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Abstract 
Recent research has suggested that endothelialization of vascular stents is 
crucial to reducing the risk of late stent thrombosis. With a resolution 
of approximately 10 /Lm, optical coherence tomography (OCT) may be an 
appropriate imaging modality for visualizing the vascular response to a stent 
and measuring the percentage of struts covered with an anti-thrombogenic 
cellular lining. We developed an image analysis program to locate covered 
and uncovered stent struts in OCT images of tissue-engineered blood vessels. 
The struts were found by exploiting the highly reflective and shadowing 
characteristics of the metallic stent material. Coverage was evaluated by 
comparing the luminal surface with the depth of the strut reflection. Strut 
coverage calculations were compared to manual assessment of OCT images 
and epi-f1uorescence analysis of the stented grafts. Based on the manual 
assessment, the strut identification algorithm operated with a sensitivity of 93% 
and a specificity of 99%. The strut coverage algorithm was 81 % sensitive and 
96% specific. The present study indicates that the program can automatically 
determine percent cellular coverage from volumetric OCT datasets of blood 
vessel mimics. The program could potentially be extended to assessments of 
stent endothelialization in native stented arteries. 

(Some figures in this article are in colour only in the electronic version) 



1. Introduction 

Studies have established that approximately 10–20% of patients treated with bare metal stents 
require secondary procedures due to restenosis (Fischman et al 1994, Salam et al 2006, Serruys 
et al 1994). To address restenosis associated with bare metal stents, drug eluting stents have 
been developed that exhibit anti-proliferative and/or anti-inflammatory action to reduce the 
hyperplastic response following device deployment (Salam et al 2006). However, suppressing 
the vessel response may lead to a different problem, namely drug-eluting stents inhibiting 
the formation of a protective endothelial cell lining. Studies suggest the exposed stent–strut 
surface may serve as a nidus for thrombus formation (Finn et al 2007). Late stent thrombosis 
(LST) associated with drug-eluting stents has been noted in several studies (Iakovou et al 
2005, Pfisterer et al 2006). Different stent designs and drugs can induce unique responses 
from the arterial wall (Finn et al 2007, Konig et al 2002, Taylor et al 2001) and have different 
risks for LST. During histological examination of autopsy specimens, stents associated with 
LST often show reduced endothelial coverage (Farb et al 2002, Finn  et al 2007). In a study of 
morphometric predictors, Finn et al (2007) demonstrated that the ratio of uncovered to total 
struts was the best predictor of LST. 

Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are two 
imaging modalities that may be used to indirectly assess LST risk in vivo by evaluating 
recellularization of strut surfaces. Researchers have used ultrasound to monitor the 
neointimal volume (Suzumura et al 2002) and length of the stent that was free from 
intimal hyperplasia (Mintz et al 2005). Echogenic contrast agents have been used to 
improve measurements of the neointimal area (Masuda et al 2001). Although appropriate 
for vessels with significant neointimal hyperplasia, IVUS systems may not have adequate 
resolution to detect stent endothelialization (Matsumoto et al 2007, Mintz et al 2005). 
Researchers have demonstrated an improvement in both resolution and dynamic range for 
optical coherence tomography in comparison to commercial IVUS systems (Brezinski 2006, 
Brezinski et al 1997). With approximately 10 µm axial resolution, this depth-resolved 
imaging modality is capable of visualizing both neointimal hyperplasia and the thin cellular 
lining associated with stent endothelialization (Bouma et al 2003, Buellesfeld et al 2005, 
Ito et al 2005, Kume  et al 2005, Matsumoto  et al 2007, Takano et al 2007, Tanigawa et al 
2007). 

Volumetric scans with OCT promise better measures of endothelialization of the stent 
surface. However, the time-intensive nature of image analysis is a major limitation for using 
large image sets to assess strut endothelialization. An algorithm has been developed to 
automatically detect covered and uncovered struts and establish a percent cellular coverage 
for a volumetric OCT dataset. 

