWHM, which combines 
high efficiency with high indistinguishability as esti-
mated in Sect. 3.1. Correcting this value for the slightly 
reduced coupling of atoms not in the center of the her-
ald cavity yields pht = 0.53 (see “Appendix 1”), which is 
the value we use throughout this section. La = 22 km and 
cf = 2× 105 km/s are typical parameters for commercial 
telecom optical fibers. We assume detectors with an effi-
ciency of ηt = ηh = 0.8 which is within range of current 
technology [47]. The reflectivity of the cavity is R = 0.61 
for the considered heralding cavity (“Appendix 1”). Sin-
gle atoms trapped in optical cavities have been shown to 
be highly efficient SPSs [48], and with state-of-the-art cav-
ity parameters they could certainly achieve an efficiency of 
pp = 0.8, which is the value we assume for the SPS used in 
the atomic BSM. We further consider a conservative cycle 
time of τ = 100µs. This would result in a repetition rate 
of 10 kHz over very short distances. For larger separations, 

(7)�T� = �n(N)�
(

L0

cf
+ τ

)

.

the finite cf and the resulting communication time have to 
be accounted for, which reduces the repetition rate. For 
example, at L0 = 80 km the repetition rate drops to 2 kHz, 
dominated by the communication time.

Using the above-mentioned parameters, we calcu-
late the rate 1/〈T〉 for the generation of remote heralded 
entangled pairs, without repeater (N = 1), for the most 
basic repeater (N = 2), and for the extension to the sec-
ond swap level (N = 4). This entangled-pair rate is plot-
ted as a function of the total length of the repeater link 
in Fig. 5. For N = 4 we also compare the two different 
entanglement swapping strategies explained above. At 
short distances, direct entanglement is superior because 
of the reduced overhead compared to the repeater pro-
tocol. The break-even with one repeater node is reached 
after 41 km, and after 100 km, the repeater-assisted 
entanglement generation is approximately four times 
faster. A system with three repeater nodes with restart 
from the beginning outperforms the single-repeater-node 
system beyond 150 km and is 14 times faster than direct 
entanglement at this distance. By keeping entangled 
pairs, another factor of approximately 2.4 can be gained 
and the break-even with the single-repeater-node system 
is already reached at 82 km separation.

5.2  Required storage time

To prevent significant degradation of the entanglement, 
the coherence time of the employed quantum memories 
has to be much longer than the time the atomic state 

Fig. 5  Semilogarithmic plot of the expected average rate of her-
alded entangled pairs between two end points separated by the total 
distance L with one elementary link (i.e., no repeater, blue dotted 
line), two links (green solid line), four links with restart from begin-
ning (red dashed line) and four links keeping already entangled pairs 
(brown dash‑dotted line). Because of the lower overhead, the scenario 
with no repeater node yields the highest rates at short distances, but 
scales worse with L. For L ≥ 100 km the quantum-repeater protocols 
are clearly superior. See the main text for the parameters used in the 
calculations

Fig. 6  Average storage time required for the nodes which have to 
retain entanglement the longest to entangle two end points separated 
by the total distance L. The coherence time of the nodes needs to 
greatly exceed this time to prevent degradation of the entanglement. 
The line styles are the same as in Fig. 5. Repeaters with more nodes 
show a better scaling of the required storage time with distance, but 
have larger overhead. With four links, restarting from the beginning 
significantly relaxes the required storage time
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has to be stored. We calculate the average time interval 
between the first successful creation of entanglement and 
success of the protocol, which is the time the entangle-
ment has to be stored (Fig. 6 and “Appendix 3”). More 
repeater nodes result in better scaling with distance 
but have a larger overhead. Keeping unaffected entan-
gled pairs after a failed entanglement-swapping attempt 
requires 2.4 times longer storage times. At distance 
L = 100 km (L = 200 km) the single-repeater-node pro-
tocol requires a storage time of 59 ms (980 ms). Using 
three repeater nodes, this value drops to 53 ms (260 ms). 
By restarting the protocol from the beginning, once an 
entanglement swapping attempt fails, the required stor-
age time for three repeater nodes can be further reduced 
to 22 ms (110 ms). Aborting long-running attempts 
can thus be used to extend the maximum distance of a 
repeater system under the constraint of a limited coher-
ence time, however at the cost of a constant factor in the 
entangled-pair rate. If memory time is a strong limita-
tion, it can make sense to add more repeater nodes than 
Fig. 5 suggests to be optimal. Coherence times of several 
seconds have been demonstrated for the suggested qubit 
implementation in 87Rb and could be further improved by 
reducing magnetic field fluctuations [13, 39]. The degra-
dation of the fidelity of the entangled pairs will, however, 
be a relevant limitation for the fidelity of the final state 
and therefore poses a challenge for any experimental 
implementations.

