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Abstract

Time-series Autoregressive Moving Average (ARMA) models were employed to model tree crown profiles for two
California hardwood species (blue oak and interior live oak). There are three major components of these models: a
polynomial trend, an ARMA model, and unaccounted for variation. The polynomial trend was used to achieve a
stationary series. For these crown profiles, the use of a quadratic trend resulted in a stationary series for 60% of the
profiles. A cubic trend was used for another 23%, and a quartic for 7%. It was found that 80% of the tree crown
profiles could be modeled using a first order ARMA model [AR(1), or MA(1)] in conjunction with a polynomial trend
and another 10% as a polynomial trend with white noise. When the coefficients of the ARMA models were
statistically significant, the models proved to be both visually and statistically an improvement over the polynomial
trend. Using a binary classification scheme it was possible to relate the type of ARMA model needed for a crown
profile series to tree size and stand characteristics.

1. Introduction

Tree crowns are of increasing interest to a
growing list of resource professionals including:
forest ecologists, wildlife biologists, silivicultural-
ists, biometeorologists and biometricians. From
an ecological perspective tree crowns are the units

in which trace gas and energy exchange takes
place. Tree crowns also support and orient leaves
to allow capture of radiant energy for photosyn-
thesis. Also, birds, insects, and mammals are
among its inhabitants. This paper develops tree
crown models for hardwood species that poten-
tially can be used in any of these disciplines in
support of quantitative predictions of crown
form.

Several models of tree crowns have been devel-
oped, mostly for conifer species. These models
generally fall into three categories, simple Eu-
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clidean shapes, architectural models, or models
that take into account the stochastic nature of
crowns. For a more complete review of crown
modeling than is presented below see Biging and
Gill (1997), Gill (1997), or Gill and Biging (2002).

Euclidean models present trees crowns as sim-
ple geometric figures attached to a tree bole.
Three common models are used: a conic model
(Mohren et al., 1984), a parabolic model (Biging
and Wensel, 1990; Mitchell, 1975; Mohren et al.,
1984), or combinations of two geometric shapes
such as a conic top attached to a frustum of a
paraboloid (Pretzsch, 1992).

The crown architecture approach is more com-
plicated as it models crown branching patterns
(Colin and Houllier, 1992; Maguire et al., 1994),
branch orientation (Colin and Houllier, 1992;
Honda, 1971) and sometimes branch length
(Gavrikov and Karlin, 1992; Ford et al., 1990;
Ford and Ford, 1990). This approach provides for
a very detailed model, but it requires a wealth of
information for parameterization. For a more
complete review of the architectural approach
refer to Halle et al. (1978), Waller and Steingrae-
ber (1985), Givnish (1986).

Models capturing the stochastic nature of tree
crowns include those using fractal geometry
(Corona, 1991; Zeide and Gresham, 1991; Zeide
and Pfeifer, 1991; Zeide, 1998), stochastic frontier
models (Nepal et al., 1996), non-parametric mod-
els (Doruska and Mays, 1998) or time-series mod-
els (Biging and Gill, 1997; Gill, 1997; Gill and
Biging, 2002). Biging and Gill (1997) conducted a
pilot study to test the use of time series models for
crown profiles. In their study height was equiva-
lent to time and crown radius was the y-variable.
Then they conducted a much larger study of 219
conifer crown profile series (Gill and Biging,
2002).

This study uses techniques similar to those re-
ported in Gill and Biging (2002), but applied to
hardwood species. The crowns of the hardwood
species studied herein are inherently more diverse
than those of the conifers studied by Biging and
Gill (1997) or Gill and Biging (2002). Thus, the
main objective of this project was to determine if
the autoregressive moving average (ARMA) mod-
els employed by Biging and Gill (1997), Gill and

Biging (2002) to conifers are appropriate for hard-
wood species with highly variable crown forms. A
sub-objective was to determine if the order of the
ARMA process was related to easily measured
tree and stand characteristics.