To develop and test the algorithm, a tissue-engineered blood vessel was used as an in vitro 
model of human blood vessels. Although these blood vessel mimics (BVMs) do not have the 
blood constituents and adventitia of a native artery, they have been shown to model the intimal 
response to a deployed stent (Cardinal et al 2006). BVMs provide an excellent platform 
for development of imaging techniques and image processing algorithms prior to expensive 
and time-consuming animal studies. Previous work has demonstrated the utility of OCT for 
visualizing the BVM cellular lining and the feasibility of monitoring its response to deployed 
metal stents (Bonnema et al 2007). The aims of the current study were to (1) visualize the 
response of blood vessel mimics to deployed stents using OCT, (2) calculate percent cellular 
coverage for each stent using an automatic algorithm and (3) compare the algorithm results to 
other measures of strut coverage including manual calculations from OCT images and en face 
fluorescent staining. 



Figure 1. Cross-sectional schematic of a stented blood vessel mimic. 

2. Experimental methods 

2.1. The blood vessel mimics 

As described by Cardinal et al (2006), the blood vessel mimic (BVM) is a tissue 
engineered blood vessel that consists of a polymeric scaffold and a luminal cell lining. 
The polymeric scaffold provides the mechanical support and a biocompatible surface for 
the cellular lining of the BVM. For these experiments, 4.0 mm inner diameter, expanded 
polytetrafluoroethylene (ePTFE) tubing (Impra Bard, Inc., Tempe, AZ) was used as the scaffold 
material. Microvascular endothelial cells were extracted from human adipose tissue. After 
processing, the cells were pressure sodded onto the lumen of the BVM and developed within 
a bioreactor. The bioreactors have been described previously (Cardinal et al 2006). Briefly, 
the bioreactor consists of three components: (1) a peristaltic pump, (2) a chamber containing 
the BVM and (3) a media reservoir. The peristaltic pump delivers nutrient-rich media to the 
developing mimic that is located in the BVM chamber. The media reservoir is used to facilitate 
the exchange of media during the development of the mimic. Similar to in vivo blood vessels, 
devices such as stents can be deployed in the BVM using sterile introducing catheters. A 
cross-sectional view of a stented BVM is shown schematically in figure 1. 

2.2. The OCT system 

The OCT system and endoscope have been described previously (Bonnema et al 2007). This 
time-domain OCT system consisted of a 1300 nm superluminescent diode with a 100 nm 
bandwidth. The axial point spread function was measured to be 10 µm in air. A rapid 
scanning Fourier-domain optical delay line was used to achieve acquisition rates from 100 
to 1000 axial scans (a-scans) per second. Because image acquisition in these mimics was 
not time critical all OCT images were acquired at a relatively slow 200 a-scans s−1. The  
sample arm consisted of a miniature endoscope which could be introduced into the lumen of 
the BVM and could acquire longitudinal images at any angle within the mimic. The optics 
of the miniature endoscope provided a lateral resolution of 20 µm at a working distance of 
400 µm outside the endoscope window. A sterile glass cover was placed over the endoscope 
to prevent contamination of the developing mimic during imaging. 



2.3. Experiments 

Twelve BVMs were developed and imaged with OCT before and after the deployment of 
a vascular stent. After 7 days of development within the bioreactor, either a bare metal or 
protein-modified stent was deployed within each mimic. To further modulate the cellular 
response, half of the mimics containing each type of stent were developed using a greater 
media flow rate. The two flow rates were 15 and 60 mL min−1. 

OCT images were acquired of the BVMs immediately pre- and post-stenting to assess 
whether a cellular lining was present and to monitor stent deployment characteristics such as 
stent apposition and possible dissection of the cellular lining. The BVMs were additionally 
imaged at 3, 7, 14 and 20 days post-stent deployment. Each image was 15 mm long by 
2 mm deep assuming a refractive index of 1.33. Each image consisted of 3000 pixels in the 
longitudinal and 625 pixels in the depth directions. A total of 12 images were collected from 
a stented BVM at each time point. 

At day 20, the BVMs were removed from the bioreactor and fixed in 3% gluteraldehyde. 
Ten of the twelve mimics were imaged volumetrically with OCT while submerged in the 
fixation agent. Four hundred, equally spaced longitudinal images were acquired from around 
the circumference of the mimic. Each image was 8 mm long (800 pixels) and 2 mm deep 
(625 pixels). A lower sampling resolution was used to minimize the memory requirements for 
the volumetric data set. After volumetric imaging, eight of the ten mimics were prepared for 
histology or BBI fluorescence, and the additional two mimics were fixed and saved for future 
optical studies such as confocal microscopy. 