5.3  Secret‑key rate

An especially important application of a quantum 
repeater is QKD. Device-independent QKD is enabled 
by heralded entanglement between remote nodes. The 
raw key extracted from an imperfect entangled state can 
be converted into an unconditionally secret key by clas-
sical postprocessing. In the limit of infinitely long keys, 
the secret-key rate can be obtained by multiplying the 
entangled pair rate with the secret fraction of the final 
state [49]. The latter can be calculated from the indistin-
guishability of the telecom photons characterized by their 
interference contrast and the fidelity of an entangled state 
produced by the atomic BSM with perfect input states 
(see “Appendix 4”). We assume that the coherence time 
of the memories is so long that we can neglect degrada-
tion due to decoherence. For an interference contrast of 
C = 0.97, the BSM fidelity needs to be 95 % (89 %) to 
yield a secret fraction of 0.5 (0.25). As long as the fidel-
ity is above 83 %, a secret key can be extracted. The 
secret fraction decreases if additional elementary links 
are inserted. With four elementary links and C = 0.97 

interference contrast, the BSM fidelity needs to be 99 % 
(97 %) to retain a secret fraction of 0.5 (0.25). In this 
case, the fidelity needs to be above 95 % for a nonzero 
secret fraction.

5.4  Entanglement purification

Imperfections in the substeps required for the operation of 
a quantum repeater lead to an error in the final state that 
scales exponentially with the number of nodes. This can 
be overcome via entanglement purification [5], which uses 
multiple states that are not maximally entangled to gener-
ate a single entangled state with higher fidelity. The puri-
fication protocol described by Deutsch et al. [50] could be 
implemented in the repeater architecture proposed here 
by employing the single-qubit rotations, the atom-atom 
gate mechanism, and atomic state detection procedures 
proposed for entanglement swapping (see Sect. 4). The 
quantum gates between two atoms in the same herald cav-
ity would be complemented by a remote gate between two 
atoms in spatially separated herald cavities, also mediated 
by the reflection of a single photon [43], thereby enabling 
multiple rounds of entanglement purification using several 
instances of the proposed repeater node.

Entanglement purification can only increase the fidel-
ity of the final state if the errors introduced by the required 
operations are significantly smaller than the errors present 
in the initial states. If entanglement purification and entan-
glement swapping build on the same gate mechanism, they 
will suffer from similar imperfections. For the very few 
entanglement swapping gates necessary for two and four 
elementary links, entanglement purification can therefore 
only lead to an increase in fidelity if considerable errors 
are introduced by other parts of the repeater protocol. An 
important source of error is loss of interference contrast C 
in the entanglement distribution process, caused by either 
the generation of partially distinguishable photons or errors 
introduced during fiber transmission. Taking an interfer-
ence contrast of C = 0.97 (see Sect. 3.1) as an example and 
applying the error models described in “Appendix 4,” we 
find that the entanglement purification protocol described 
by Deutsch et al. [50] increases the fidelity of the final state 
only if the atom-atom gate error is less than 4 % for two 
elementary links (N = 2) and less than 7 % for four ele-
mentary links (N = 4).