2. Data

Data for this project was collected from the
blue oak– foothill (digger or gray) pine habitat
type (Verner, 1988). This habitat type is typically
diverse in structure, both vertically and horizon-
tally, with a mix of hardwoods, conifers and
shrubs. The tree canopy is composed mostly of
blue oak (Quercus douglasii ) and foothill (digger
or gray) pine (Pinus sabiniana Douglas). At lower
elevations, blue oaks make up most of the
canopy, but at higher elevations, foothill pine
generally dominates. Tree associates include inte-
rior live oak (Quercus wislizenii ), California
buckeye (Aesculus californica (Nuttall)), coast live
oak (Quercus agrifolia (Nee), and valley oak
(Quercus lobata (Nee)) in the Coast Range. The
blue oak– foothill pine woodland habitat type oc-
curs along the western foothills of the Sierra
Nevada–Cascade range. For this study, the con-
centration was in the Sierran region and the data
collection concentrated on blue oak and interior
live oak.

To ensure that trees were sampled from a range
of sizes and stand densities, an attempt was made
to sample from the following experimental design.
Two species (blue oak and interior live oak), three
basal area density levels (�5.74, 5.74–11.48, �
11.48 m2/ha (�25, 25–50, and �50 ft2/ac)) and
two height classes (�9.14 and �9.14 m (�30
and�30 ft)) were considered. From each of the
12 species–density–height combinations, an at-
tempt was made to sample 8–10 trees. Minor
deviations from this design occurred because inte-
rior live oak often grows in clumps and it was not
possible to distinguish the individual tree crowns
within these clumps. See Table 1 for the distribu-
tion of trees actually sampled.

Every tree in the study was measured for DBH,
height, average height-to-crown base, lowest live
branch, radius of the crown at the height-to-
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crown base in the direction for which the crown
profile was measured and photographed. Stand
basal area was calculated by selecting trees using a
prism with a basal area factor of 9.2 m2/ha (40
ft2/ac). With this method each sample tree repre-
sents 9.2 m2 of basal area/ha and so the stand
basal area is simply 9.2 multiplied by the number
of sample trees. Each sampled tree was also pho-
tographed using a 35 mm Nikon™ camera with a
35–210 mm lens1. To minimize systematic errors,
the lens of the camera was kept within 1–2° of
perpendicular to the bole of the tree at DBH by
placing a carpenter’s level on the camera lens.

3. Methods

Following the techniques employed by Gill and
Biging (2002), the negatives of the photographs
were scanned using a Nikon Coolscan Scanner.
For these hardwood trees, the average scale of the
scanned images was 25 mm (0.98 in.) per pixel
with a standard deviation (Sx) of 12.5 mm (0.49
in.) and a range from 5 mm (0.18 in.) per pixel to
62 mm (2.45 in.) per pixel. Using ERDAS (ER-
DAS, 1991), the crown exterior of each scanned
image was screen digitized to acquire x–y coordi-
nate pairs that could be converted to height-ra-
dius pairs. By crown exterior we mean that if at a
particular height it was possible to locate two
distinct edges of the tree crown because of
branching patterns the point furthest from the
bole of the tree was selected.

A natural cubic spline was fit to the data (Ch-
eney and Kincaid, 1985) to acquire the equidistant
measurements needed to facilitate the analysis of
time-series data. For these series, the average
number of digitized points and interpolated points
were 93.4 (Sx=25.1) and 50.7 (Sx=16.1), respec-
tively. The average ratio of digitized to interpo-
lated points was 1.9 (Sx=0.5) with a minimum of
0.9. There was only one series for which the
number of interpolated points was less than the
number of digitized points (64 versus 73). If the
data shifted so erratically that the spline function

was unable to adjust quickly, linear interpolation
was used. In general, we followed the techniques
employed by Biging and Gill (1997), Gill and
Biging (2002) for analyzing and modeling crown
profile data.