3. Image analysis software 

A MATLAB program was developed to automatically identify all struts in the OCT image 
and further tag those struts that were covered by >30 µm thickness of cellular material. 
The program consisted of three main components: (1) defining the strut search region by 
identifying the luminal surface of the BVM and excluding artifactual a-scans; (2) identifying 
struts based on their bright surface reflection, dark shadow and concentrated intensity; and (3) 
identifying covered struts based on distance between the BVM luminal surface and the bright 
strut surface reflection. The program was executed using a graphical user interface for ease 
of use. An overall flow chart for the program is shown in figure 2, and each component is 
described in more detail below. 

3.1. Step 1: defining the strut search region 

The strut search region was narrowed to avoid the confounding effects of BVM connectors 
and debris. To identify the luminal surface of the BVM, an iterative approach was used. 
First, the maximum reflected intensity in each a-scan was determined. Then, the shallowest 
pixel in each a-scan that exceeded half the maximum intensity was located. This operation 
provided a rough estimate of the luminal surface. However, the estimated surface profile was 
often located within the BVM rather than at the true surface. Therefore, a small number 
of pixels (65) luminal to the estimated surface was analyzed. The shallowest pixel in this 
region that exceeded 20% of the maximum a-scan intensity was recorded. This operation 
correctly identified the true surface across the majority of the BVM. However, saturation 
artifacts over highly reflective metallic struts led to sharp discontinuities in the surface profile. 
These erroneous data points were eliminated by using a running median filter with a kernel 
size of 31 pixels on the surface profile. 
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Figure 2. The basic execution of the strut identification software. An OCT image was analyzed 
using three metrics to identify the struts. An additional algorithm was developed to determine 
whether the identified struts were covered with a cellular lining. 

Non-strut-associated dark shadows and bright reflections were caused by debris and 
by the connectors holding the BVM in the bioreactor chamber. The MATLAB program 
automatically identified these two situations and removed the associated a-scans from further 
analysis. To eliminate shadowed regions caused by debris on the endoscope window or within 
the culture media, a maximum intensity of each a-scan was calculated. An intensity less than 
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Figure 3. The strut reflection metric evaluates the maximum reflected intensity in each a-scan. (A) 
An example OCT image of a stented blood vessel mimic: C, cellular lining; E, ePTFE scaffold; 
S, strut shadow; R, strut reflection. (B) The strut reflection metric. The threshold is based on the 
average intensity and a user-specified number of standard deviations of the most luminal 50 µm 
of the mimic. The intensity profile of a strut-positive a-scan (C) exhibits a rapid rise and fall in 
intensity with depth compared to a strut-negative a-scan (D). (E) The median metric. The threshold 
is based on the metric mean and a user-specified number of standard deviations of the metric. The 
image size is 8 mm × 2 mm. 

a user-defined number of standard deviations from the average (for this analysis, set at 3) was 
indicative of a shadow artifact. To eliminate the connector regions, the program evaluated 
the calculated profile for large, discontinuous jumps that were associated with the edge of 
the plastic connector. A jump in the profile greater than 10 pixels indicated the location of 
the connector edge. The side of this edge with the shallower profile was identified as the 
connector. The positions of affected a-scans were recorded so that they would be excluded 
from the later analysis. 

3.2. Step 2: locating stent struts 

Struts were identified based on three defining image characteristics: a bright reflection at 
the surface of the strut, concentrated energy (that is, a rapid rise then fall in intensity for 
strut-positive a-scans) and a dark shadow underneath the strut. Not every strut exhibited all of 
these characteristics, but after defining the appropriate search region in step 1, it was rare for 
non-strut regions to exhibit any of them. Therefore, a strut was identified if it met any one of 
these criteria. A more detailed explanation for each characteristic follows. 