In the case of perfect gates, any target fidelity below 
unity can in principle be reached. This comes, however, at 
the cost of a significant additional overhead, because more 
quantum memories are required, and the final entangled 
pairs are produced at a lower rate. For applications in QKD, 
the secret-key rate is a convenient measure that allows 
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comparing repeater strategies with and without entangle-
ment purification. Employing the methods described in 
“Appendix 4,” we calculate that even with perfect gate oper-
ations, i.e., efficiency and fidelity of unity, entanglement 
purification is beneficial only if the interference contrast is 
very low, namely C ≤ 0.55 in case of N = 2 and C ≤ 0.83 
in case of N = 4. This has to be compared to our expected 
interference contrast of C = 0.97 (see Sect. 3.1) and the fact 
that high-fidelity transport of polarization qubits in optical 
fibers over the distances considered here is possible [6].

We therefore conclude that for a realistic repeater imple-
mentation over a few hundred kilometers, entanglement 
purification is unlikely to be beneficial and the best strategy 
is to focus on high-fidelity implementations without entan-
glement purification [51, 52].

6  Conclusion

Past experiments with single atoms in optical cavities 
have underlined their excellent prospects for applications 
in quantum communication [14, 16, 33]. The distances 
that can be bridged by direct photon transmission at near-
infrared or visible wavelengths is, however, limited. We 
have shown how this limit could be overcome by employ-
ing, first, operation at telecom wavelength and, second, a 
realistic, efficient, and highly-integrated quantum-repeater 
concept.

Operation at telecom wavelength is essential for long-
distance fiber-optic communication without the need for 
wavelength conversion. Our simulations show that creation 
of entanglement between single atoms and telecom-wave-
length photons with an efficiency of 0.57 is possible with 
87Rb atoms and current cavity technology. The designated 
S-band transition enables integration into existing fiber-
optic networks. Remote entanglement can be established 
by a photonic BSM with a state fidelity of 99 %, because 
the generated photons are highly indistinguishable. Very 
efficient entanglement swapping can be achieved by a two-
atom quantum gate employing the heralding cavity. Thus 
entanglement generation, quantum memories and entangle-
ment swapping can be realized with single atoms in optical 
cavities, and all additional components necessary to com-
plete a simple quantum repeater are commercially availa-
ble. The highly efficient, yet heralded operations enable the 
generation of remote entanglement four times faster than 
direct transmission at a distance of 100 km. This simple 
quantum repeater can be extended by inserting two more 
nodes, providing a speedup of 82 over 200 km distance, 
compared to a system without repeater. The proposed 
scheme does not rely on assumptions about future technol-
ogy and thus provides a clear and realistic path toward the 
experimental demonstration of such a quantum repeater.
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Appendix 1: Parameters used for the simulations

We assume a heralding cavity of 400µm length. This leaves 
enough space to put two fiber-based entangling cavities, lat-
erally separated by 200µm, between the mirrors, with the 
fibers having a diameter of 125µm. Identical radii of curva-
ture of 500µm for the two mirrors of the heralding cavity 
result in a mode waist of 7.9µm at a wavelength of 795 nm. 
Using these parameters, the decay rate of 2π × 5.75MHz 
for the rubidium D1 line and the relative transition strength 
of 1/4 for the decay from 52P1/2|F ′ = 1;mF = ±1� to 
52S1/2|F = 2;mF = ±1�, we calculate an atom-cavity cou-
pling strength of gh = 2π × 16.3MHz. To implement the 
scheme with high efficiency, we require mirrors of differ-
ent transmission: one high reflector and one mirror with 
higher transmission (called the output coupler) that is the 
dominant loss channel of the cavity. For the high reflec-
tor, we assume a transmission of 10 ppm and our tests with 
laser-machined substrates indicate that 20 ppm parasitic 
losses per mirror can be achieved for the proposed cav-
ity geometry. In total, this adds up to 50 ppm losses and 
a corresponding field decay rate of κ lh = 2π × 1.5MHz . 
As a compromise between the directionality of the cav-
ity decay and high cooperativity, we choose a transmis-
sion of 400 ppm for the output coupler, which results in 
κoch = 2π × 11.9MHz.