A desirable condition for time-series analysis is
a stationary series (one with constant mean and
variance). The standard technique of differencing
a time-series to obtain stationarity does not work
with this type of data. Instead a polynomial trend
was removed from each series to induce stationar-
ity. For these series a quadratic, cubic or quartic
trend was fit to the data using ordinary least
squares. The lowest order polynomial producing a
stationary series was used for further analysis.

3.1. ARMA models

Time-series models were then fit to the residuals
of the OLS models. These simple polynomial
models were selected for detrending because many
models of tree crowns have used similar Euclidean
models. In this way, the time-series models ex-
plain additional variation over that explained sim-
ply by a trend model. As pointed out by Biging
and Gill (1997), these time-series models contain
three elements: (1) the polynomial trend; (2) the
ARMA model; and (3) unexplained variation.

The two step method of first removing the
trend to produce a stationary series and then
fitting the ARMA model is only one method of
fitting non-stationary time-series. Another method
is to simultaneously fit the trend and the ARMA
model using maximum likelihood estimation
(MLE). A disadvantage to using the two-stage
approach, which is over come by using the MLE
approach, is that the estimates of the standard
errors of the trend coefficients may be biased.
This bias is significantly reduced with large sam-
ple sizes. However, by fitting the model in two
stages, one can more easily examine the structure
of the ARMA model about the trend. Because we
were primarily interested in the structure of the
residuals about the trend line, we chose to use the
two-stage approach. In addition, we were not
concerned with the standard errors of the trend
estimates because we did not perform hypothesis
tests. Refer to Fuller (1996) for a more thorough

1 The lens distortion was less than 5% in most regions and
hence no corrections were made (Gill, 1997).



discussion of the techniques for fitting non-sta-
tionary series.

ARMA models were fit to the series of residuals
following the methods of Box and Jenkins (1970)
as employed by Biging and Gill (1997), Gill and
Biging (2002). The equational form of the
ARMA(p, q) model is:

zt=�1zt−1+�2zt−2+ ···+�pzt−p+�+ut

−�1ut−1− ···−�qut−q,

where, zt=crown radius (ft) at height t minus the
quadratic, cubic or quartic crown trend (ft) at
height t (t=1, …, T); �i=parameters of the au-
toregressive factors (i=1, …, p); �k=parameters
of the moving average factors (k=1, …, q); �=
constant; ut=white noise2 (Box and Jenkins,
1970).

Two functions, the autocorrelation function
(ACF) and the partial autocorrelation function
(PACF), were used to assist in the identification
stage of the time-series modeling. Because the
ACF and the PACF did not always give a clear
indication of the correct ARMA model for the
crown profile series in this study, 15 models were
estimated for each series (ARMA (p, q), with
(p, q)�{(1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3),
(1, 1), (2, 1), (1, 2), (2, 2), (3, 1), (1, 3), (3, 2),
(2, 3), (3, 3)}). Note that an ARMA(p, 0) is equiv-
alent to an AR(p) and an ARMA(0, q) is equiva-
lent to a MA(q). To further assist in the
identification of the correct ARMA model, a gen-
eral information criteria, the Bayesian informa-
tion criteria (BIC) was used. This criteria is a
modification of Akaike’s information criteria
(AIC) (Akaike, 1971, 1974) and penalizes models
with more parameters or larger residual sum of
squares. For these crown profile series, any model
within 5% (arbitrarily selected) of the lowest (best)
BIC was considered acceptable. For a more thor-
ough explanation of these methods, refer to Big-
ing and Gill (1997) or Gill and Biging (2002).

3.2. Classification of models

It is informative to know if the type of ARMA
model that is best for each series can be predicted
from knowledge of tree species, size or stand
characteristics. We envision that it will be possible
to simulate the profiles of all trees in a forest
stand if we know which model to apply and then
can predict the ARMA coefficients for each tree’s
profile. This later step will be the subject of future
papers.