Metallic struts were usually associated with reflections that were bright relative to the 
average intensity of the BVM. An example of this appearance is shown in figure 3. A maximum 



Figure 4. A detailed view of a covered strut shows the typical visualization: S, luminal strut 
reflection; I, cellular lining from incident light; R, cellular lining from strut-reflected light. The 
left image is 5 mm × 2 mm. 

intensity metric (MIM) was designed that would be sensitive to this bright reflection. First, 
median filtering was performed with a 3 × 3 pixel kernel to remove single pixel noise. Using 
the luminal surface profile found in step 1, the overall mean and standard deviation of the 
intensity were calculated for the shallowest 50 µm of the BVM. The maximum intensity value 
for each a-scan was also calculated. A threshold was set as the mean plus a user-defined 
number of standard deviations. This number was defined as the ‘strut reflection parameter’. 
If the maximum a-scan intensity value exceeded the threshold, the a-scan was recorded as a 
MIM strut positive. An example OCT image and its corresponding maximum a-scan intensity 
metric are shown in figures 3(A) and (B), respectively. 

A complementary algorithm utilizing the intensity profile of the a-scan was developed to 
increase sensitivity. As shown in figure 3(C), a characteristic of the strut-positive a-scans is a 
more rapid rise and fall in intensity with depth than the strut-negative a-scans (figure 3(D)). 
To quantify this observation, the maximum pixel intensity was found for each a-scan of the 
original unfiltered image. The number of pixels with intensities greater than half the maximum 
intensity (the full-width, half-maximum or FWHM) was calculated. The vector containing 
a-scan FWHM values for the entire image was then smoothed with a one-dimensional running 
median filter with a kernel size of 11 pixels, to eliminate erroneous false positives from single 
a-scans (true struts were a minimum of eight a-scans wide). Since approximately 65% of struts 
were identified using MIM criteria, the strut-positive a-scans identified during that process 
provided an appropriate basis for automatic determination of the FWHM metric threshold. 
Any a-scan with a FWHM less than the average of the MIM strut-positive a-scans was also 
marked as strut-positive. 

The final characteristic that defined struts was dark vertical shadows below the strut 
surface. To automatically detect this image attribute, a metric was developed that evaluated the 
median pixel intensities beneath the luminal surface. Prior to analysis, histogram equalization 
was performed on the image to increase the local contrast between the ePTFE scaffold and 
the shadow caused by the metallic strut. Linearization of the pixel intensity cumulative 
distribution function typically increased the difference between the shadow and scaffold pixel 
intensities. The highly reflective metallic struts caused the signal above the strut to appear 
to be mirrored beneath the strut. For struts covered by a cellular lining, this effect resulted 
in the most luminal pixels of the strut shadow being displaced by a distance approximately 
equal to the thickness of the cellular lining. This effect is shown in figure 4. The difference 
between the mimic luminal profile and the position of the maximum pixel intensity served 
as an estimate for the cellular lining thickness (i.e. the difference between the position of 
the mimic surface and the strut surface). For each a-scan, the median intensity of the 
50 pixels deeper than the luminal profile plus twice this estimated thickness was calculated 
(the ‘shadow median intensity metric’ (SMIM)). A threshold was set using the mean of the 
SMIM minus a user-specified number of standard deviations of the metric. This number of 
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Figure 5. The cell coverage algorithm determines whether a strut is covered with cellular material 
by comparing the position of the strut to the position of the luminal surface. (A) A stented BVM 
with both covered and uncovered struts. (B) An enlarged section showing a covered and uncovered 
strut. (C) The algorithm finds the average axial position of the luminal profile adjacent to the 
strut-positive a-scans, indicated with a thin white line. The profile position is compared to the 
position of the strut, indicated with a thick line. A strut is covered if the distance between these 
two positions exceeds a user-defined threshold. The image in (C) has been darkened to emphasize 
strut and profile indicators. Image A is 7.8 mm ×2.0 mm. Images B and C are 2.0 mm × 1.0 mm. 

standard deviations was defined as the ‘strut shadow parameter’. As shown in figure 3, those 
a-scans that had a SMIM less than the threshold value were recorded as strut-positive. 