An entangling-cavity length of 75µm ensures a small 
mode volume, but also avoids any significant clipping 
losses of the heralding mode, because even accounting 
for the curvature of the mirrors, there is still 65µm of 
space between them. We choose asymmetric radii of cur-
vature of 100µm for the high reflector and 200µm for 
the output coupler resulting in a mode waist of 4.8µm at 
�t = 1476 nm. This optimizes the transverse overlap [23, 
53] between the cavity mode at the output coupler and the 
mode of a telecom single-mode fiber (10µm mode-field 
diameter) to 0.96. Due to the asymmetric radii of curvature, 
the mode radius at the position of an atom trapped in the 
center of the cavity is 5.3µm. The decay rate of the 42D3/2 
state to the 52P1/2 state (52P3/2 state) is 2π × 1.62MHz 
(2π × 0.30MHz) [54] and decay from |F ′′ = 1;mF = 0� 
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ends up in |F ′ = 1;mF = ±1� with 5/12 probability each. 
The coupling rate of an atom at the center of the described 
cavity at this transition is thus gt = 2π × 70MHz. We 
expect dielectric coatings at telecom wavelengths to 
have similar performance as coatings for the near-infra-
red and thus assume 20 ppm parasitic losses per mir-
ror for the entangling cavity as well. In combination with 
10 ppm transmission for the high reflector, this results in 
κ lt = 2π × 8MHz. We set the transmission of the output 
coupler to 600 ppm, resulting in κoct = 2π × 95MHz.

We assume degenerate polarization eigenmodes for the 
entangling cavity and consider a heralding cavity that only 
supports a π-polarized mode, which could effectively be 
realized by inducing a large frequency splitting between the 
polarization eigenmodes of the heralding cavity [26].

For two atoms in one heralding cavity, as required for 
a full quantum-repeater node (Fig. 1), the two atoms can-
not both be positioned exactly at the center of the herald-
ing cavity. We propose to place the atoms on the axis of 
the heralding cavity, ±100µm from the center. This leaves 
enough space for the entangling cavities and results in a 
small reduction of the coupling to the heralding cavity to 
gh = 2π × 15.1MHz. This results in only a slight reduc-
tion of 1 % of the total success probability, which we nev-
ertheless account for in the calculations of the quantum-
repeater performance in Sect. 5.

All parameters mentioned above are consistent with 
results of ongoing work with optical fiber cavities in our 
laboratory [26].

Appendix 2: State‑dependant probability 
for herald generation

To see the effect of degenerate polarization eigenmodes, we 
start with the intermediate entangled state |Ψ1� in the linear 
polarization basis for the telecom photon [cf. Eq. (3)]

with

Here, we have assumed θ = π for clarity. In case of θ = 0 
the calculation is analogous with similar results.

We assume the polarization eigenmodes of the herald 
cavity to be π-polarized and V-polarized. H-polarization is 

(8)|Ψ1� =
1√
2

(

|Ψ1,H� + |Ψ1,V�
)

(9)

|Ψ1,H� =
1√
2
|H�t(|−1�i − |+1�i)

|Ψ1,V� =
1√
2
|V�t(|−1�i + |+1�i).

then parallel to the herald cavity axis and would require a 
longitudinal field which is not supported by the herald cav-
ity. In the worst case, the polarization eigenmodes π and V 
are exactly degenerate, such that the herald cavity enhances 
decay to states with the same hyperfine quantum number 
by the same factor. In that case, the final state after emis-
sion of a photon into the herald cavity is determined just by 
the amplitudes of the transitions involved. We assume that 
free-space decay can be neglected, which is the worst case, 
because free-space decay is isotropic and cannot lead to a 
state-dependent probability for herald generation. Under 
these assumptions, the state |Ψ1,H� decays to

where |mF = 0� and |mF = ±2� have the same hyperfine 
quantum number as |±1�f . a, b, and c are the transition 
amplitudes from |−1�i to |mF = 0�, |−1�f , and |mF = −2�, 
respectively, and a′, b′, and c′ are the transition amplitudes 
from |+1�i to |mF = 0�, |+1�f , and |mF = +2� (cf. Fig. 2). 
Similarly, the state |Ψ1,V� decays to

For symmetry reasons, a′ = ±a, b′ = ±b and c′ = ±c 
and the basis states are chosen in such a way that all transition 
amplitudes are real. Therefore, either a+ a′ = 0 and |Ψ1,H� 
does not decay to |mF = 0�, or a− a′ = 0 and |Ψ1,V� does 
not decay to |mF = 0�, because of destructive interference. In 
either case, the probability to emit a π-polarized photon is dif-
ferent for these two states, because the normalization factor is 
different. Therefore, selection on events in which a π-polar-
ized photon was detected does not yield a state with equal 
amplitudes, which would be required for a maximally entan-
gled state. Instead, a state with less entanglement is created, 
depending on the value of |a| compared to |b| and |c|.