We detrended the series, identified and esti-
mated the coefficients of the ARMA model for
each series as described under ARMA models
above. Then we employed a classification scheme
to determine if the appropriate order of the
ARMA model was related to tree species, size, or
stand characteristics. To complete this task, a
binary classification scheme, Classification and
Regression Trees (CART) (Breiman et al., 1984),
was used. For the purpose of classification, one
and only one ARMA model was identified for
each series. For this classification scheme, only
the first order [AR(1) and MA(1)] and the AR(0)
(trend plus white noise) were used for stationary
series. We chose to use only first order models
and AR(0) because they accounted for a majority
of the models (see Section 4) and because they are
the most parsimonious of the models. In addition,
all series for which the removal of up to a fourth
order polynomial did not produce a stationary
series were identified as ‘non-stationary’. Since the
AR(1) model requires the measurement (or esti-
mation) of the crown radius at the height-to-
crown base and the MA(1) does not, the MA(1)
model was the preferred model. In this way any
series for which the MA(1) model was appropriate
(BIC within 5% of best with significant coeffi-
cients) was identified as an MA(1). This was true
even if both the MA(1) and the AR(1) were
appropriate. The AR(1) model was the second
choice. So any series for which an AR(1) coeffi-
cients were significant and the BIC was within 5%
of the best, but for which the MA(1) was not
within 5% of the best was assigned to the AR(1).
Any series which could not be modeled as an
MA(1) or an AR(1) was assigned to an AR(0)
model if the removal of the trend produced a

2 White noise is sequence of identically and independently
distributed random disturbances with mean zero and variance
�2.



stationary series and to a ‘non-stationary’ class if
the removal of a trend did not produce a station-
ary series.

After each series was identified as one of the
models, the CART analysis was performed.
CART was used instead of discriminant analysis
for two primary reasons, the ease of including
categorical variables, such as species, and because
the assumption of multivariate normality needed
for discriminant analysis could not be met with
our data. CART does not require normality of
observations.

Because of limited data, it was not possible to
reserve some of the data for testing the classifica-
tion trees. Instead, a cross-validation technique
was used to determine an appropriate size for the
classification tree. Using this technique, different
classification trees were compared and large trees
were pruned to an appropriate size.

4. Results

The first step in the analysis was to detrend the
series. A quadratic trend was sufficient for 60% of
the series, for 23% of the series a cubic trend was
used and for another 7% a quartic trend was used.
The other 10%, which would need some other

trend to produce a stationary series, were assigned
a model type of ‘non-stationary’ and not modeled
further. The ARMA models were then fit to the
residuals around the trend. If the time-series mod-
els tested were statistically significant then they
were a de facto improvement over using simple
geometric forms (quadratic, cubic, or quartic
trend).

Models for which the BIC was within 5% of the
smallest BIC and for which the time-series coeffi-
cients were significant were judged to be nearly
optimal and thus appropriate for modeling. It was
found that 86 of 125 hardwood series could be
modeled as an AR(1) and that 29 could be mod-
eled as an MA(1) (see Table 2).

In addition to being statistically an improve-
ment over the simple Euclidean models, these
time-series models were visually an improvement
when used to predict tree crown profiles. As ex-
amples of these simulations refer to Fig. 1 for a
simulated AR(1), Fig. 2 for a simulated MA(1)
and to Fig. 3 for a simulated AR(0) model. In
their models of conifer crown profiles, Biging and
Gill (1997), Gill and Biging (2002) found that the
AR(1) and MA(1) were visually similar and in this
study we found that also holds for the hardwood
crown profiles (see Fig. 4). It can be seen, how-
ever, that differences in prediction of crown ra-

Table 2
Model types with smallest BIC—hardwoods

No. of series where thisModel type No. of series where this model has smallest
model type has the smallest BIC BIC or is within 5% of smallest BIC

AR(0) 7 7
AR(1) 67 86a

9 20AR(2)
30AR(3)

20MA(1) 29
1MA(2) 8

MA(3) 0 3
ARMA(1, 1) 5 19

10ARMA(2, 1)
2ARMA(1, 2) 7
1ARMA(2, 2) 2

10ARMA(3, 1)
1ARMA(1, 3) 2

125Total

a For 15 of these series the MA(1) model was also within 5% of the lowest BIC.