3.3. Step 3: determining cellular coverage 

To determine cellular coverage, an algorithm was developed to evaluate the difference between 
the luminal profile of the mimic and the position of the luminal strut surface. The high 
reflectivity of the metallic strut would often saturate the detection electronics resulting in 
a broadening of the axial point spread function. This artifact would occasionally result in 
inaccurate locations of the mimic luminal surface immediately above the struts. Because of 
this inaccuracy, the luminal profile of the mimic (the top of the cellular lining) over a strut 
was defined by averaging the position at adjacent sides. The position of the strut surface 
was determined by averaging the positions of the maximum pixel intensity in contiguous 
strut positive a-scans. The difference between these two positions was calculated, and if this 
difference exceeded a user-defined threshold (defined as the ‘cell coverage parameter’), the 
strut was identified as covered. Figure 5 shows an OCT image containing both covered and 
uncovered struts, and illustrates the step in identifying the covered strut. 

4. Image analysis methodology 

Image analysis was performed in three steps. First, the total number of images was reduced 
to facilitate analysis. Poor quality images associated with deep luminal surfaces were also 
removed. Second, a training set of randomly selected images was used to determine the 



optimal parameters for the automated algorithm. Third, each image was evaluated by both the 
algorithm and three observers. These steps are described in detail below. 

4.1. Removal of images 

Prior to any analysis, images were removed from consideration. For volumetric datasets, each 
image was separated by 0.9◦. It was determined by visual inspection that very little change in 
the strut distribution and cellular coverage occurred between adjacent images. Therefore, there 
was no need to evaluate each of the 400 images per BVM. Every other image was removed 
from consideration such that each analyzed image was separated by 1.8◦ . 

Additional images were removed if the average depth of the BVM luminal surface profile 
was within the bottom quarter of the image, or out of the field of view of the OCT system. The 
low contrast and poor lateral resolution associated with these deep surfaces rendered image 
analysis difficult. This criterion was evaluated by the program such that the removal of these 
poor images was performed automatically without any user intervention. The position of the 
luminal surface was based on the orientation of the BVM with respect to the endoscope and 
was independent of the cellular coverage of the struts. This step reduced the total number of 
images from 2000 to 1461. 

4.2. Evaluation of the training set 

To determine optimal parameters for the automated algorithm, a training set of 150 images 
was randomly selected from the total number of 1461 images. A sample size of 150 images 
was found to display similar statistics as larger sample sizes. Three observers evaluated each 
of the training images. With assistance from a custom MATLAB program with a graphical 
user interface, each observer recorded the locations of covered and uncovered struts for 
each image. Statistical measures of sensitivity, specificity and percent correct classification 
(positive predictive value) were calculated for the automated strut identification and cell 
coverage algorithms using the observer data as the gold standard. The statistical measures 
based on each of the three observers were then averaged for a final estimate of the performance. 
Strut identification and cell coverage parameters were varied to find optimum values. The strut 
identification parameters that provided equal sensitivity and a percent correct classification 
rate were chosen. The cell coverage parameter was selected to provide a high percent correct 
classification rate while maximizing sensitivity. This optimized set of parameters was then 
used universally for the comprehensive analysis of the ten BVMs. 

Several assumptions and approximations were made to calculate statistical performance 
measures for the 150-image dataset. First, the strut identification results had no well-defined 
true negative. An estimate of the number of true negatives was obtained by dividing the 
total number of strut-negative a-scans by the average strut width in each image. This method 
produced a large number of true negatives that resulted in high values for specificity. Second, 
a wide strut was often identified to be multiple struts by the algorithm. These wide reflections 
occurred when imaging near cross-members where the strut reflection could be up to 750 µm 
wide, compared to the average width of 80 µm. Since these multiple algorithm-identified 
strut-positive regions correspond to an actual strut, they were considered true positives in the 
statistical analysis. A third assumption was made for thin struts located in close proximity 
to each other. This occurred near junctions and notches at cross-members of the stent. The 
algorithm occasionally identified the two adjacent struts as a wide continuous strut. Since 
both adjacent struts are associated with an algorithm-identified region, those two struts were 
counted as one true positive. This assumption was implemented for observer-identified struts 



Figure 6. Two OCT images taken from the same approximate location in a stented mimic at 3 and 
14 days post-deployment. 

separated by less than 100 µm, where the normal separation between struts was on the order 
of 1 mm. 