To calculate the fidelity of this state, we set a′ = a, 
b′ = b and c′ = c for simplicity. All other cases are 

(10)

|Ψ3,H� =
1

√

|a+a′|2
2

+ |b|2 + |b′|2 + |c|2+|c′|2
2

|H�t

×
[

|π�h
(

b|−1�f − b
′|+1�f

)

+
1√
2
|V�h

(

c|mF = −2� + c
′|mF = +2�

)

+
1√
2
|V�h(a+ a

′)|mF = 0�
]

,

(11)

|Ψ3,V� =
1

√

|a−a′|2
2

+ |b|2 + |b′|2 + |c|2+|c′|2
2

|V�t

×
[

|π�h
(

b|−1�f + b
′|+1�f

)

+
1√
2
|V�h

(

c|mF = −2� − c
′|mF = +2�

)

+
1√
2
|V�h(a− a

′)|mF = 0�
]

.
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analogous. If a π-polarized photon is detected, the normal-
ized final state |Ψ3� is

with the normalization constants Ñ  and 
N = 4

(

a2 + 2b2 + c2
)

. If a �= 0, this is not a maximally 
entangled state. Its fidelity with the ideal final state |Ψ2� 
(θ̃ = π) is

For the transition from 52P1/2|F ′ = 1� to 52S1/2|F = 2� 
in 87Rb the relative transition amplitudes are a = a′ = −1, 
b = b′ =

√
3, and c = c′ = −

√
6, which results in a slight 

fidelity reduction of 1− F = 0.15%, even if the polariza-
tion eigenmodes of the herald cavity are degenerate. How-
ever, for different transitions with a larger a relative to b 
and c, the effect can be much worse. E.g., for the transi-
tion from 52P1/2|F ′ = 1� to 52S1/2|F = 1� in 87Rb, the 
transition amplitudes are a = −a′ = −1, b = −b′ = 1, and 
c = c′ = 0, which reduces the fidelity by 1− F = 2.9% . 
As the relative transition amplitudes depend just on the 
coupling of electron angular momentum, electron spin, and 
nuclear spin, the effect is the same across different atomic 
species with the same values for these properties.

Appendix 3: Required storage times

To estimate the required coherence time of the memories, 
we study the protocol in more detail. We calculate the time 
between the first successful creation of entanglement that is 
still used at the end of the protocol, i.e., is not discarded due 
to a failed entanglement-swapping attempt, and the end of 
the protocol. We neglect the possibility of two pairs becom-
ing entangled during the same cycle, which is justified if the 
entanglement probability pe is small. We assume a simple, 
synchronous temporal operation of the protocol such that 
the time interval between two attempts has a fixed length of 
L0/cf + τ. We assume all memories to decohere equally and 
it is therefore irrelevant whether the entanglement is trans-
ferred to another memory via entanglement swapping.

We first study the protocol that is restarted from the 
beginning whenever an entanglement-swapping attempt 

(12)

|Ψ3� =
1

√

Ñ

�π |h
(

|Ψ3,H� + |Ψ3,V�
)

=
1√
N

[
√

2b2 + c2|H�t
(

|−1�f − |+1�f
)

+
√

2a2 + 2b2 + c2|V�t
(

|−1�f + |+1�f
)

]

,

(13)

F = |�Ψ2|Ψ3�|2 =
1

2
+

1

2

√

(2a2 + 2b2 + c2)(2b2 + c2)

a2 + 2b2 + c2
.

fails. In this case, the expected number 〈m〉 of cycles the 
entanglement has to be stored is simply the expected num-
ber of attempts required to entangle N − 1 pairs plus one 
to account for the trial it takes to entangle the memory 
itself:

If the entanglement is kept in case of a failed, unrelated 
entanglement-swapping attempt, the explicit probability 
distribution for succeeding in a particular trial is difficult to 
write down. However, we can extract the maximum num-
ber of trials a memory has to store entanglement using the 
Monte Carlo simulation as in the calculation of the entan-
gled-pair rate. We take 〈m〉 to be the average over 106 runs. 
Using a bootstrap on the values gathered from these runs, 
we estimate the 95 % confidence interval to be smaller than 
±0.2 % for all values.