Fig. 1. Simulations using an AR(1) process [crradt=0.356 crradt−1+ut+ (4.607−2.419 htt+1.191 htt
2−0.164 htt

3+0.007 htt
4);

where crradt=crown radius, htt=height along crown of tree, u=white noise series with variance 0.101] for a blue oak tree (42.4
cm in DBH and 11.0 m tall). The dashed line is the trend (quartic) used in simulation. The graph in the upper left is a photo of
the tree crown and the remaining three are simulations with the trend.



Fig. 2. Simulations using an MA(1) process [crradt= −0.904ut−1+ut+ (5.040−0.963 htt+0.367 htt
2−0.031 htt

3); where crradt=
crown radius, htt=height along crown of tree, u=white noise series with variance 0.096] for a interior live oak tree (76.2 cm in
DBH and 9.75 m tall). The dashed line is the trend (cubic) used in simulation. The graph in the upper left is a photo of the tree
crown and the remaining three are simulations with the trend.



Fig. 3. Simulations using an AR(0) process [crradt= (0.861+0.517 htt−0.099 htt
2)+ut ; where crradt=crown radius, htt=height

along crown of tree, u=white noise series with variance 0.059] for a blue oak tree (12.2 cm in DBH and 5.5 m tall). The dashed
line is the trend (quadratic) used in simulation. The graph in the upper left is a photo of the tree crown and the remaining three
are simulations with the trend.



Fig. 4. Simulations using AR(1) and an MA(1) processes for the same tree. Also plotted is the trend line. Note that this is the same
tree as in Fig. 1. The equation for the AR(1) simulation is crradt=0.356 crradt−1+ut+ (4.607−2.419 htt+1.191 htt

2−0.164
htt

3+0.007 htt
4); and for the MA(1) is crradt= −0.289ut−1+ut+ (4.607−2.419 htt+1.191 htt

2−0.164 htt
3+0.007 htt

4); where
crradt=crown radius, htt=height along crown of tree, u=white noise series with variance of 0.101 and 0.104 for the AR(1) process
and the MA(1) process, respectively.



dius at the crown base occur since the AR(1) uses
this value for initialization whereas the MA(1)
does not.

4.1. Classification of ARMA models

In the development of a CART it was necessary
to associate each series with one and only one
ARMA model. This identification was done by
using only first order models (AR(1) and MA(1))
along with the AR(0) model. Series were assigned
to these models only if the BIC was within 5% of
the smallest and the coefficients of the model were
significant. For the number of series in each class,
see Table 3. From this table, it can be seen that
roughly 80% (100/125) could be modeled using
first order ARMA models.

The classification tree (from CART) to deter-
mine which type of model should be used for a
given tree is shown in Fig. 5. When interpreting
this figure, if the statement is true follow the
branch to the left and if it is false follow the
branch to the right. This tree has nine terminal
nodes, uses DBH (cm), height (m), crown radius
(m) at the height-to-crown base, and stand basal
area (m2/ha) for classification. This tree has a
misclassification rate of 37.6% (see Table 4). It is
interesting to note that species was not one of the
variates used in the classification. For this classifi-
cation size measures of the tree (diameter, height
and crown radius) were the most important indi-
cators of which model should be used for specific
crown profile series.

The misclassification rate of 37.6% indicates
that slightly over one-third of time, the wrong
model type will be selected for simulation pur-
poses. This rate, while high, is on par with mis-
classification rates reported by Gill and Biging
(2002) for conifer tree crown profiles. When trees
are misclassified as to type of ARMA model it
could result in less accurate crown profiles for a
given tree. But qualitatively, an AR(1) simulation
and an MA(1) simulation result in similar tree
crown profiles (see Fig. 4). This is not surprising
considering an AR(1) model can be approximated
with a relatively small order MA process and vice
versa. Approximately 47% of the misclassified se-
ries involve the misclassification between AR(1)