4.3. Evaluation of complete datasets 

A manual analysis was performed to calculate percent cellular coverage for the ten BVMs. 
Three observers blind to the BVM development conditions viewed each of the 1461 images 
in random order. Each observer recorded the number of struts covered by cellular material 
and the total number of struts in every image. An average observer-based percent cellular 
coverage was calculated for each of the BVMs. These average measurements served as the 
gold standard. 

The automated algorithm evaluated the same 1461 images using the optimal parameter 
set determined from the 150-image training set. The automatic results were compared with 
the observational measurements of the 1461 images and results from bisbenzimide (BBI) 
fluorescence analysis. A single blinded observer evaluated the BBI images and assigned a 
score from 1 to 5 based on the following criteria: 

1 = little to no cell coverage 
2 = some cells interspersed on the stent surface 
3 = subconfluent cell coverage with localized areas of cell density 
4 = confluent cell coverage 
5 = highest density of cell coverage on the stent surface 

The Pearson product–moment correlation coefficient was calculated for the percent 
cellular coverage OCT calculations and the BBI analysis. 

5. Results 

Example OCT images taken at 3 and 14 days post-stent deployment are shown in figure 6. 
The 3 days’ image shows incomplete cellular coverage of the struts with a relatively 
hypointense cellular lining. By day 14, this portion of the BVM exhibits a confluent cellular 
lining, which is also more hyperintense. Visual inspection of all OCT images taken during 
bioreactor development of the BVMs showed that in general these trends held for all BVMs— 
the coverage became more confluent and the lining became more hyperintense over time. 
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Figure 7. Comparison between percent cellular coverage determined by observers and the 
algorithm. 

Table 1. The results from the strut analysis algorithm. 

Number of Algorithm Average observer BBI 
ID images results (%) results (%) score 

1 137 5.5 4.7 2.50 
2 166 12.1 8.2 2.25 
3 108 16.4 10.4 2.63 
4 181 21.7 23.0 3.00 
5 172 34.8 38.9 3.75 
6 133 37.7 35.4 – 
7 146 38.3 38.9 3.63 
8 174 72.2 70.0 3.67 
9 139 75.3 67.2 – 

10 149 75.7 76.9 4.38 

Excellent results were obtained applying the automated algorithm to the 20 days post­
stent deployment volumetric datasets. Using the training set, a strut reflection parameter of 
4.0 and a strut shadow parameter of 3.1 were chosen to balance the sensitivity and correct 
classification rate of the strut identification algorithms. These parameters provided a strut 
identification sensitivity of 93%, a specificity of 99% and a correct classification rate (positive 
predictive value, PPV) of 95%. The cellular coverage parameter was 9 pixels. This parameter 
provided a sensitivity of 81% and a specificity of 96%. The cellular coverage algorithm had a 
correct classification rate (PPV) of 95%. 

The parameters chosen based on the 150-image training set were then used to evaluate 
the ten volumetric datasets. The average image analysis time was approximately 500 ms per 
image. The algorithm-determined percent cellular coverage for each of the ten analyzed blood 
vessel mimics are displayed in table 1, along with the average observer-determined percent 
cellular coverage and the BBI score. A graphical comparison between the observational and 
algorithm percent cellular coverage measurements is shown in figure 7. On average, the 
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Figure 8. Stent maps for two different blood vessel mimics showing the locations of covered 
(green) and uncovered (red) struts. 

algorithm predicted a 1.6% greater cellular coverage compared to the observer measurements. 
The largest difference between the algorithm and average observer measurements was 8.1%. 

Figure 8 shows a mapping of the strut surface for a bare metal (top) and protein modified 
(bottom) stent in two blood vessel mimics developed at the lower flow rate. These images 
were created by first unfolding the tubular volumetric data set such that rotation 0◦ is at the 
top of the image and rotation 358.2◦ is at the bottom, then flattening the volume by assigning 
each a-scan a color: black = no strut, red = uncovered strut and green = covered strut as 
determined by the automated algorithm. 