Appendix 4: Secret fraction

To calculate the unconditional secret fraction of a key, 
which has been generated by a QKD protocol, the den-
sity matrix of the imperfect final state has to be known. 
We assume perfect input states and start with the entan-
gled state after a photonic BSM with contrast C. The 
latter is the probability that the photons interfere and 
produce the correct entangled state. If they do not inter-
fere, the result of the measurement is a classically cor-
related state. If the result of the photonic BSM indi-
cates, e.g., an entangled state |Ψ+� = (|10� + |01�)/

√
2 

between two atoms, the density matrix for the resulting 
mixed state is

We neglect degradation of the entangled state due to 
decoherence of the atom. If this is not given in an experi-
mental implementation, calculation of its detrimental effect 
on the secret fraction requires detailed knowledge of the 
decoherence mechanisms. Entanglement swapping using 
an atomic BSM can be performed by applying a CNOT 
gate followed by a Hadamard gate, measuring the two 
atoms and performing single-qubit state rotations at the 
remote target atoms depending on the result of that meas-
urement. For perfect input states, this procedure is assumed 
to produce the maximally mixed state ρm = 1/4 with prob-
ability (1− P), such that the fidelity of the entangled state 
is given by (1+ 3P)/4. Applying this procedure to a ten-
sor product of ρ1 and the same entangled state between two 

(14)�m� = ZN−1(pe)+ 1.

(15)ρ1 = C|Ψ+��Ψ+| +
1

2
(1− C)(|10��10| + |01��01|).
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different atoms yields the density matrix after entanglement 
swapping

Using the identity 
|10��10| + |01��01| = |Ψ+��Ψ+| + |Ψ−��Ψ−|, ρ2 can be 
rewritten in the Bell-state basis

with

Following the calculation described in Ref. [49], we calcu-
late the secret fraction for entanglement-based QKD. The 
error rates ǫx, ǫy, ǫz for the three bases are

and the unconditional secret key fraction is

with the quantum bit error rate Q = ǫz and the binary 
entropy h(p) = −p log2(p)− (1− p) log2(1− p).

The error rates for the next swap level, i.e., four elemen-
tary links, can be calculated by using ρ2 instead of ρ1 as the 
initial state and applying the same procedure:

(16)

ρ2 = PC
2|Ψ+��Ψ+| +

1

4
(1− P)1

+ PC(1− C)(|10��10| + |01��01|)

+
1

2
(1− C)2P(|10��10| + |01��01|).

(17)
ρ2 = �1|Ψ+��Ψ+| + �2|Ψ−��Ψ−|

+ �3|Φ+��Φ+| + �4|Φ−��Φ−|

(18)
�1 =

1

4
(1+ P + 2PC2) �3 =

1

4
(1− P)

�2 =
1

4
(1+ P − 2PC2) �4 =

1

4
(1− P).

(19)

ǫx = �2 + �4 =
1

2

(

1− PC2
)

,

ǫy = �2 + �3 =
1

2

(

1− PC2
)

,

ǫz = �3 + �4 =
1

2
(1− P),

(20)

r = 1− h(Q)− ǫzh

(

1+
(

ǫx − ǫy
)

/ǫz

2

)

− (1− ǫz)h

(

1−
(

ǫx + ǫy + ǫz
)

/2

1− ǫz

)

,

(21)

ǫ(N=4)
x =

1

2

(

1− P3C4
)

,

ǫ(N=4)
y =

1

2

(

1− P3C4
)

,

ǫ(N=4)
z =

1

2

(

1− P3
)

= Q(N=4).
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