Table 3
Table of ‘best’ model for the crown profiles

Model Number of times series judged besta

AR(0) 13 (10%)

29 (23%)MA(1)
AR(1) 71 (57%)

12 (10%)Otherb

Total 125

a Only first order ARMA models and the white noise model
were used in this classification.

b Removal of a quadratic, cubic, or quartic trend was not
sufficient to achieve a stationary series.

and MA(1) models (refer to the confusion matrix
in Table 4). Hence the effective misclassification
rate is considerably less than reported and in-
volves primarily the misclassification of AR(0)
versus AR(1) or MA(1).

5. Conclusion

This project demonstrated that the methods
developed by Biging and Gill (1997), Gill and
Biging (2002) can also be applied to hardwood
crown profiles. For these hardwood crown profi-
les it was found that 80% could be modeled using
first order ARMA models, and that another 10%
could be modeled as a polynomial trend plus an
AR(0) model. All of these time-series models were
found to be visually an improvement over simple
geometric forms. Since the ARMA coefficients
were significant, the time-series models were
shown to be statistically an improvement over
using simple Euclidean geometric forms.

These results are similar to those found by Gill
and Biging (2002) for conifer crown profiles. For
conifers their results indicated that ca. 70% of the
crowns could be modeled as first order ARMA
models with an additional 25% as a trend plus an
AR(0) model.

In both the hardwoods reported here and the
conifers studied by Gill and Biging (2002), the
model that was most commonly judged as best
was the AR(1) model. However, more hardwood



Fig. 5. CART classification scheme for the determination of which ARMA model to use on a specific tree.

Table 4
Confusion matrix for the CART analysis of the ARMA models

Actual Row totalsPredicted Model User’s Acc.%

AR(1) MA(1) Non-stationaryModel AR(0)

6 4AR(0) 03 13 23.1
61 9AR(1) 01 71 85.9
13 14 02 29MA(1) 48.3

Non-stationary 0 12 0 0 12 0

92 27 0Total 1256

50.0Producer’s acc.% 66.3 51.9 0 Overall acc.% 62.4

trees were modeled as a trend plus an AR(0) than
were the conifer crowns. Another difference be-
tween the results of the hardwoods and conifers is
that Gill and Biging (2002) were able to achieve
stationarity for the conifer crowns by removing
only a quadratic trend for 95% of their crown
series with the additional 5% not being modeled.
In this study, the quadratic trend was only suffi-
cient for 60% of the series, with another 23%
required a cubic trend, and 7% a quartic trend.

For these hardwood crown profiles, there were
10% for which a polynomial model did not
provide a stationary series compared to only 5%
of the conifers in the previous conifer study.
While we anticipated that ARMA models would
be appropriate for hardwood profiles it is
somewhat surprising that a slightly higher per-
centage of hardwood than conifer crowns were
adequately represented by low order ARMA
models. Because of the highly variable form of



hardwoods we anticipated this result to be
reversed.

Using a binary classification technique, it was
possible to develop reasonably accurate classifica-
tion rules for when each type of model [MA(1),
AR(1), or AR(0)] should be used. This classifica-
tion was based solely on tree and stand character-
istics, thus indicating that there is a relationship
between tree characteristics and the type of first
order ARMA model needed to model a crown
profile.

Although, visually and statistically an improve-
ment over simply Euclidean models, the models
developed in this study were for individual trees
and much data is needed to parameterize them. In
future studies, we will predict the trend coeffi-
cients and the coefficients of the ARMA models
from commonly measured tree and stand variates.
In this way tree crown profiles can be predicted
from inventory data and used in other applica-
tions such as 3-D stand visualization programs
(Burkhart, 1992; McGaughey, 1998; Nagel, 1997;
Pretzsch, 1993). This type of structural informa-
tion will also be useful to forest managers and
silviculturists and may be used in conjunction
with forest aesthetics and wildlife habitat manage-
ment. Another possible application is in modeling
the shading of hardwood trees in urban settings.
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