6. Discussion 

OCT clearly visualized the temporal response of the BVM to a deployed stent, as illustrated 
in figure 6. On average, the thickness of the cellular lining increased with time after stenting 
and the lining became more hyperintense. The increase in intensity may result from a greater 
concentration of scatterers located within the cellular lining. Previous research has shown 
that scattering in tissue occurs due to intracellular organelles (e.g. mitochondria, nuclei) 
rather than the size and shape of the overall cells (Mourant et al 1998). Increases in the 
concentration of nuclei and mitochondria may be increasing the backscattered intensity of 
the lining. Further time-serial studies examining OCT images and corresponding histological 
sections are required to definitively explain this increase in lining intensity. 

The strut identification algorithms provided excellent sensitivity, specificity and PPV 
(93%, 99% and 95%, respectively). The cellular coverage algorithm provided excellent PPV 
(95%) but only moderate sensitivity (81%). The results of the cellular coverage algorithm 
could be modulated by the choice of the cell coverage parameter. For example, the cell 
coverage parameter could be chosen such that it (1) balanced sensitivity and specificity, (2) 
balanced sensitivity and percent correct classification or (3) produced the greatest distance from 
the no discrimination line in the receiver operator characteristic curve. Using the 150-image 
dataset, we chose to balance the tradeoff between sensitivity and percent correct classification 
for the cell coverage parameter. As shown in figure 9, the upper limit on percent correct 
classification was approximately 93%. A cell coverage parameter of 9 pixels was selected 
since it maintained this high percent correct classification with a large sensitivity. The point 
corresponding to this chosen parameter is indicated with a square in a plot of sensitivity versus 
percent correct classification shown in figure 9. 
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Figure 9. Performance of the cell coverage algorithm based on range of parameters. (A) The 
receiver operator characteristic curve. The dotted line represents the line of no discrimination. A 
cell coverage parameter of 6, indicated by the diamond, would provide the greatest distance from 
the line of no discrimination. (B) A plot of the percent correct classification versus sensitivity. A 
cell coverage parameter of 9, indicated by the square box, was selected because it provided a high 
correct classification rate with an appropriate sensitivity. 

The performance of the algorithm depended on the selection of the reflection and shadow 
parameters. In this study, the parameters were optimized using manual analysis of randomly 
selected images from the ten datasets. This optimized set of parameters was then used 
universally for the comprehensive analysis of the ten BVMs. Although the mimics were 
developed under different growth conditions and exhibited a variety of responses, the algorithm 
performed well for each mimic suggesting that this same universal parameter set can be used 
in future OCT studies of stented blood vessel mimics without the need for manually evaluating 
additional training sets. However, the parameter set was specific to one OCT system. The 
parameters may require reoptimization for different OCT systems. If the algorithm is extended 
for the analysis of other stented vessels, such as native arteries, additional studies will be 
performed to determine an optimal parameter set and whether it can be used universally for 
all OCT datasets of native arteries. 

A cell coverage parameter of 9 implies the minimum lining thickness of a covered strut 
identified by the algorithm was 30 µm. Although the measured resolution of the OCT system 
was 10 µm, bright reflections from the metallic strut occasionally saturated the detection 
electronics resulting in a broadened axial point spread function. This limited the ability for 
both the observers and the algorithm to resolve linings less than 30 µm thick. Several methods 
could be implemented to improve the minimum detectable lining. First, the polarization state 
of the incident light could be optimized to reduce the specular reflections associated with these 
metal surfaces. Second, an endoscope could be designed to image the struts at a shallower 
angle of incidence. Either design would need to carefully balance saturation prevention with 
the need to maintain a strong reflection in order to identify the strut. A third method to 
reduce the minimum detectable lining thickness could involve the simultaneous acquisition 
of multiple images with different gains. These images could be combined to form a high 



dynamic range image with no saturation, similar to the high dynamic range techniques used 
with conventional photography (Debevec and Malik 2007). 

Excellent agreement for percent cellular coverage was found between the algorithm and 
the three observers for the ten volumetric datasets. The algorithm result was within one 
standard deviation of the coverages measured by the three observers for all BVMs except 
BVM 3 and 9. Nothing was noted to suggest why the algorithm differed from the average 
observational score for these particular mimics. 

With a correlation coefficient of 89%, good agreement was observed between the BBI 
scores and the OCT percent cellular coverages. Low percentages are represented by scores 
in the 2–3 range and higher percentages are in the 3–4 range, with the highest percentage of 
76% having a BBI score greater than 4. Imperfect correlation between the BBI scores and 
OCT percent cellular coverages may be partially attributed to the minimum thickness of tissue 
detected by OCT. For example, stent struts covered by a confluent lining with thickness less 
than the 30 µm would not be detected by the OCT algorithm but would be included in the BBI 
score. 

In addition to the calculation of percent cellular coverage for an entire mimic, the algorithm 
also provided local coverage information on individual struts. The location and coverage status 
of strut-positive a-scans were recorded by the algorithm and later used to develop maps of the 
stent surface, as shown in figure 8. These maps may be useful for identifying regions that 
have not been covered by the cellular lining. A histological examination of human cadaver 
specimens suggested that the middle of drug-eluting stents is more likely to lack a neointimal 
lining than the distal and proximal ends of the stent (Finn et al 2007). These maps may help 
stent manufacturers identify properties that hinder endothelialization. Such properties may be 
geometric features or deployment characteristics of the struts. For example, Finn et al (2007) 
found the amount of endothelialization decreased as separation between stent struts became 
smaller. 

Although this algorithm calculated percent cell coverage values in excellent agreement 
with the manual observations, several improvements can be made to the algorithm. Better 
strut identification performance could be obtained by taking advantage of the volumetric data. 
A strut identified in one image should be located at approximately the same position in the 
adjacent images of the volumetric dataset. Strut maps are an assessable way to check for 
erroneous strut identifications, since it provides a clear indication of the location of the stent 
struts. Any pixels in this mapping that do not conform to the expected strut pattern could be 
removed from analysis using a combination of median filtering, image erosion and dilation. A 
discontinuous region of a strut could be identified prompting a closer evaluation of that region 
using higher sensitivity algorithm parameters. 

Both bulk percent cellular coverage and local strut coverage information were obtained 
for these stented blood vessel mimics. The software automatically calculates an estimate of the 
lining thickness covering each stent strut. Future versions of the algorithm could record and 
use these thicknesses to form stent maps showing the thickness of the cellular lining covering 
the struts. 

The blood vessel mimic is a simplified model of a native artery. Application of this 
algorithm to ex vivo or in vivo studies of stented arteries may require modifications to the 
algorithm. Beyond the additional medial and adventitial layers, the native artery will have 
more microstructural elements that may complicate the analysis. In atherosclerotic plaques, 
these elements may include calcified regions and lipid pools. Despite these differences 
between mimics and native arteries, the metallic struts will still have the same visualization 
characteristics—a significantly bright reflection, dark shadow and concentrated intensity. The 
presence of these characteristics suggests that the strut identification algorithm should perform 



well despite the additional complexity. The cell coverage algorithm depends only on a well-
defined lumen and the bright reflection from the stent strut. Consequently, the cell coverage 
algorithms should be relatively insensitive to the additional tissue microstructure present 
beneath the neointima. 

Future studies will be needed to assess the performance of this algorithm in stented 
arteries. Algorithm optimization could be performed with ex vivo arteries, where information 
from destructive techniques such as epi-fluorescence and histological analysis were available. 
The algorithm could then be extended to in vivo studies, where the performance of the algorithm 
could be further optimized if necessary based on manual analysis of OCT images. A study 
incorporating a diverse patient population would be required to determine whether a universal 
parameter set would be appropriate for all in vivo stented arteries. 

7. Conclusion 

The results from this study indicate that OCT can provide excellent visualization of the 
temporal response of blood vessel intimal surfaces to deployed stents, and that the automatic 
strut identification and cell coverage algorithms may be valuable tools in determining both 
endothelialization and re-cellularization of stents from volumetric OCT datasets. The 
algorithm provided percent cellular coverage measurements in excellent agreement with 
observational measures. The high sensitivity, specificity and percent correct classification 
measures suggest that these algorithms may be useful for rapid, accurate assessments of 
endothelialization to help guide new stent designs and drug treatments. 
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